
Electronic Notes in Theoretical Computer Science 82 No. 5 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 12 pages

Composition of Structured Process
Specifications

Samira Sadaoui 1

Department of Computer Science
University of Regina

3737 Wascana Parkway
Regina, SK S4S 0A2, Canada

Abstract

This paper provides the definition of an operator that composes two structured process
specifications while preserving the original structure in the new specification. On each
structuring level, this operator assembles two by two the components of the original pro-
cesses, and so on until the lower level is reached where the basic components are integrated.
The composition is driven by the external gates that are shared between the participating
components, and components are assembled if they have the same internal structure. We
associate with our operator a set of semantics conditions that ensures the correctness of the
composition. The composition operator is progressively introduced with several examples.

1 Introduction

The real benefit of composable software systems lies in their increased flexibility: a
system built from components should be easy to recompose to address new require-
ments [8]. Today, several composition techniques are needed to support different
development approaches, including:

� bottom-up development where components from different sources are integrated
into the system

� viewpoint oriented development where multiple partial components are com-
posed to produce the final product. These components focus on different aspects
of the design [9]

� incremental development where a component is enriched (or composed) with
new properties compatible with the existing ones. For example, in an architec-
tural context, the successive evolution of components is useful to conceive first
the high level architecture, and then refine the components

1 Email: sadaouis@cs.uregina.ca

c
2003 Published by Elsevier Science B. V.

132

CC BY-NC-ND license. Open access under

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81141594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Sadaoui

In all cases, the resulting system should preserve, without introducing any errors,
the behaviors of the composed components. For instance, the architectural refine-
ment must not disturb neither the global functionality nor the added functionality
[3]. Today in software components, the assembled components plug, but they might
not play [7].

We examine the composition techniques in the area of process algebra, and in
particular with the specification language LOTOS [1]. The operators in LOTOS al-
low a certain form of composition; for example the parallel operators are used to
compose constraints in the constraint-oriented style [11]. However, only the full
synchronization operator composes with the trace preorder which is a very weak
notion of refinement [10]. Therefore, it is necessary to provide new composition
operators that, in one hand, compose components in different ways that lead to dif-
ferent specifications, and in the other hand, preserve after composition important
properties such as the deadlock ones. In literature, most of the composition oper-
ators involve non structured specifications. These operators are based on the well-
known implementation relations of LOTOS, viz reduction of the non-determinism,
and compatible extension of functionalities [2]. Hence, different composition types
can be defined, e.g. the composition by reduction allows the partial reuse of com-
ponents, and the composition by extension, the classical composition in component
technology, reuses components without modification (“as-is reuse”). In this paper,
we define an operator that composes by extension two structured specifications
while preserving the initial structure in the new specification. On each structuring
level, the composition is driven by the external gates that can be shared between
the components of the original processes, and components are assembled if they
have the same internal structure. We associate with our operator a set of semantics
conditions that ensures the correctness of the composition.

2 Background

LOTOS is an international formal specification technique for specifying concurrent
and distributed systems. It combines a process calculus with an abstract data type
language [1]. It models parallel execution and interprocess communication, and
supports a practical theory of correctness and refinement. Refinement transforms
a specification into a more detailed or structured specification. Processes can be
represented in three different ways: by algebraic expressions, labelled transition
systems, or by trace and refusal sets. The operational semantics of LOTOS maps
each process into a transition system. The syntax and operational semantics of the
LOTOS operators involved in our composition operator are shown in table 1; G is
the set of all observable actions and i is the invisible or internal action; Act = G [

fig, G+ = G [fδg and Act+ = Act [fδg; g 2 G , g+ 2 G+, µ 2 Act, µ+ 2 Act+

and G� G ; E is the set of all processes, B;B1 and B2 are expression behaviors or
processes; ! denotes a transition relation.

