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SUMMARY

To investigate miRNA function in human acute myeloid leukemia (AML) stem cells (LSC), we generated a
prognostic LSC-associated miRNA signature derived from functionally validated subpopulations of AML
samples. For one signature miRNA, miR-126, high bioactivity aggregated all in vivo patient sample LSC ac-
tivity into a single sorted population, tightly coupling miR-126 expression to LSC function. Through functional
studies, miR-126 was found to restrain cell cycle progression, prevent differentiation, and increase self-
renewal of primary LSC in vivo. Compared with prior results showing miR-126 regulation of normal
hematopoietic stem cell (HSC) cycling, these functional stem effects are opposite between LSC and HSC.
Combined transcriptome and proteome analysis demonstrates that miR-126 targets the PISK/AKT/MTOR
signaling pathway, preserving LSC quiescence and promoting chemotherapy resistance.

Significance

Leukemia stem cells play central roles in disease progression and recurrence due to their intrinsic capacity for self-renewal
and chemotherapy resistance. However, few regulators of human LSC function are known. Our study establishes that
miRNA plays a powerful role in governing the fundamental properties that define the stemness state of human LSC including
quiescence, self-renewal, and chemotherapy response. Self-renewal regulators have remarkably parallel functions in
malignant and normal stem cells, precluding their therapeutic targeting because of toxicity to normal stem cells. The
opposing self-renewal outcomes governed by miR-126 within HSC and LSC indicate that despite shared stemness deter-
minants, it may be possible to target therapeutically the networks that specifically control LSC through perturbation of miR-
126 levels.

.
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INTRODUCTION

Acute myeloid leukemia (AML) is organized as an aberrant devel-
opmental hierarchy maintained by functionally distinct leukemia
stem cells (LSC) (Kreso and Dick, 2014). LSC are linked to ther-
apy failure and disease recurrence, but they also share many
biological properties with hematopoietic stem cells (HSC),
including capacity for self-renewal and quiescence (Kreso and
Dick, 2014). Several self-renewal regulators have been studied
in both HSC and LSC contexts including PTEN, BMI1, GFI1,
TEL1, STAT5, and JUNB; except for PTEN, loss of function typi-
cally impairs self-renewal of both LSC and HSC (Yilmaz and
Morrison, 2008). LSC and HSC are both quiescent, although
quiescence regulation is better understood in HSC. Several
intrinsic and extrinsic signals converge upon cyclins and
cyclin-dependent kinases (CDKs) that act upstream of Retino-
blastoma (RB) family members to regulate early and late G, pro-
gression in HSC (Viatour et al., 2008), while the Gy state is
governed by MTORC1 and CDKG®6 (Laurenti et al., 2015; Rodgers
et al., 2014). Quiescence and distinct Gy exit kinetics are essen-
tial HSC properties (Trumpp et al.,, 2010). Although LSC
quiescence is less well defined, the known regulators appear
to function similarly in LSC and HSC, with LSC quiescence often
invoked as a mechanism of chemotherapy resistance (Holtz
etal., 2007). Additional studies are required to determine if differ-
ences exist in self-renewal and quiescence regulation between
LSC and HSC and whether it is possible to develop therapies
that eradicate LSC while sparing HSC.

Transcriptional analysis of human HSC and functionally
defined LSC have defined stemness signatures that are highly
prognostic for patient survival, establishing that LSC-specific
properties are clinically relevant (Eppert et al., 2011; Metzeler
et al., 2013). However, little is known of how stemness programs
are controlled. Several differentially expressed miRNAs were
identified and found to control HSC (Hu et al., 2015; Lechman
etal., 2012; Mehta et al., 2015; O’Connell et al., 2010) by coordi-
nate repression of multiple targets (Ebert and Sharp, 2012). In
hematopoiesis, most miRNAs affect progenitor lineage commit-
ment and mature cell function (Undi et al., 2013), although HSC
self-renewal can be governed by miR-125a/b, miR-29a, and
miR-126 (Ooi et al., 2010; O’Connell et al., 2010; Guo et al.,
2010; Lechman et al., 2012). miR-126 plays a role, conserved
in both human and mouse, in maintaining HSC quiescence by
attenuating the cellular response to extrinsic signals via targeting
multiple components of the PISBK/AKT/GSK3B signaling pathway
(Lechman et al., 2012). Thus, HSC expand without concomitant
exhaustion upon miR-126 silencing.

Deregulation of miRNAs occurs in leukemia correlating with
known risk categories and prognosis (Garzon et al., 2008; Li
et al., 2008; Marcucci et al., 2009). Functionally, miRNA overex-
pression can induce murine leukemic transformation (Han et al.,
2010; O’Connell et al., 2010; Song et al., 2013). Several
LSC-associated miRNAs are functional: miR-17-92 polycistron
maintained LSC in MLL models (Wong et al., 2010), whereas
antagonizing miR-196 and miR-21 reduced LSC in an experi-
mental human MLL model (Velu et al., 2014). Targeted miR-
126 reduction in cell lines and primary AML samples reduced
AML growth, although mechanisms were not reported (Dorrance
et al., 2015; de Leeuw et al., 2014). These promising studies

point to the importance of further understanding the role of
miRNA in governing stemness in AML. Here, we investigated
the role of miR-126 in governing LSC self-renewal, quiescence,
and chemotherapy resistance.

RESULTS

LSC miRNA Signature Is Prognostic for Patient Outcome
To determine whether miRNA are differentially expressed in LSC
and HSC, we fractionated 16 AML patient samples and three line-
age-depleted (Lin") cord blood (CB) samples using CD34 and
CD38 into four populations and subjected each to global miRNA
profiling; the stem cell content of each fraction was functionally as-
sayed by xenotransplantation (Figures 1A and S1A). Bioinformatic
analysis of 25 LSC-enriched and 27 fractions devoid of LSC activity
(Figure S1A) revealed a human LSC-associated miRNA signature
derived from in vivo functionally validated AML patient samples
(Figure 1B). In parallel, miRNAs enriched in HSC or committed
progenitors were determined (Figure S1B). By comparing similar
immunophenotypic AML and normal populations, several differen-
tially expressed miRNAs were found (Figure S1C).

