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Purpose: This article describes a formative natural language processing (NLP) system that is grounded in
user-centered design, simplification, and transparency of function. Methods: The NLP system was tasked
to classify diseases within patient discharge summaries and is evaluated against clinician judgment dur-
ing the 2008 i2b2 Shared Task competition. Text classification is performed by interactive, fully super-
vised learning using rule-based processes and support vector machines (SVMs). Results: The macro-
averaged F-score for textual (t) and intuitive (i) classification were 0.614(t) and 0.629(i), while micro-
averaged F-scores were recorded at 0.966(t) and 0.954(i) for the competition. These results were compa-
rable to the top 10 performing systems. Discussion: The results of this study indicate that an interactive
training method, de novo knowledge base with no external data sources, and simplified text mining pro-
cesses can achieve a comparably high performance in classifying health-related texts. Further research is
needed to determine if the user-centered advantages of a NLP system translate into real world benefits.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Narrative text documents contain a wealth of information and
are frequently found in the biomedical and health services domain.
However, as electronic documents expand in length and collections
of electronic documents grow in size, accessing the information
contained in free text can be difficult and prohibitively time con-
suming. Text mining is a subset of natural language processing
(NLP), which attempts to quickly collect pre-identified concepts
from texts, as opposed to analyzing the syntactic and semantic
structure and meaning of the entire text [1]. Text mining is ideally
suited for finding answers to simple specific questions within large
corpora of text [2] and is increasingly applied as a text classifica-
tion tool for biomedical and public health research [3–5]. It may
also be used in clinical environments wherever rapid access to
quantities of free text is needed, such as generating problem lists,
notes, and quality assurance. The automated identification of dis-
eases in free texts such as medical records is a challenging compo-
nent of potential improvements in areas of public health, clinical
care delivery, and administrative functions [6–8].
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Much of the current NLP research within biomedicine focuses
on evaluating system output, instead of improving ‘real world’
tasks shared between the system and individuals [1]. NLP research
activities are only recently designing and evaluating NLP systems
at the user level; in particular establishing user needs and conduct-
ing user-centered evaluations of the system [9]. Furthermore
Zweigenbaum et al. considers user-driven systems (including user
needs assessments, attention to user interfaces, and user-centered
designs) to be one of the six ‘new frontiers’ in biomedical text min-
ing [10]. Recent attention to user needs within biomedical text
mining literature is sparse but growing, and includes improving re-
sults visualization and user interface design, and functionality
[11–13]. In addition, nationally sponsored industry events such
as TREC are focusing to some extent on the information needs
and applications of actual users. In addition, conceptual models
such as ‘‘interactive NLP” have been coined to describe the two-
way relationship some text mining systems have with their users
and the impact the system has on the overall (human) task envi-
ronment. In contrast to the frequent engineering and theory laden
experimental activities of NLP research, the concept of ‘‘interactive
NLP” is based in practical, value added applications and real time
interaction. In their influential paper, Manaris and Slator consid-
ered interactive NLP the most useful and mature approach to auto-
matically extracting useful knowledge from text [14]. The authors
paired this perspective with user-centered design practices to cre-
ate a new tool for health-related document classification.
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The design philosophy adopted by the authors incorporates
interactive NLP concepts, user-centered design and user-centered
system evaluation. Our aim is to build a flexible, user-centered
computer tool that satisfies many of the basic document classifica-
tion problems found in biomedicine and health services. Three core
design objectives were identified in prior focus groups and inter-
views with users: The need for (1) domain expert supervision of
the knowledge base, (2) transparency of the classification process,
and (3) simplicity of use.

This work details the design of a user-driven text mining sys-
tem, reports the performance results of the system from health
text mining competition, and discusses possible implications for
interactive, user-centered design in other contexts and tasks.

The data used for this study were collected and de-identified to
support the 2008 i2b2 Shared Obesity Challenge. Two physician
obesity experts from the Massachusetts General Hospital Weight
Center were asked to classify narrative patient records using two
different methods: (1) Textual – For each of the 16 diseases, the
clinicians provided judgments based explicitly on the text in the
patient narrative. These judgments were ‘‘Yes” (Y), ‘‘No” (N),
‘‘Questionable” (Q), and ‘‘Unmentioned” (U). (2) Intuitive – For
each of the 16 diseases they provided judgments based intuitive
information found in the patient narrative. These judgments were
‘‘Yes” (Y), ‘‘No” (N), and ‘‘Questionable” (U). Participants in the
challenge were asked to create a system to automatically classify
concepts within the narrative of the patient records and compare
the results of their system with the manual classification (i.e.
‘‘ground truth”).