133

Sadaoui

Operators Syntax Semantics

Inaction stop

Successful

termination exit exit
δ
�! stop

Action prefix µ;B

µ;B
µ
�!B

Choice B1[]B2

B1
µ+
�!B0

1

B1[]B2
µ+
�!B0

1

B2
µ+
�!B0

2

B1[]B2
µ+
�!B0

2

Hiding hide G in B
B

g
�!B0

; g2G

hide G in B
i

�!hide G in B0

B
µ+
�!B0

; g 62G

hide G in B
µ+
�!hide G in B0

Parallel composition B1 j[G]jB2

B1
µ
�!B0

1; µ 62G

B1j[G]jB2
µ
�!B0

1j[G]jB2

B2
µ
�!B0

2; µ 62G

B1j[G]jB2
µ
�!B1j[G]jB0

2

B1
g+
�!B0

1; B2
g+
�!B0

2; g+2G

B1j[G]jB2
g+
�!B0

1j[G]jB0

2

Table 1
Operational semantics for LOTOS

Definition 2.1 P 2E , L is the alphabet of P, a 2 Act an action, s 2 Act� a sequence
of actions, and ε 2 Act the empty trace. A trace is a sequence of observable actions.
The transition) is used to ignore the internal actions.

- P is stable iff P 6
i
! (P can not move observably to another state)

- P is deadlock iff 8 a 2 Act; P 6
a
! (no progress is possible)

- Der(P) = f P0 j 9 s 2 Act�, P
s
) P0 g (the set of all states that can be reached from P)

- Gates(P) = fa 2 G j 9 P0 2 Der(P), P0
a
!g (set of all external actions of P)

- Hgates(P) = L(P) n Gates(P) (set of all hidden actions of P)

- Init(P) = fa 2 G j P
a
)g (set of all initial actions of P)

- Tr(P) = fs 2 G�jP
s
)g (set of all traces that can be reached from P)

- A f ter(P; s) = fP0jP
s
) P0g (set of all states that can be reached from P via the trace s)

- Re f (P; s) = fX j 9P0 2 After(P, s) : 8a 2 X ;P0 6
a
)g(refusal set of P after the trace s)

Ref(P, s) is a set of sets such that Ref(P, s) is included in the set of partitions of
L . A set X � L belongs to Ref(P, s) if and only if P can execute the trace s and
then refuses all the actions of X

- Dash(P;a) = fP0jP
ε
)

a
! P0g (set of all states that can be reached from P after the action a

eventually preceded by internal actions)

134

Sadaoui

The extension preorder, denoted ext [2], allows for the introduction of new
traces in an implementation P while preserving the deadlocks properties of the
original specification Q. Informally, P extends Q, if P allows any traces that Q
allows, and P does not deadlock in a situation where Q would not deadlock (P can
only refuse what Q can refuse).

Definition 2.2 P and Q are two processes. P is an extension of Q, P ext Q iff:

� Tr(P) � Tr(Q) (* P performs all the traces of Q *)

� 8 s 2 Tr(Q); Re f (P;s) � Re f (Q;s) (*Preserving the deadlock properties in
P*)

Example 2.3 Let us consider the following process P:= a; i; b; stop [] i;
a; c; stop.

- L(P) = fa, b, cg

- P is not stable; P can offer i as the first action

- P is deadlock; after the inaction stop, P can not progress

- Gates(P) = fa, b, cg; Hgates (P) = /0; Init(P) = fag

- Dash(P, a) = f(i, b, stop), (c, stop)g

Let us consider another process Q:= a; b; stop. P ext Q since:

- Tr(P) = fε, a, ab, acg � Tr(Q) = fε, a, abg

- Ref(P, ε) = f /0, fb, cg g � Ref(Q, ε) = f /0, fb, cgg

- Ref(P, a) = f /0, fa, cg, fa, bgg � Ref(Q, a) = f /0, fa, cg, fa, bgg

- Ref(P, ab) = f /0, fa, b, cgg � Ref(Q, ab) = f /0, fa, b, cgg

3 Composition of Basic Components

3.1 Composition by Extension

A process can be basic (an alternative ordering of actions), or structured (parallel
composition of components). The composition by extension, called Compext , is a
function that takes two basic processes, P and Q, and produces a common extension
S of P and Q. In definition 3.1, the traces of S include the traces of both P and Q,
and after a trace that P (or Q) may do, S may refuse what P (or Q) can refuse. To
produce the biggest composition S, the set inclusions should be replaced by the set
equalities [10].