To determine if the LSC-associated miRNA signature was clin-
ically relevant, a regression analysis was performed on 74 AML
patients with normal cytogenetics (PMCC cohort, Table S1). An
optimized LSC signature consisting of four miRNAs was identi-
fied, each with differential weights based on impact upon overall
survival (OS) (Figure 1C). This signature was prognostic of OS in
both univariate (Figure 1D) and multivariate analyses (Figure 1E)
in an independent cohort. Together with prior studies showing
that LSC-specific gene expression signatures are significantly
prognostic (Eppert et al., 2011; Greaves, 2011), these data
establish that LSC properties influence clinical outcomes and
that miRNAs play a powerful role in regulating LSC stemness.

miR-126 Bioactivity Enriches for LSC Activity

Further functional studies on AML focused on miR-126 as it is a
known HSC regulator (Lechman et al., 2012). gPCR indepen-
dently confirmed that LSC-containing AML fractions generally
expressed the highest miR-126 levels (Figure S2A). As miRNA
expression does not uniformly equate with miRNA bioactivity,
a miR-126 lentiviral reporter vector was used to investigate
whether miR-126 is biologically active in LSC (Gentner et al.,
2010); ANGFR levels indicate transduced cells, while EGFP
levels are inversely correlated with miR-126 bioactivity (Fig-
ure S2B). Four primary AML samples (Table S2) were transduced
with the reporter, transplanted into xenografts, and after
12 weeks the engrafting population was sorted solely on the ba-
sis of miR-126 bioactivity (Figure 2A). Each sorted population
was transplanted into secondary mice and LSC activity scored
after 8 weeks, based on whether the engrafting population reca-
pitulated the same EGFP/ANGFR flow profile as the primary
recipient (a cardinal property of cancer stem cells). Despite the
presence of LSC activity in multiple subpopulations with CD34
and CD38 sorting (Table S2), miR-126 bioactivity aggregated
all LSC activity into a single miR-126"9" population (Figure 2B).
gPCR confirmed 40-fold higher mature miR-126 levels in LSC-
engrafting fractions compared with non-engrafting fractions for
three AML samples (Figure S2C). LSC-containing fractions also
had the highest clonogenic (Figure S2D) and proliferative
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potential (Figure S2E). These data indicate that miR-126 bioac-
tivity is directly linked to LSC function and that it is possible to
exploit miRNA bioactivity for prospective LSC isolation, circum-
venting often unreliable and heterogeneously expressed cell sur-
face markers (Kreso and Dick, 2014).

Clinical Relevance of miR-126 Expression

To determine if miR-126 expression alone is prognostic, the
PMCC cohort (Table S1) was investigated, and increased miR-
126 expression was found to be associated with worse OS (me-
dian OS of 28.5 months [high expression] versus not reached
[low expression]; Figure 2C), event-free survival (Figure 2D),
and relapse-free survival (Figure 2E), a result in keeping with
other studies (Dorrance et al., 2015; de Leeuw et al., 2014). Since
miR-126 expression is high in patients with t(8; 21) and inv(16) (Li
et al., 2008), we evaluated the prognostic value of miR-126 after
excluding these patients from The Cancer Genome Atlas (TCGA)
dataset. High miR-126 was associated with decreased survival
in the TCGA dataset (median OS of 12.3 months [high expres-
sion] versus 18.5 months [low expression]; Figure 2F). The prog-
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nitely growing AML culture system

(8227) from a relapse sample that is orga-
nized as a functional hierarchy (Figure 3A) (E.L., unpublished
data). Expression of CD34 and CD38 is tightly linked to the func-
tional hierarchy; CD34*CD38~ cells possess LSC activity and
contain a quiescent population, by contrast CD34*CD38" cells
are enriched in clonogenic progenitors and the remaining 90%
of CD34-CD38" and CD34 CD38™ cells are terminally differen-
tiated CD15*CD14" blasts (Figure 3A). We show through an
integrated analysis of function, phenotype, miR-126 bioactivity,
and promoter methylation status on all sorted fractions that
high miR-126 levels correlate with the CD34*CD38™ phenotype
and LSC activity and are linked to EGFL7 expression and stem
cell-specific promoter methylation patterns (Figure S3A and
E.L., unpublished data). Thus, 8227 cells are a relevant model
culture system for interrogating the functional effects of miR-
126 activity within the context of a leukemic hierarchy.

miR-126 Expression Induces Quiescence in Primitive
AML Cells

To investigate the functional importance of miR-126 within the
AML developmental hierarchy, 8227 cells were transduced
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with an mOrange (mO) lentivirus expressing miR-126 (1260E) or
empty control vector (CTRL) (Figure S3B), and elevated miR-126
levels were confirmed (Figure 3B). Following in vitro propagation
of transduced cells, the mO*CD34*CD38" (surrogate LSC) pop-
ulation was sorted and the proliferative, differentiation, and
clonogenic capacity was evaluated over 28 days. By 7 days,
primitive CD34* cells increased (Figure 3C) and differentiated
CD14*CD15" cells decreased (Figure S3C) in the 1260E group.
This proportional increase in CD34™ cells correlated to transient
reductions in clonogenicity of day 0 bulk cultures (Figure S3D); a
reduction primarily confined to CD34*CD38" clonogenic frac-
tions (Figure 3D). Bulk cultures of the 1260E group had
significantly decreased (15%) bromodeoxyuridine (BrdU) incor-
poration at 3 hr (p = 0.002) and 16 hr (p = 0.001) compared
with CTRL (Figure 3E). No differences in apoptosis were
observed (data not shown). Cell cycle analysis of sorted 1260E
populations at 7 days showed 2-fold increased proportions of
quiescent (Gg) CD34*CD38™ cells and decreased S/Go/M cells
(Figures 3F and S3E). By contrast, the Gg status of 1260E
CD34*CD38" and CD34~ populations remained unaffected
(data not shown). Thus, 1260E maintains 8227 cells in a more
primitive state by increasing the proportion of quiescent
CD34*CD38™ cells, thereby decreasing the overall proliferative
output and differentiation of AML blasts.