The objectives of this system, which was entered into the 2008
i2b2 Shared Obesity Challenge [15], is to classify the patient based
on discharge summaries as having obesity or any of 15 other re-
lated co-morbidities. The diseases of interests are listed below.

Diseases and co-morbidities included in the study:

� Obesity
� Diabetes mellitus (DM)
� Hypercholesterolemia
� Hypertriglyceridemia
� Hypertension (HTN)
� Peripheral vascular disease (PVD)
� Heart failure (CHF)
� Osteoarthritis (OA)
� Venous insufficiency
� Atherosclerotic CV disease (CAD)
� Obstructive sleep apnea (OSA)
� Asthma
� GERD
� Gallstones/cholecystectomy
� Depression
� Gout

The task is further divided into two parts as reflected by the
instructions given to the clinicians when creating the ‘‘ground
truth”, or designated correct classifications used to evaluate the
system. The two tasks were to: (1) find the diseases that are textu-
ally stated in the discharge summaries and (2) predict the diseases
that are intuitively inferred from the text.

2. Methods

We chose metaphors to describe the user classification judg-
ment processes to help achieve our user-friendly design objectives.
‘Textual’ judgments are used when users can point to specific text
that explicitly indicates a particular judgment classification. This
classification method was supported by a simple rule-based classi-
fier that felt transparent to users. A rule-based classification pro-
cess is a series of ‘‘if then” operations based on words and
phrases found in the text that are stored in a knowledge base.
The knowledge base for the textual classification is interactively
developed by expert users who annotate the training documents
and subsequently view the results of their changes on document
classifications. In contrast, when a user determines a particular
judgment is appropriate yet cannot point to anything specific, they
would use the ‘intuitive’ judgment classification. The intuitive clas-
sification process is a Support Vector Machine (SVM) approach
where the SVM operates on the classification results of the rule-
based system. In contrast to a rule-based approach, SVMs are a
type of linear classifier that represents the texts as vectors in an
n-dimensional space. The SVM classification process is more diffi-
cult for users to conceptualize and maps loosely to the ‘intuitive’
metaphor.

Another user-identified design consideration is the highly
subjective nature of professional judgments. The users expressed
a desire for the system to imitate their own judgments. Accommo-
dating a rapidly changing vocabulary and context was another con-
cern in the design of the system. To address these concerns we
explored using an independent, de novo knowledge base approach.
This method uses no external libraries or resources and relies
exclusively on user interaction to establish the knowledge base.

2.1. Textual classification

For textual classification, this system uses a simple keyword
and rule-based process to find and identify disease names in the
text. This method is easy for users to understand and similar pro-
cesses have achieved reasonable success in comparable tasks [16].
The rule-based model is composed of simple logic that operates on
four basic concepts. The four concepts:

� Features. Used as class identifiers, features are pre-identified
labels representing a relevant textual concept. Documents will
be assigned to classifications based on these features. (e.g.
‘‘Asthma”, ‘‘Congestive Health Failure”).

� Textual evidence. Textual evidence are key words or phrases that
when present indicate or contraindicate a particular feature (e.g.
‘‘is asthmatic”, ‘‘is not asthmatic” is evidence for and against
Asthma respectively, and ‘‘Atrovent” is evidence for the feature
Asthma Tx (treatment)).

� Negation. If negation elements are found before textual evidence
(e.g. ‘‘no evidence of”, ‘‘does not have”), the feature is negated
and the entire new phrase (including the negation) are added
to the knowledge base as a new textual evidence phrase. (e.g.
‘‘no evidence of HTN”).

� Referents. Referents indicate who the evidence is referring to
(e.g. ‘‘Family history:”, ‘‘Patient’s Mother has”). For this chal-
lenge, the presence of any referent other than the patient was
a trigger to ignore the textual evidence immediately following.

For example, a discharge summary may contain the text ‘‘The
patient does not have diabetes”. If not already automatically anno-
tated by the system, the user would train the system to recognize
these in the future. To do this, the user highlights the token ‘‘pa-
tient” and designates it as a referent. Similarly, ‘‘does not have”
and ‘‘diabetes” are negation and evidence tokens, respectively.
These new tokens are added to the knowledge base and are used
by the rule-based classifier in the future.