Definition 3.1 S:= Compext(P, Q) is a composition by extension iff:

� Tr(S) � Tr(P) [Tr(Q)

� 8 s 2 Tr(P) \ Tr(Q), Ref(S, s) � Ref(P,s) \ Ref(Q,s)

� 8 s 2 Tr(P) n Tr(Q), Ref(S, s) � Ref(P,s)

135

Sadaoui

� 8 s 2 Tr(Q) n Tr(P), Ref(S, s) � Ref(Q,s).

A successful composition depends on the consistency of P and Q. Two pro-
cesses are consistent with each other whether it is possible to find at least one
implementation S that refines both specifications [10]. In [5], it has been proved
that from two transition systems, we can always build a transition system which is
an extension of the two others. Since LOTOS uses the same semantics model, thus
the result is applicable to the processes i.e., 8 P 2 E , 8 Q 2 E , 9 S 2 E , S ext P
and S ext Q (the set of compositions is not empty).

Some composition-by-extension operators have been defined. In [3], the com-
position � supports the incremental development of systems in an architectural
context. In [10], the author provides the operator 1 which is an improvement of �
to take into account the hiding operator and the action i. In [4], the operator Merge,
extension of � to take into account the hiding operator, preserves the cyclic traces
in the original processes. This operator applies to the transition systems but uses
acceptance tree as an intermediate model.

3.2 The Union Operator

The union operator 1 is defined with an operational semantics [10]. This operator
merges those behaviors that the two processes have in common, and then provides
a choice between the two behaviors when they start to differ. Its resolves the non-
determinism and removes all the internal actions from the overlapping behavior
of both operands. We associate with the operator 1 the algorithm given below; Σ
denotes the generalization of the choice operator, i.e. Σ(stop)= stop, Σ(fPg)= P,
Σ(fP,Qg) = P [] Q, and Σ(fPg [E)= P [] Σ(E).

Algorithm 1
1(P, Q):=

if Init(P) \ Init(Q) = fai1, ..., ain g and n � 1 then
(ai1; 1(Σ(Dash(P, ai1)), Σ(Dash(Q, ai1)))

[] ...[]
ain; 1(Σ(Dash(P, ain)), Σ(Dash(Q, ain))))

else stop
[]
if Init(P) n Init(Q) = fap1, ..., apm g and m � 1 then

(ap1 ; (Σ(Dash(P, ap1)))
[] ...[]

apm; (Σ(Dash(P, apm))))
else stop
[]
if Init(Q) n Init(P) = faq1, ..., aqr g and r � 1 then

(aq1; (Σ(Dash(Q, aq1)))
[] ...[]

aqr ; (Σ(Dash(Q, aqr))))
else stop

136

Sadaoui

Example 3.2 We consider here two vending machines VM1 and VM2 defined be-
low:

- VM1:= Insert Coins; (Select Coffee; stop [] Select Juice; stop)

- VM2:= Insert Coins; (Select Tea; stop [] Select Coffee; stop)

The specification VM, composition by extension of VM1 and VM2, is obtained as
fellows:

- VM:= VM1 1 VM2

VM:= Insert Coins; (Select Coffee; stop [] Select Juice; stop

[] Select Tea; stop)

We can easily check that VM ext VM1 and VM ext VM2 using the definition 3.1.

4 Composition of Structured Specifications

4.1 First Version

We present here an operator called CompSt that composes by extension two archi-
tectures P and Q, and preserves the original structure in the new specification. The
basic components in P and Q are integrated with any composition-by-extension
operator Compext . Building structured specifications is important for distributed
software engineering. We consider here the specifications with the following form
S : hide HG in (C1 j [HG] j C2) such that:

� if HG = /0 then C1 and C2 are independent components

� if HG 6= /0 then C1 and C2 are components that communicate on hidden gates

The two components C1 and C2 are both structured according to S , and so on.
We also note that any specification can be re-structured with respect to S . We
give here the first version of the operator CompSt which is a generalization of
the composition algorithm given in [4] where the monolithic components (basic
components but without the action i) are assembled with the operator Merge.