miR-126 Knockdown Provokes LSC Entry into Cycle

To determine the impact of miR-126 knockdown, 8227 cells
were transduced with lentiviruses that were empty (CTRL) or ex-
pressing an miR-126 sponge (126KD) (Figure S3F) (Lechman
et al., 2012). Following sorting and culture, 126KD of the EGFP*
CD34*CD38™ population resulted in increased output of CD34*
cells at all time points (Figure 3G), without increasing differentia-
tion (Figure S3G). This effect was primarily localized to the
CD34*CD38~ compartment (Figure 3H). Clonogenic potential
within the CD34"CD38~ LSC-enriched compartment increased
while no differences were observed in the CD34*CD38* progen-
itor-enriched compartment (Figure 3l). 126KD increased BrdU
incorporation by 20% at 3 hr (p = 0.0024) and 16 hr (p =
0.0093) (Figure 3J) without affecting apoptosis (data not shown).
Upon 126KD, the proportion of cells in Gg was decreased (30%)
and S/G,/M increased (3-fold) within EGFP*CD34*CD38~ popu-
lations (Figures 3K and S3H). 126KD of CD34"CD38* cells
trended in the same direction (CTRL Gg 16.07% versus 126KD
Gp 11.54%, p = 0.2); CD34~ and non-transduced populations
were unaffected (data not shown). Within bulk 126KD cultures,
the increased cell cycle and clonogenicity (Figure S3I) was pri-

marily due to effects on CD34*CD38 cells (Figure 3H). As
LSC-enriched CD34*CD38™ cells are less clonogenic than
CD34*CD38" cells, we interpret these data as 126KD driving
CD34*CD38™ cells out of their quiescent stem-like state and
into a more committed population of proliferating clonogenic
cells while retaining a primitive cell surface phenotype.

Enforced Expression of miR-126 Expands LSC In Vivo

To test the prediction that miR-126 maintains a primitive state by
restraining entry into the cell cycle of LSC from patients, nine
AML samples were transduced with 1260E and CTRL vectors
and transplanted into NSG mice (Tables S2 and S3). Transduc-
tion efficiency and expression varied (Figures S4A and S4B),
while leukemic engraftment was similar between CTRL and
1260E groups (Figure S4C). Although the initial transduction ef-
ficiency was ~50% lower for 1260E than CTRL in six of nine AML
samples, mOrange* cells within the human CD45" graft was
higher for six of nine AML samples indicating a competitive
advantage for 1260E groups (Figure S4D). Analysis of primitive
cell engraftment used both CD34 and CD117, as CD117 is asso-
ciated with AML clinical outcome and correlated with miR-126
expression (de Leeuw et al., 2014; Schneider et al., 2015).
Phenotypic primitive cells were increased in 1260E groups for
seven of nine samples (Figure 4A) with concomitant reduction
of differentiated cells; four of nine samples showed a significant
reduction for CD15" cells (Figure 4B), and six of nine showed a
trend for reduced CD14" blasts (Figure S4E). 1260E caused an
increase in CD15" blasts for two samples (Figure 4B).

To evaluate 1260E on LSC function within the xenografts,
serial transplantation with limiting dilution analysis was used
to quantify LSC numbers. In three samples, LSC frequency
increased in the 1260E group (Figures 4C and S4F). Although in-
dividual patient samples exhibited variation, overall, 1260E
increased LSC self-renewal and reduced differentiation leading
to LSC expansion.

miR-126 Knockdown Targets LSC In Vivo

126KD was used to determine whether reducing miR-126 would
impair AML engraftment or LSC function (Figure S5A). Total
levels of human CD45" (Figure S5B) or CD45"EGFP* engraft-
ment (Figure S5C) were unaffected in the 126KD group, although
there was heterogeneity. By contrast, primitive CD117" blasts
were reduced in three of seven in the 126KD group, while two
of seven had increased CD117" blasts (Figure 5A); differentiated
CD15*CD14* cells were increased in four of seven samples (Fig-
ure 5B). The LSC frequency was reduced in two of three samples

Figure 2. miR-126 Bioactivity Marks the Functional LSC Compartment in Human AML

(A) Schematic describing the sorting scheme/scoring system for secondary mice. AML samples were transduced with an miR-126 reporter construct and
transplanted into conditioned NSG mice for 12 weeks. Bone marrow was analyzed for engraftment using CD45*ANGFR*EGFP* staining. Cells were sorted into
four populations based on ANGFR (transduced cells) and EGFP expression (inverse of miR-126 bioactivity), counted, and injected into secondary mice for
8-10 weeks. When a ANGFR/EGFP profile is recapitulated in secondary mice, the mouse is scored as engrafted.

(B) Summary of the results of the miR-126 bio-reporter assays.

(C) Kaplan-Meier overall survival (OS) curves in the PMCC CN AML cohort (n = 74) according to the miR-126 expression level (HR, 2.23; p = 0.00901).
(D) Univariate Cox model analysis for miR-126 as prognostic for event-free survival in the PMCC cohort of CN AML patients (n = 74; p = 0.0207, log rank test,

median split; HR, 1.8744; p = 0.0207, Wald test).

(E) Kaplan-Meier survival curves correlating miR-126 expression and relapse-free survival in the PMCC patient cohort. Univariate median split log rank test (HR,

1.7995; p = 0.033, Wald test).