Fig. 1 illustrates the interactive nature of the supervision pro-
cess. Knowledge domain experts train the system by annotating
evidence for textual classification judgments, in addition to
reviewing the automated textual and intuitive judgments.

The discharge summaries provided for system training were ini-
tially classified by clinicians recruited by the organizers of the 2008



Fig. 2. Cutouts training screen showing underlined evidence for textual judgments
(Fig. 2a) and color coordinated buttons displaying potential features (Fig. 2b). When
training the classifier, users see their textual annotations immediately applied to
the knowledge base. (For interpretation of color mentioned in this figure, the reader
is referred to the web version of this article.)
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i2b2 challenge. However, the textual evidence supporting the clas-
sifications still needed to be identified and annotated, as well as
the identification of the negation elements and referent elements
found in the corpus. To accomplish this supervised training,
roughly half (n = 300) of the provided training set was used to
build the evidence base for rule-based classification and to train
the SVM classifier. The discharge summaries were reviewed in tan-
dem with the previously assigned disease classifications by one of
the authors and two physicians recruited to supervise the knowl-
edge base creation. Textual evidence that appeared to support
the provided classifications was manually identified and annotated
through a simple graphic interface. Treatment is also frequently
used by experts to determine disease from reading charts
[17,18]. Therefore, the authors hypothesized the presence of spe-
cific treatments (Tx) may increase the accuracy the intuitive dis-
ease classifier (described in detail below). In addition to the
provided classification of disease from the text of the patient re-
cord, because while the training set was reviewed for evidence of
the provided disease occurrences, evidence indicating disease
treatments was also annotated. In addition, negation and referent
indicators were found in the training set and identified. This pro-
cess and the textual evidence supporting each feature were re-
viewed by the author and two physicians using a consensus
method of agreement. The identified textual evidence was consid-
ered sufficient to support the classification of a disease or a treat-
ment, yet was not a comprehensive list of all evidence that may be
found in the individual discharge summary. For example, the first
occurrence(s) of textual evidence of a disease found may have been
deemed sufficient and additional textual evidence found elsewhere
in the summary overlooked.

To train the evidence base, the user-identified and annotated
textual evidence for each feature by browsing the text documents,
and highlighting textual evidence indicating (or negating) a partic-
ular predefined classification, or feature of the text (see Fig. 1). All
of the textual indicators of concepts were identified in this manner
from within the text (see Fig. 2).

When textual evidence is identified, it is added to the evidence
base for a particular feature and propagated throughout the corpus
of discharge summaries. This cascading process updates classifica-
tions for all messages that have not been reviewed and flagged as
‘confirmed’ according to the new evidence. One consequence of
this is that system users can view the results of their training anno-
tations as they work through the corpus. During this brief review,
textual evidence, negation, and referent indicators that cause unin-
tended classifications in other texts can be easily removed through
the same interface, thus updating the evidence base and message
classifications again. The textual classifier makes judgments on
texts primarily on the occurrence of patterns of textual evidence.
If no textual evidence is found in a text or the evidence refers to
someone other than the patient, the textual system output for that
discharge summary is ‘‘U” (Unknown). If textual evidence is found
and it refers to the patient, a judgment of either ‘‘Y” or ‘‘N” is made
based on negation rules.
Fig. 1. A fully supervised and interactive classification system using two classifiers.
Users interact between textual annotations and classifications made by the system.
2.2. Intuitive classification

The intuitive classifier uses a Support Vector Machine (SVM)
[19], which assigns classification based on patterns of textual clas-
sifier features found in the text. A similar technique using SVMs
has been previously demonstrated [20]. The model of the feature
space for the classifier is defined in advance by the user. Users de-
fine the names of the intuitive classification features (e.g. ‘‘Asth-
ma”), and then also define a model of textual classification
features to consider as evidence of an intuitive classification (e.g.
[textual] ‘‘Asthma Tx” + [textual] ‘‘Asthma Dx”). Any textual fea-
tures could be associated with the judgment of an intuitive feature.