Algorithm 2

CompSt(P, Q):=
if P = hide HGP in (C1P j [HGP] j C2P)
and Q = hide HGQ in (C1Q j [HGQ] j C2Q) (*structured processes*)
then hide HGP, HGQ in

(CompSt(CiP, CjQ) j [HGP;HGQ] j CompSt(Ci0P, Cj0Q))
such that i; i0; j; j0 2 1..2 and i 6= i0 and j 6= j0

(*composition of the structuring levels*)
else Compext(P, Q) (*composition of basic processes*)

Example 4.1 Our aim is to compose two structured vending machines VM1 and

137

Sadaoui

Activ1

Select_Juice

SE1 MB1

VM1 VM2 VM

Serve_Juice

Insert_Coins

Return_Change

Aknow1
SE2 MB2 SE MB

Select_Tea Insert_Coins Insert_Coins

Return_ChangeReturn_ChangeServe_Tea Serve_Juice
Serve_Tea

Select_Juice Select_Tea

Activ2
Activ1

Aknow2

Aknow1

Aknow2

Activ2

Fig. 1. Composition of 2 vending machines

VM2 illustrated in figure 1. A vending machine is the parallel composition of two
processes: a money box and a selector. The hidden gates are represented in dotted
lines. The basic components in VM1 and VM2 are defined below:

- SE1 := Activ1; Select Juice; Serve Juice; Aknow1; SE1

- MB1 := Insert Coins; Activ1; Aknow1; Return Change; MB1

- SE2 := Activ2; Select Tea; Serve Tea; Aknow2; SE2

- MB2 := Insert Coins; Activ2; Aknow2; Return Change; MB2

The structure of the composition VM, given in figure 1, is as fellows:

- VM:= CompSt(VM1, VM2)

VM:= hide Activ1,Aknow1,Activ2,Aknow2 in

(SE j[Activ1,Aknow1,Activ2,Aknow2]j MB)

In algorithm 2, the composition Compext is instantiated with the union operator
1 as fellows:

- SE:= SE1 1 SE2

SE:= (Activ1; Select Juice; Serve Juice; Aknow1;SE) [] (Activ2;
Select Tea; Serve Tea; Aknow2; SE)

- MB:= MB1 1 MB2

MB:= Insert Coins; (Activ1; Aknow1; Return Change; MB [] Activ2;
Aknow2; Return Change; MB)

4.2 Conditions of the Composition

We associate with the operator CompSt the following conditions: P and Q must
have the same internal structure, and the extension relation must be preserved on
each structuring level.

Same internal structure.
P and Q must have the same internal structure (for each component CiP in P

must correspond a component C jQ in Q). P and Q should at least have the same
number of structuring levels and the same number of basic components. The fol-

138

Sadaoui

lowing algorithm Unifstr checks whether P and Q have the same structure.

Algorithm 3
Unifstr(P, Q) =

if P = hide HGP in C1P j[HGP]j C2P

and Q = hide HGQ in C1Q j[HGQ]j C2Q

then if Unifstr(C1P, C1Q) and Unifstr(C2P, C2Q) then true
else if Unifstr(C1P, C2Q) and Unifstr(C2P, C1Q) then true

else false
else if P and Q are basic components then true

else false.

We notice that if P and Q do not have the same structure, we can transform P
into an equivalent process P0, and Q into an equivalent process Q0 such that P0 and
Q0 have the same parallel structure.

Preserving the extension.
In general when composing two architectures P and Q, S is not always an ex-

tension of P and Q. The extension of the basic components is not enough to ensure
the extension of the global specification. A set of sufficient conditions is defined in
[4] to preserve the extension relation, including:

� the hidden gates in P must not conflict with the gates in Q, and vice versa. To sat-
isfy this condition, we just have to rename the hidden gates because the renaming
does not disturb the observable behavior of the process

� P and Q should be stable

� all the synchronization gates should be hidden

� the external gates in each process must not be shared by two or more of its
components

� a common trace in P and Q that is not cyclic must not be followed by hidden
actions in P and in Q.