(F) Univariate analysis for OS in the TGCA AML cohort that encompasses all levels of cytogenetic risk (n = 187) according to the miR-126 expression level (HR,

1.41; p = 0.0382). See also Figure S2.
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Figure 3. Enforced Expression and Knockdown of miR-126 Alters the Proliferation and Differentiation Status of Primitive 8227 AML Cells
(A) lllustration showing flow plots of CD34 and CD38 immunostained 8227 cultures. The red gated (CD34"CD38") population is enriched in quiescent LSC and
reinitiates the original hierarchy in vitro after flow sorting. The blue gated population (CD34"CD38") is enriched in colony-forming unit (CFU) potential and

(legend continued on next page)
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upon 126KD (Figures 5C and S5D). Together, these findings sug-
gest that 126KD produces heterogeneous responses with LSC
function and frequency reduced in a subset of AML patients.

PISBK/AKT/MTOR Is Targeted by miR-126 in Primitive
AML Cells

An integrated transcriptional and proteomic approach was em-
ployed to gain mechanistic insight into miR-126 functioning.
Quantitative protein mass spectrometry (MS) was performed
on bulk 1260E and CTRL 8227 cells resulting in the identification
and quantification of 8,848 and 4,837 proteins, respectively. In
parallel, gene expression profiling was undertaken on 126KD,

AML Patient

Figure 4. Enforced Expression of miR-126
Expands Primary AML LSC

-m Eggggl (A) Representative flow plots depicting changes
o in CD117* and CD34" levels upon 1260E and
1 quantification of the percentage of CD117* cells

within the human CD45*mO+"* graft.

(B) Representative flow plots depicting changes in
the percentage of CD34" and CD15" cells within
the human CD45"mO™ graft and quantification of
changes in the percentage of AML cells expressing
differentiation marker CD15. Data in (A) and (B)
represent means + SEM of 4-6 mice; *p < 0.05,
**p <0.01.

(C) CD45"mO™ AML cells were flow sorted from
primary mice and transplanted in limiting doses
into secondary recipients for 8-10 weeks. Human
CD45* marking of > 0.5% was considered posi-
tive for AML engraftment. Human grafts were
confirmed to be CD33*CD19~ AML. Limiting
dilution analysis was performed using ELDA soft-
ware. See also Figure S4 and Table S2.

Control
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AML Patient

1260E or CTRL CD34*CD38", and CD34*
CD38* 8227 cells. Gene set enrichment
analysis (GSEA) of the proteomics data-
set identified pathways and leading
edge genes directly targeted by miR-
126. In post-analysis, transcriptomic
datasets were correlated with proteo-
mic-modulated pathways (Figure 6A).
The most significant pathways identified
centered on PI3K/AKT/MTOR signaling,
a miR-126 target pathway previously vali-
dated in primitive normal human CB cells
(Lechman et al., 2012). In addition, the protein MS data revealed
a strong quiescence signature (Figure S6A) substantiating the
in vitro cell cycle effects (Figures 3 and S3). Additional BrdU la-
beling studies with miR-1260E and miR-126KD confirmed these
cell cycle effects in vivo (Figures S6B and S6C). The proteomic
analysis was validated and confirmed by western blot of 8227
cells showing that ADAM9, PIK3R2 (p85beta), and AKT levels
are reduced in 1260E groups (Figure 6B). Although AKT is not
a predicted miR-126 target, the protein MS data show that all
three AKT isoforms are reduced by 1260E (Table S4). In addition,
many predicted and validated miR-126 targets are signaling in-
puts for AKT activity (Martelli et al., 2010). To activate AKT,
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represents the AML progenitor compartment. Both green and orange gated CD34 ™~ compartments are devoid of LSC and CFU activity, express CD15 and CD14
differentiation markers, and represent terminally differentiated mature AML blasts.
(B) Relative expression of mature miR-126-3p in 8227 cells 7 days after transduction with lentivectors expressing miR-126 (1260E) or an empty control vector

(CTRL) measured by gPCR.

(C) The proportion of CD34* cells over the time course of culture of 1260E and CTRL cells.
(D) Clonogenic potential of sorted subpopulations of 8227 cells after transduction with CTRL or 1260E vectors plated immediately post-sort.
(E) Percent BrdU incorporation into bulk cultures showing proliferation of CTRL and 1260E transduced 8227 cells over time.

(F) Ki67/Hoechst cell cycle staining of CD34*CD38~ LSC-enriched 8227 cells.

(G and H) Percentage of total CD34* (G) and primitive CD34*CD38™ and CD34*CD38" progenitor cells (H) at day 8 and day 15 post-sort in vitro in 8227 culture after

sponge-mediated miR-126 knockdown.

(I) Day 0 post-sort colony-forming potential of sorted fractions of CTRL and 126KD 8227 cells.

(J) Proliferation measured by BrdU incorporation assay of CTRL or 126KD transduced 8227 cells in vitro.

(K) Cell cycle analysis of CD34*CD38~ 8227 cells measured by Ki67/Hoechst staining.

Data are shown as means + SEM of three biological replicate experiments. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S3.
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Figure 5. Diminished miR-126 Levels Reduce the Proportion of Primitive AML Cells
(A) Representative flow plots depicting changes in CD117* and CD34* levels upon 126KD and quantification of the percentage of CD117* cells within the human

CD45"EGFP* graft.

(B) Representative flow plots depicting changes in the percentage of CD14*CD15" cells within the human CD45*EGFP™* graft and quantification of changes in
percentage of AML cells expressing differentiation markers CD14 and CD15. Data in (A) and (B) represent means + SEM of 4-6 mice; *p < 0.05, **p < 0.01.

(C) CD45"EGFP* AML cells were flow sorted from primary mice and transplanted at limiting doses into secondary recipients for 8-10 weeks. Human CD45*
marking of >0.5% was considered positive for AML engraftment. Human grafts were confirmed to be CD33*CD19~ AML. Limiting dilution analysis was performed

using ELDA software. See also Figure S5.