In this study, the intuitive feature ‘‘Asthma”, is defined by the
occurrence patterns of textual features ‘‘Asthma” (Dx) and ‘‘Asth-
ma Tx” found in the text. Due to the formative nature of this study
and considerations of the NLP competition, the models used for
this challenge are oversimplified. The SVM was trained on the
occurrence two textual feature classifications to classify the corre-
sponding intuitive classification. Because this is a statistical pat-
tern matching inference mechanism based on imperfect training
data, the occurrence of a textual classification of ‘‘Y” or ‘‘N” does
not in all conceivable cases indicate a corresponding intuitive clas-
sification of the same. However, ideally (and intuitively) the SVM
would detect an association in the training set between a textual
classification of ‘‘Y” and the correct intuitive classification of ‘‘Y”.
A similar production type system would likely incorporate more
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than the two features for each intuitive classification used in this
study. For example, disease symptoms as well as medical proce-
dures are also plausible features to consider adding to the model
but were not used in this study.

The use case for the intuitive classifier begins when a user
determines that a particular judgment is appropriate, yet no spe-
cific textual evidence supports this. In this case, the user selects
the intuitive classification without explicitly annotating any
evidence.

The intuitive classifier is trained on texts that (1) already have
textual classifications as well as intuitive classifications and (2)
are also flagged as having been reviewed and ‘‘confirmed”. The
intuitive classifier makes judgments (classifications) on all other
texts in the corpus. Consequently, intuitive judgments of ‘‘Y” and
‘‘N” are made for every message in the test set. For this challenge,
the training set’s textual features were annotated from the rule-
based process described above, and the intuitive designations that
were provided were assigned to these same 300 training messages.
The intuitive classifier was trained using the results of the text-
based classifications from the 300 training messages and the intu-
itive judgments, and then tested using the results of text-based
classifications from the test set.
2.3. Evaluation

The system was evaluated using precision, recall, and F-mea-
sure for both intuitive judgments and textual judgments. Precision
is the percent of classified texts that are correctly classified. Recall
is the fraction of true classifications that were classified correctly
by the system. The F-measure is the weighted harmonic mean of
the two, or F = (2�P�R)/(P + R). Macro averaging gives additional
weight to rare classifications by giving each type of classification
an equal weighting in the metric, regardless of how comparably
rare it is. The primary and secondary evaluation metrics were
macro-averaged F-measure and micro-averaged F-measure,
respectively.

As mentioned, the challenge annotations consist of multiple
classification options for intuitive and textual judgments, (‘‘Y”,
‘‘N”, and ‘‘Q”) and (‘‘Y”, ‘‘N”, ‘‘Q”, and ‘‘U”) respectively, where
‘‘Q” is ‘‘questionable” and ‘‘U” is unmentioned. Because this system
Table 1
System performance compared with (1) the average of the top 10 finalists and (2) the best s
tested system does not support ‘‘Questionable” (Q) as a classification. Output was evaluated
For more details, see text.

‘Q’ Textual competition

Micro-avg. precision Macro-avg. precision Micro-

Our system run �Q 0.966 0.809 0.966
as-is 0.964 0.855 0.964

Avg. top 10 finalists* as-is 0.969 0.805 0.969
Overall best scores* as-is 0.977 0.855 0.977

* Compiled from Uzuner [21].

Table 2
System performance compared with (1) the average of the top 10 finalists and (2) the best
The tested system does not support ‘‘Questionable” (Q) as a classification. Output was eva
(‘�Q’). For more details, see text.

‘Q’* Intuitive competition

Micro-avg. precision Macro-avg. precision Micro-

Our system run �Q 0.954 0.960 0.954
as-is 0.952 0.972 0.952

Avg. top 10 finalists* as-is 0.957 0.694 0.957
Overall best scores* as-is 0.965 0.972 0.965

* Compiled from Uzuner [21].
makes only binary (‘‘Y”, ‘‘N”) assignments for intuitive judgments
and (‘‘Y”, ‘‘N”, and ‘‘U”) for textual judgments, an additional evalu-
ation against altered ground truth set is made for discussion. The
test sets were evaluated against the ‘‘as-is” ground truth data
(manually annotated by experts) and also with (‘‘Q”) records omit-
ted from the ground truth data.
3. Results

Precision, recall, and F-measure were calculated for each dis-
ease as well as the average calculated across all 16 diseases.
Macro-averaged F-measure for specific diseases had a range from
0.48 (Obesity Textual) to 0.98 (Gout Intuitive). Micro-averaged F-
measures were notably higher due to less of a penalty for missing
the ‘Questionable’ class. F-measures ranged from 0.89 (Hypercho-
lesterolemia Intuitive and CAD Textual) to four 0.99. However, dis-
regarding the ‘Questionable ‘class negatively affects the macro-
averaged precision calculation to a lesser significance. This is a re-
sult of removing the slightly weighted, yet perfect precision of the
‘Q’ records in the macro-averaged calculation.