If the conditions above are satisfied then CompSt(P, Q) ext P and CompSt(P, Q)
ext Q. If these conditions are not satisfied, we can transform P and Q into non
structured specifications, and then compose them using any operator Compext . We
have then to restructure the resulting composition.

Example 4.2 In the example 4.1, VM ext VM1 and VM ext VM2 since:

- SE ext SE1 and SE ext SE2 by construction with the operator 1

- MB ext MB1 and MB ext MB2 by construction with the operator 1

- VM ext VM1 and VM ext VM2 because the extension-preserving conditions
defined in [4] are satisfied.

139

Sadaoui

4.3 Detailed Version

The algorithm CompSt does not specify how to compose two by two the internal
components of P and Q; for any component CiP in P, how to find its correspond-
ing CjQ in Q ? On each structuring level, the component interface provides the
connectivity ports:

� first we compose the components that share common actions i.e., Gates(CiP) \
Gates(CjQ) 6= /0.

� after that we compose randomly the other components.

In this new version, the composition is driven by the external gates that can be
shared between the internal components of P and Q. On each structuring level, we
also take into account that two components are composed if they have the same
structure. We notice that even P and Q have the same internal structure, P and Q
can not be composed because there exists two components in P and Q that have the
same external gates but do not have the same structure.

Algorithm 4
Init(k) (*initialize k to 0*)
CompSt(P, Q):=

if P = hide HGP in C1P j[HGP]j C2P

and Q = hide HGQ in C1Q j[HGQ]j C2Q

then
if 9CiP 2 P, 9CjQ 2 Q such that Gates(CiP) \ Gates(CjQ) 6= /0
then

if Unifstr(CiP, CjQ) and Unifstr(Ci0P, Cj0Q) and i 6= i0 and j 6= j0

then
f Incr(k) (*increment k by one*)
hide Hgates(P);Hgates(Q) in
(CkS Gates(CkS) j [Hgates(P);Hgates(Q)] j C(k+1)S Gates(C(k+1)S)
such that CkS := CompSt(CiP, CjQ) and C(k+1)S := CompSt(Ci0P, Cj0Q)
g

else stop
else

if 9CiP 2 P, 9CjQ 2 Q such that Unifstr(CiP, CjQ) and Unifstr(Ci0P, Cj0Q)
and i 6= i0 and j 6= j0

then
f Incr(k) (*increment k by one*)
hide Hgates(P);Hgates(Q) in
(CkS Gates(CkS) j [Hgates(P);Hgates(Q)] j C(k+1)S Gates(C(k+1)S)
such that CkS := CompSt(CiP, CjQ) and C(k+1)S := CompSt(Ci0P, Cj0Q)
g

else stop
else Compext (P, Q)

140

Sadaoui

For the automation of the composition operator (including the two algorithms 1
and 4, and the conditions defined in subsection 4.2), the different semantics prop-
erties defined in Section 2 can be algebraically computed according to LOTOS op-
erators. For instance, the trace and refusal sets have been computed and proved
correct in [6].

P

C1P

C2P

C3P C4P

C5P

C6P

C7P C8P

C9P C10P

c d

e f

Q

C1Q

C2Q

C3Q

C4Q

C5Q C6Q

C7Q C8Q

C9Q C10Q

a k

g h

i j
C1S

C2S

C3S C4S

C5S

C6P

C7S C8S

C9S C10S

c d

e

k

g

S

a b
ba

fh

ji

Fig. 2. Processes P, Q, and their composition S

Example 4.3 Table 2 explains how two structured processes P and Q are composed
using the algorithm 4. The structures of P and Q are illustrated in figure 2 by
abstracting the hidden gates.

In figure 3, we summarize the composition of structured process specifications.

QP

S

Do P and Q
have the same
structure ?

Is the extension
relation preserved?