308

PDK1 is required to phosphorylate AKT on Thr”*° in the activa-
tion loop. We found that pPDK1 Ser®*! is reduced with 1260E,
suggesting PDK1 activity is reduced by miR-126, further damp-
ening AKT activation (Figure 6C). MTORC2 plays a critical role in
AKT Ser*”® phosphorylation, a prerequisite for full AKT activa-
tion. Our proteomics analysis found that MAPKAP1 (Sin1) was
downregulated by 1260E (Figure 6A) and since MAPKAP1 is

required for MTORC2 complex formation (Yang et al., 2006), its
reduction is predicted to reduce MTORC2 activity. Finally, since
PTEN antagonizes the PI3K/AKT signaling pathway by dephos-
phorylating phosphoinositides, and no change in total PTEN
levels were observed by protein MS, we checked pPTEN
Ser®® status and found increased pPTEN Ser®® phosphoryla-
tion; a modification thought to stabilize PTEN and maintain its
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function (Birle et al., 2002). Collectively, this integrated analysis
provides strong data that miR-126 expression dampens many
components of the PISK/AKT/MTOR signaling pathway in prim-
itive AML populations.

To characterize miR-126 targets not identified by proteomics
or GSEA, all genes upregulated with 126KD and downregulated
with 1260E (Figure S6D) were compared in collated lists of pre-
dicted miR-126 targets generated from four published prediction
algorithms. Genes were ranked according to the level of pertur-
bation by miR-126 (Figure S6E). Selected candidates including
ADAMY, ILK, GOLPH3, CDK3, and TOM1 were confirmed as
miR-126 targets using 3’ UTR luciferase reporter assays (Fig-
ure S6F) (Hamada et al., 2012; Oglesby et al., 2010).

PIBK/AKT signaling ultimately converges upon cyclins and
CDK that promote RB1 phosphorylation and cell cycle entry.
The uncovering of CDK3 as a potential miR-126 target was
intriguing as miR-126 reduces cell cycle progression and
CDK3 was previously identified as a gatekeeper of Go-G4 cell
cycle control (Ren and Rollins, 2004). The PI3K/AKT/MTOR
pathway regulates CDKN1B (p27%P) protein stability by control-
ling the levels of SKP2, a component of the SCFSP2 ubiquitin
ligase complex (Lin et al., 2009). Both chemical inhibition of
PI3K or enforced expression of PTEN induces p27"® upregula-
tion in quiescent cells (Collado et al., 2000; Lu et al., 1999) and
CDKS3 activity is downregulated with transient p27" expression
(Braun et al., 1998; Hsu et al., 2000). To test the hypothesis that
miR-126 modulation of PISK/AKT/MTOR signaling influences
LSC function through CDKS, functional studies were undertaken.
Intracellular flow cytometry of 8227 cells showed reduced CDK3
protein levels and pRB Ser®®”/8'" |evels upon 1260E (Figure 6D).
CDK3/cyclin C phosphorylation of RB1 on Ser®®”®'" s required
to induce cell cycle entry from a quiescent state (Gg exit) (Ren
and Rollins, 2004) (Miyata et al., 2010) To verify that 1260E func-
tions are dependent on CDK3 downregulation, lentiviruses ex-
pressing CDK3 or the CDK3 kinase mutant (CDK3mut) were
generated (Figure S6G) (van den Heuvel and Harlow, 1993).
Compared with CDK3mut, CDKS significantly increased prolifer-
ation and clonogenicity of CD34*CD38™ and CD34"CD38" cells
(Figures 6E and 6F), and partially reversed 1260E-induced
expansion of CD34* cells (Figures 6G and S6H). Collectively,
these data suggest that miR-126 restricts LSC proliferation
partly through targeting CDKS3.

High miR-126 Bioactivity Endows LSC with
Chemotherapy Resistance
To test whether the induction of LSC quiescence by 1260E is
associated with chemotherapy resistance, 1260E or CTRL
transduced 8227 cells were exposed to increasing concentra-
tions of daunorubicin. 1260E increased the survival of CD34*
cells after 72 hr of treatment compared with CTRL (Figure 7A),
an effect not seen in non-transduced cells (Figure S7A). Treat-
ment of primary AML samples (Table S5) with daunorubicin
plus cytarabine resulted in enrichment of primitive CD117* cells
(Figure S7B) and increased miR-126 levels in four of five samples
(Figure 7B). Thus, primitive AML cells expressing the highest
miR-126 levels are also the most resistant to anti-proliferative
chemotherapy.

To determine if miR-126 expression could be linked to chemo-
therapy resistance in a clinical setting, biobanked samples were
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identified from eight AML patients who failed to achieve com-
plete remission after induction therapy. CD45%™ blasts were iso-
lated from bone marrow at diagnosis (n = 8, day 0), day 14 (n = 4),
and day 30 (n = 5) post-induction, and at day 30 after salvage
chemotherapy (n = 3). In line with the in vitro findings, miR-126
expression was increased in six of eight samples (median, 3.4-
fold; range, 0.3-9.4) after induction, and in two of three patients
(including one in whom miR-126 expression was unchanged af-
ter induction) following salvage chemotherapy (median, 1.8-fold;
range, 1.1-2.1) (Figures 7C and S7C). miR-126 expression was
higher in relapse blasts compared with paired diagnostic sam-
ples in all four patients tested (Figures 7D and S7D). miR-126
expression in primitive CD459™CD117* cells was increased in
eight of ten patients at relapse, with >100-fold enrichment in
two patients (Figures 7E and S7E). Finally, enforced expression
of CDK® in 8227 cells rescued the 1260E effects by decreasing
the proportion of CD34" cells resistant to daunorubicin and cy-
tarabine (Figure 7F). Overall, these data suggest that miR-126
confers resistance to chemotherapy, likely through the induction
and maintenance of cellular quiescence by the targeting and
repression of the PISBK/AKT/MTOR pathway.