Tables 1 and 2 show the averaged results of the competition
runs alongside comparable systems. The ‘as-is’ macro-averaged re-
call and F-measure was dramatically lower than the other scores
due to the system’s inability to assign a ‘‘Q” judgment. As shown
in the ‘‘�Q” column, removing the ‘‘Q” records from the ground
truth improved these values. Note, any document that is incor-
rectly classified in one class is also missing in the other, therefore
micro-averaged precision will equal micro-average recall in this
design.
4. Discussion

This system ranked in the top 10 in both the intuitive and tex-
tual tasks: 8/28 and 10/28 respectively. Although the system score
was categorically penalized by its binary output in Macro level
metrics, the system’s performance was still comparable to that of
other systems participating in the challenge. This suggests that
our system, while simple in concept and execution, may still per-
form at a level that is sufficient for health-related text mining
tasks.
core in each category from the textual competition of the 2008 Obesity Challenge. The
both as-is (‘as-is’) and also with the ‘Q’ results omitted from the ground truth (‘�Q’).

avg. recall Macro-avg. recall Micro-avg. F-measure Macro-avg. F-measure

0.832 0.966 0.820
0.624 0.964 0.614
0.715 0.969 0.734
0.805 0.977 0.805

score in each category from the intuitive competition of the 2008 Obesity Challenge.
luated both as-is (‘as-is’) and also with the ‘Q’ results omitted from the ground truth

avg. recall Macro-avg. recall Micro-avg. F-measure Macro-avg. F-measure

0.932 0.954 0.945
0.622 0.952 0.629
0.638 0.957 0.645
0.659 0.965 0.675
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Perhaps more important than system-centered performance
metrics are the future implications of the system design. This study
is a preliminary exploration of valuable contextual insights related
to user-centered and interactive text mining systems. Although
imperfect, the use of intuitive and textual metaphors for the clas-
sifiers appeared to increase the acceptability and familiarity of
the system classifiers to users during the design and training pro-
cesses. Biomedical NLP systems are scarce in practice, and in-
creased attention to user-centered methodologies may help
alleviate some barriers to adoption.

Although no formal user-centered evaluation has been per-
formed at this time, the core design objectives (domain expert
supervision, transparency of function, and simplicity of use) and
subsequent engineering choices were reviewed and approved by
stakeholders during the development process. Due to these design
objectives, there are important considerations to implementing
this system in a real context.

First, the system knowledge base is de novo, that is all of the
textual evidence indicating features, negation, and referents arise
from within the text without using any external sources of data.
A possible advantage of this is there are no external libraries or
data sources required to purchase or maintain, and the quality of
external data sources is not a concern. Yet, when compared to
today’s trend of unsupervised learning and large complex knowl-
edge bases, our design appears to be labor intense and limited in
the total number of classes possible. However, our system design
has the potential to efficiently answer specific questions posed
by an expert regarding a reasonable sized corpus. Moreover,
NLP systems are currently absent in clinical practice, so there
is little-to-no scientific evidence regarding what types of system
designs would actually be more effective in real world
applications.

Second, this approach requires the input of subject matter
experts to train the system. Although the effort required to anno-
tate, train and maintain the knowledge base is non-trivial, requir-
ing experts to train and maintain the system will likely build
confidence in the resulting data output. This may be especially true
if the end users are also subject experts. Furthermore, attention
should be given to ensure the process of maintain the knowledge
base is as efficient as possible. This system uses an iterative
training/review process, in that the user views the annotated re-
sults of all existing rules when viewing the unclassified text. Using
this method, the annotation process becomes more of a ‘review
and accept’ process that may save time when compared to anno-
tating the text from scratch.

Third, there are potentially negative considerations of the
design related to the many contexts found within discharge sum-
maries. For example, a user may annotate a string of characters
as being indicative of a particular feature within a text without
realizing that the same characters may have alternate meanings
in other texts with different contexts. Immediately after a user
annotates a new string of textual evidence, the knowledge base
is updated and all texts containing the new evidence are automat-
ically classified according to the updated rules. The interactive de-
sign that causes this may also alleviate the risk of these unintended
misclassifications. In this case, the user will likely catch the mis-
classification when reviewing classified documents and update
the knowledge base accordingly.