No

Yes

No

Yes

Apply the
algorithm CompSt

Transform P and Q
into non structured
specifications

Compose P and Q
with any operator
Comp ext

Adapt the structures
of P and Q

Fig. 3. Composition of structured specifications

141

Sadaoui

Composition of components Conditions of composition

S := CompSt(P, Q) Unifstr(P, Q) = true

First level

C1S := CompSt(C1P, C2Q) Gates(C1P) \ Gates(C2Q) = fag 6= /0

Unifstr(C1P, C2Q) = true

C2S := CompSt(C2P, C1Q) Unifstr(C2P, C1Q) = true

Second level

C3S := C3P 1 C9Q Gates(C3P) \ Gates(C9Q) = fag 6= /0

C3P and C9Q are basic components

C4S := C4P 1 C10Q C4P and C10Q are basic components

random composition

C5S := CompSt(C5P, C4Q) Unifstr(C5P, C4Q) = true

C6S := CompSt(C6P, C3Q) Unifstr(C6P, C3Q) = true

Third level

random composition

C7S := C7P 1 C8Q

C8S := C8P 1 C7Q basic components

C9S := C9P 1 C6Q

C10S := C10P 1C5Q

Table 2
Composition of structuring levels

5 Conclusion and future work

The specification language LOTOS with its structuring capabilities and strong the-
ory is suitable for the composition of specifications. The goal of the composition is
to find a specification that is a common implementation of the composed processes.
For each type of composition (by extension or by reduction), we can propose differ-
ent operators producing different new specifications. In this paper, we have focused
our composition on process algebra and without considering the data part. Our fu-
ture work consists of including the data types first in the the union operator 1, and
second in the operator CompSt.

To build a new specification from existing components, we can combine several
composition operators. The different combinations of the operators lead to different
specifications. The major difficulty is to identify the best combination that produces
the specification with the desirable behaviors.

142

Sadaoui

References

[1] Bolognesi, T., and E. Brinksma, “Introduction to the ISO specification language
LOTOS”, In P.H.J. van Eijkand, C.A. Vissers and M. Diaz, eds., The Formal
Description Technique LOTOS (North-Holland, Amsterdam) 303-326, 1989.

[2] Brinksma, E., G. Scollo, and C. Steenbergen, LOTOS Specifications, Their
Implementations and Their Tests, Protocol Specification, Testing and Verification,
VI, IFIP, 1987.

[3] Ichikawa, H., K. Yamanaka, and J. Kato, Incremental Specification in LOTOS, In
L. Logrippo, R.L. Probert, and H. Ural, editors, Protocol Specification, Testing and
Verification X, 183–196, Ottawa, Canada, 1990.

[4] Khendek, F., and G. von Bochmann, Incremental Construction Approach for
Distributed System Specification, Proc. Int. Symp. on Formal Description Techniques,
Boston, 1993.

[5] Khendek, F., and G. von Bochmann, Merging behavior specification, Journal of
Formal Methods in System Design, 6(3), (1995), 259–294.

[6] Leduc, G., “On the Role of Implementation Relations in the Design of Distributed
Systems using LOTOS”, PhD thesis, University of Liège, Belgium, June, 1991.

[7] Michiels, B., and B. Wydaeghe, Component composition, ICSE’00, ACM Computing
Surveys, 771–771, 2000.

[8] Nierstrasz, O., and T.D. Meijler, Research direction in software composition, ACM
Computing Surveys, 27(2), (1995), 263–264.

[9] Steen, M. W. A., “Consistency and Composition of Process Specifications”, PhD
thesis, University of Kent at Canterbury, May 1998.

[10] Steen, M. W. A., H. Bowman, and J. Derrick, Composition of LOTOS specifications,
In P. Dembinski and M. Sredniawa, editors, Protocol Specification, Testing and
Verification, Chapman & Hall, 87–102, 1995.

[11] Turner, K. J., Incremental requirements specification and constraint-oriented style in
LOTOS, Technical Report, Department of Computing Science, University Stirling,
UK, Avril 1996.

143