DISCUSSION

Our study establishes that miRNAs play a powerful role in gov-
erning the fundamental properties that define the stemness state
of human LSC including quiescence, self-renewal, and chemo-
therapy response. miRNAs are differentially expressed within
distinct cellular subsets that make up the AML hierarchy, with
a restricted set expressed in an LSC-specific manner. The
miRNA LSC signature was itself highly prognostic. This clinical
association, together with the miR-126 functional data, estab-
lishes that miRNAs provide a layer of post-transcriptional control
critical for maintaining the stemness state in AML. Although miR-
126 governs the stemness and quiescence properties of both
HSC and LSC, miR-126 perturbation results in divergent self-
renewal outcomes. This discordance provides a novel avenue
to therapeutically target LSC without attendant toxicity to HSC.

Our study provides a mechanistic link between quiescence
control and the restraint of CDK3 expression by miR-126,
thereby altering RB1 phosphorylation and delaying Gy exit in hu-
man primitive AML populations. Regulation of G exit kinetics is a
fundamental HSC property, distinct from downstream progeni-
tors, that is essential for maintaining HSC pool integrity (Laurenti
etal., 2015; Nygren et al., 2006). CDKS is poorly studied since all
inbred mice carry a nonsense mutation in CDK3 (Ye et al., 2001).
In quiescent human fibroblasts, CDK3 can complex with CCNC
(cyclin C) and phosphorylate Rb1 (on residues S8 and S®'") to
directly initiate the cell cycle; when CDKS levels are reduced, a
12-hr lag in Gg exit kinetics is induced but not a permanent block
(Ren and Rollins, 2004). In murine LT-HSC, CCNC levels are
highest during G exit (Passegué et al., 2005) and CCNC knock-
down in human HSC increased quiescence, promoted HSPC
expansion, and increased repopulation capacity (Miyata et al.,
2010). In leukemia, CCNC deletion highly correlates with relapse
(van Delft et al., 2011). Thus, it is likely that the miR-126/CDK3
regulatory axis also governs Gg exit kinetics in LSC, thereby
providing new therapeutic opportunities for targeting quies-
cence control of LSC.



CellPress

A B

vegfr2 mediated vascular permeability EEE;Z

ABI1
crk innate immune signal transduction ABI1
PIK3CD CRK
MAPKAP1 e o B MAPKAP1 ADAM9Y
PPP3CB R etem piccrss gl ey d
ITPR aofrse resbones iy R el recepfor fc r-mediated phagocytosis
HLA-DRB1 ;ﬁ;::ﬁf.‘:?:?i\":o = . TPRT - PIK2R3
regulatign of dele ise [ 'c gamma R-mediated .- -
PIK3R2 2 . Ul HLA-DRB1 — (p85beta)
CTSB Immong und, Fe Yecepto e g [ e tor_EseCepior modatod PIK3R2 -
ATF2 e e ey oot g pay g\ ABI1 Pan AKT
signal transducer r act g‘ggmlmg,,w",“%y'm' CRK an
PLXNB2 "iamanon | PIK3CD
PR ufounmonne @ O
HLA-DRB1 s g e )™
D97
communication j ; ) izati scular wall
PIK3R2 ( po
PARVB o : 7 PIK3R2
ITGAG Gy &% 3o~ PARPO c ko\ & «& &
ILK i TUBB28B & (oo & (oo
HSPATA s @ i cote mafion GOLPH3 ,\’/\/ 'Q'
HLA-DRB1  frivonza ™55 Interactons st o
PIK3R2 < pPDK1
TNFRSF108 hnow )
e hypertrophlc cardiomyopathy hcm Ser241
PIK3CD response reactive oxygen species I PP

< pPTEN

Lo PIK3R2 tdarn cel surtace ITGAG
Legend: f TNFRSF10B (s cogomyghatry
=== gene-set overlap Resroxice)” Eg(s;:ci Nodsce mieractions
=== overlap with mir126 predicted targets Ser380
== overlap with mir12 6KD upregulated expression
- oA

A mir126 predicted targets
Exp. 1 Exp. 2

‘ mir126 KD upregulated expression

@ Gene-set down in mir126 OE proteomics
Gene-set with significant overlap with both mir126
predicted targets and mir126 microarray expression.

D pRb1 E ., F 34'38°  34'38*
CDK3 Ser 807/811 3

Jany
N
o

E
8 E 3
Fold Expansion
[ N
e
Colonies/3000 cells
B [e5]
o o =

&
10,000 @ Control * G 1001
] B 1260F  suns » 80 W Control
8,000- 3 B 1260E
O 6o+
6,000- +
Q40
4,000 8
N X 20
2,000- 3
[
Mut  CDK3 Mut  CDK3
Iso CDK3 pRB
Day 3 Day 7

Figure 6. PIBK/AKT/MTOR Is Targeted by miR-126 in Primitive AML Cells

(A) Functional enrichment map for protein MS-based expression revealing miR-126 modulated pathways. Blue nodes (circles) represent gene sets enriched in
proteins downregulated in 8227 cells overexpressing miR-126. Green line (edge) width between nodes corresponds to the number of shared proteins. Predicted
miR-126 targets (purple triangle) are connected to enriched pathways by gray edges and edge width is proportional to the overlap significance (Wilcoxon
proteomics p < 0.05 and hypergeometric test p < 0.05). Downregulated genes from the transcriptomics data (red diamond) are connected to enriched pathways
by orange edges (Wilcoxon proteomics p < 0.05, Wilcoxon transcriptomic p < 0.25, and hypergeometric p < 0.05). Thickest orange and gray edges have sig-
nificant Wilcoxon and Fisher’s exact test p < 0.05. Map includes only nodes (cyan border) that have significant overlap with miR-126 predicted targets and

(legend continued on next page)
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Figure 7. High miR-126 Bioactivity Endows LSC with Chemotherapy Resistance

(A) Graphical representation of percent viable CD34* 8227 cells with increasing doses of daunorubicin. CD34* cell numbers were normalized to day O control
transduced cells. Results are shown as the mean + SEM of three biological replicate experiments; ****p < 0.0001.