The benefits of this interactive and user-centered methodology
have yet to be firmly established. However, the authors envision
this type of system being most successful in an environment where
(1) user confidence is critical, (2) the judgments may be highly sub-
jective or change over time, (3) there is dedicated time for experts
to train and review the knowledge base, and (4) There is a rela-
tively low number of potential classifications (this study used 32
textual and 16 intuitive classifications).
Experts who maintain the knowledge base as well as interpret
and use the data output are potentially good candidates for this
type of expert system. For example, a hospital may be interested
in using discharge summary analysis to support ongoing quality
assurance efforts. However, the tool is generally not intended to
operate as standalone high-throughput text mining system. On
the contrary, it is intended to be used as an expert’s workbench:
to analyze and operate in an interactive manner over large sets
of text documents. However, the components could easily be
adapted for high-throughput applications. For example, the i2b2
challenge is a batch style competition that may not typically be
conducive to an expert workbench design system. However, our
system performed relatively well in this setting for at least two
reasons. First, our interpretation of the challenge ‘questions’ was
quite practical: to answer a question over a large corpus: ‘‘Which
of these patients are obese and what comorbidities do they have?”
Secondly, the interactive nature of the system is found exclusively
in training the knowledge base. Once trained, the knowledge base
can be applied ‘batch style’ to any corpus.

Due to the dependency of intuitive features on textual classifi-
cations, any errors in textual classifications may propagate into
the intuitive classifications as well and compound misclassifica-
tions there. However, this does not appear to be a significant prob-
lem in our study. In some cases the Intuitive classifier even
outperformed the textual classifier. This may be explained by the
additional information (disease treatments) used within the intui-
tive classifier.

The consequences of having such an informal approach to train-
ing and maintaining the knowledge base may lead to inconsisten-
cies and difficulty in precisely evaluating the optimal performance
of a system. For example, in a ‘real world’ setting, the output would
be a combination of user-classified and machine classified data.
However, the convenience and transparency provided to expert
users who would like to ‘‘see for themselves” what the system is
doing and why, may also add to the user’s confidence in the system
output.

4.1. Limitations of evaluation

Our study has potential limitations related to the system design
and the evaluation itself. The system may perform differently using
discharge summaries from different computerized medical record
systems, or when run on different samples of patients. The system
would also likely perform differently when trained differently (e.g.
by other users, different training sets, etc.). As for the user interface
design, the system ‘review for correctness’ training approach may
inadvertently encourage users to skip over sections or otherwise
not thoroughly read the texts. Furthermore, the system’s interac-
tive feedback may give users a false confidence although rare
events may still be missed.

While the system is designed to be as intuitive and transparent
to users as possible, there is still a learning curve associated with
annotating the texts and building the knowledge base. Initially,
user inexperience may result in lower performance. In addition,
the system was designed in collaboration with epidemiologists as
key users for text classification tasks that may not translate easily
into other contexts. Although we postulate that users will be more
likely to trust results from a highly interactive system such as this,
it is not known if this type of system would be scalable for general
use.

4.2. Conclusion

This study illustrates the performance of this formative system
at classifying discharge summaries in a controlled environment.
The results of this evaluation suggest that this system is compara-
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ble to other state of the art text classification systems in terms of
output metrics. These findings are useful to the continued develop-
ment of the system and are a crucial step towards evaluating the
value added of the system within the context of real world prob-
lems. Furthermore, the intrinsic and value added potential of a
simplified system may outweigh the costs and complexity draw-
backs of a more complex system.

‘Simplified’ workbench style systems such as this one that are
based on a fully supervised, interactive learning knowledge base
have potential application throughout health services. The ability
to analyze large sets of unstructured text documents in a flexible
and intuitive manner may give unprecedented access to previously
difficult information sources. For example, this system has the po-
tential to analyze discharge summaries over time as an ongoing
quality assurance process. It could also provide researchers a lens
through which to answer questions pertaining to online health
behavior found in message boards, blogs, etc. as well as social net-
works. However, these potential applications, while very promis-
ing, will require further investigation. Additional research is also
needed to clarify potential advantages and disadvantages of the
interactive and user-centered design philosophy versus other NLP
application approaches.
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