(B) Primary patient AML cells were plated onto MS5 stroma; after 24 hr cells were treated with vehicle or with daunorubicin (50 ng/ml)/AraC (500 ng/ml) for 72 hr.
The miR-126 expression levels in daunorubicin/AraC-treated and control AML blasts were determined by qPCR. Results were normalized to RNU48 and are
shown as the mean + SD of four replicates; ***p < 0.001, ***p < 0.0001.

(C) gPCR was performed on CD45%™ sorted blasts from patient samples at diagnosis (n = 8, day 0) and at day 14 (n = 4) and day 30 (n = 5) after initiation of
induction chemotherapy, as well as on day 30 after (unsuccessful) salvage chemotherapy (n = 3). Data shown are pooled from individual patients (see Figure S7C)
and are shown as means + SEM of combined individual patient samples. *p < 0.05.

(D and E) gPCR results of the relative levels of miR-126 in CD45%™ (D, four AML patients, see Figure S7D) and CD45°™CD117* (E, ten AML patients, see
Figure S7E). AML blasts in paired diagnosis and relapse patient samples shown as the mean + SEM of all patients combined; “p < 0.05.

(F) 8227 cells transduced with mutCDK3 and CDK3 lentiviruses were plated into a 96-well plate and treated with increasing doses of daunorubicin for 48 hr. Cells
were stained for CD34 and live cells were identified by viability dye exclusion by flow cytometry. Results are shown as the mean + SEM of four biological
replicates; *p < 0.05 and **p < 0.01. See also Figure S7 and Table S4.

A model derived from our proteomic and transcriptomic data LSC, paralleling miR-126 function in HSC (Lechman et al,
(Figure 8) depicts that upstream of CDK3, miR-126 represses 2012). Preclinical evidence indicates that activated PIBK/AKT/
multiple inputs converging on PISK/AKT/MTOR signaling in  MTOR signaling plays a role in AML (Martelli et al., 2010) despite

expression data and connected nodes belonging to same clusters (MCL cluster algorithm called from ClusterMaker2). Gene names in gray beside each cluster
are the genes that are found in the specified cluster and overlap with predicted miR-126 targets repressed in 1260E.

(B) Western blot of ADAM9, PIK3R2, and AKT levels in 8227 cells transduced with miR-1260E or control lentivirus. GAPDH is the loading control.

(C) Western blot of phospho-PDK1 Ser?*! and phospho-PTEN Ser?®° levels in 8227 cells transduced with miR-1260E or control lentivirus. GAPDH is the loading
control.

(D) Representative intracellular flow plots for the detection of CDK3 and pRB Ser®%”/8!" Graph below represents three independent intracellular flow experiments
for each condition where the mean fluorescence intensity was compared. Mean + SEM; *p=<0.05 and ****p=<0.0001.

(E) Graph depicting enhanced expansion of bulk 8227 cultures after enforced expression of CDK3 and mutCDKS3. Fold expansion is normalized to mutCDK3
control culture day 7 after transduction. Data shown are the mean + SEM of three replicate experiments; *p=<0.05.

(F) Graph showing clonogenic potential of primitive AML cells after enforced expression of CDK3 and mutCDK3. Colony counts are shown as the mean + SEM of
three replicate experiments.

(G) Graph depicting CDK3/OE rescue of CD34* cell expansion upon 1260E. 8227 cells were transduced with miR-126, and CD34*CD38" cells were sorted and
placed into culture. Cells were transduced with viral vectors expressing the mutCDK3 control vector or CDK3 vector. Flow cytometry was performed at day 3 and
day 7. The percentage of CD34™ cells in double-transduced cultures is shown as the mean + SEM of three replicate experiments, where **p < 0.01. See also
Figure S6 and Table S3.

224 Cancer Cell 29, 214-228, February 8, 2016 ©2016 The Authors



miR-126 overexpression

ntegrin®

f@.ﬂ YI

]

quiescence
self-renewal

LSC

inte ns

SPonge

4

/

proliferation
differentiation

miR-126 mediated downregulation:

endogenous
=® overexpression

Figure 8. miR-126 Represses Multiple AKT Inputs in LSC

bioactivity:

(O upregulated
@) downregulated

experimental validation:
v transcriptomics
v proteomics
v western blot/ flow cytometry

LSC express high endogenous levels of miR-126 compared with more differentiated AML populations. High levels of endogenous or experimental miR-126
repress the level of several proteins regulating AKT (PI3K signaling, PI3CD, PIK3R2; integrin signaling, ADAM9, ITGAS6, ILK, PARVB; RTK signaling, CRK, ABI1,
CD97, CD84; MTOR signaling, MAPKAP1), reducing overall AKT levels and activity. Furthermore, high levels of miR-126 reduce pPDK1 Ser?*!, which phos-
phorylates AKT, and MAPKAP1, which is required for MTORC2 formation and full activation of AKT. Significantly diminished levels of AKT activity preferentially
retain LSC in a quiescent state by increasing p27 levels, together with miR-126 targeted reduction of CDK3. Under high miR-126 levels, LSC that do enter the
cycle are biased toward a self-renewal division. Reduction of LSC miR-126 levels through currently unspecified developmental cues (or lentiviral sponge-
mediated) de-represses the expression and activity of multiple AKT signaling inputs. LSC now preferentially cycle and are biased toward differentiation divisions.

being rarely mutated and likely driven by upstream activation
(Fransecky et al., 2015). Although inhibitors of AKT, MTOR,
and PI3K are in clinical development, they have mostly failed
for AML (Fransecky et al., 2015). While failure is attributed to
feedback loops, our study provides an explanation that is
embedded in the hierarchical organization of AML. PI3SK/AKT/
MTOR signaling is restricted to cycling leukemic progenitors;
by contrast, quiescent LSC, a reservoir of leukemic relapse,
have lower signaling and would then be spared following inhibi-
tor treatment. In support of this prediction, AKT inhibition
increased the fraction of Gy breast cancer cells, linking low
AKT signaling to a Go-like state (Dey-Guha et al., 2011). In AKT
knockout mice, HSC persisted in an enhanced Gy quiescent
state, while AKT activation results in HSC hyper-proliferation
and exhaustion (Juntilla et al., 2010; Kharas et al., 2010). Collec-
tively, these reports suggest that the state of AKT activity plays a
key role in governing quiescence of normal HSC and our data
extend this concept to leukemia by showing that this pathway
is tightly controlled at multiple points by miRNAs in order to
maintain the human LSC state.

Although cell cycle regulation by miR-126 is similar between
HSC and LSC, the functional consequence is the opposite:

reduced miR-126 levels expand HSC in vivo, but impair LSC
maintenance (see the model in Figure 8). With the exception of
PTEN, known regulators of self-renewal have similar functions
in normal and leukemic contexts (Yilmaz and Morrison, 2008).
PTEN is rarely mutated in AML, yet experimental deletion results
in HSC loss and LSC expansion, supporting our data on func-
tional HSC-LSC divergence. Concordant with our findings of
low PIBK/AKT/MTOR signaling in dormant LSC, rapamycin treat-
ment only eliminates LSC during the early phases of leukemic
initiation in PTEN mouse models when LSC are proliferating,
but not when leukemia is fully developed and when some LSC
are predicted to re-enter quiescence (Yilmaz and Morrison,
2008).

While targeting stemness represents a promising clinical direc-
tion, finding a selective therapeutic window might be challenging
due to the shared determinants of stemness between HSC and
LSC, and the likelihood of causing excessive toxicity (Kreso
and Dick, 2014). The distinct function of miR-126 in HSC and
LSC provides an opportunity to clinically target LSC while sparing
HSC. Moreover, inhibiting miR-126 might overcome LSC chemo-
resistance through cycle activation and increasing sensitivity to
anti-proliferative drugs. Although targeting miRNA in vivo is still
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inefficient (Brown and Naldini, 2009), LNA miRNA decoy technol-
ogy is effective clinically in hepatitis C (Janssen et al., 2013).
Alternatively, targeting the LSC-specific pathways identified by
miR-126 might also be an effective strategy.

EXPERIMENTAL PROCEDURES

Patient-Derived Xenografts

NOD/Lt-scid/IL2Rynull (NSG) mice were bred at the University Health
Network/Princess Margaret Cancer Center. Animal experiments were per-
formed in accordance with national and institutional guidelines approved by
the Canadian Counsel on Animal Care and approved by the University Health
Network Animal Care Committee. Mouse xenografts were performed as
described previously (Lechman et al., 2012). Briefly, NSG mice were suble-
thally irradiated (225 cGy) 1 day prior to injection. AML patient samples were
thawed and plated in X-VIVO/20% BIT (Stem Cell Technologies) supple-
mented with Flt3-L (50 ng/ml), IL-6 (10 ng/ml), stem cell factor (50 ng/ml),
thrombopoietin (125 ng/ml), IL-3 (10 ng/ml), granulocyte colony-stimulating
factor (10 ng/ml) for 18 hr (Blair et al., 1998). Cells were transduced in
24-well culture plates at a multiplicity of infection of 30 with sensor lentivectors
or for enforced expression and knockdown of miR-126. Transduced AML cells
(5 x 1051 x 10%) were injected with 25 ul of PBS into the right femur of each
recipient mouse. After 10-12 weeks, the mice were euthanized and bone
marrow cells were flushed with 2 ml of PBS, 2% fetal calf serum, and 50 pl
of cells were stained for surface markers.

Patient Samples and Treatment Protocols

Between 2003 and 2010, peripheral blood and bone marrow samples were
collected from subjects with AML after obtaining informed consent according
to procedures approved by the Research Ethics Board of the University Health
Network (REB# 01-0573-C). Mononuclear cells were isolated and stored as
previously described (Eppert et al., 2011). Cytogenetics were analyzed ac-
cording to the revised MRC prognostic classification system (Grimwade
et al.,, 2010). NPM1 and FLT3-ITD mutations were assessed as previously
described (How et al., 2012).

The 74 patient samples used to optimize the miRNA prognostic signature
(PMCC cohort) were diagnostic samples from individuals with de novo AML
and normal cytogenetics. Although patients were not treated uniformly, all
initially received induction chemotherapy followed by two cycles of consolida-
tion in those who achieved complete remission (CR). First-line induction regi-
mens included 3 + 7 (n = 69), NOVE-HIDAC (n = 1), and four patients were
enrolled in clinical trials employing a 3 + 7 backbone with gemtuzumab ozoga-
micin (n = 2) or tipifarnib (n = 2). Treatment protocols were as previously
described (Brandwein et al., 2008; Brandwein et al., 2009; How et al., 2012; Pe-
tersdorf et al., 2013). Allogeneic stem cell transplant (allo-SCT) was performed
for high-risk patients in CR1 (n = 7), as well as for patients who achieved a sec-
ond remission after relapse (n = 12) if they had an available donor, were younger
than 70 years, lacked significant comorbidities, and had good performance sta-
tus. Bio-informatic and clinical information for a second cohort of 187 de novo
AML patients was obtained from TCGA and has been previously described
(Cancer Genome Atlas Research Network, 2013).

See Supplemental Experimental Procedures for additional methods.
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