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1. I N T R O D U C T I O N  

We consider partitions of an ordered set of n objects, which we take to 
be N,, = { 1, 2 .... , n}. Using the principle of inclusion and exclusion, the 
number  P(n, 19) of different 19-part partitions is 

P(n, 1 9 ) = ~ . k ~ o ( - 1  (19-k)  n. (1) 

Even for 19 = 2, this number (2" -  1 _ 1) is exponential in n. Thus it is very 
time-consuming, in searching for an optimal partition under some cost 
function, to examine all these partitions. One way to deal with this "size" 
problem is to confine attention to a small subset of partitions. When the 
elements can be linearly ordered, an approach that is popular  in the opera- 
tions research literature [ 1, 3-6]  is to work with cost functions such that 
the optimal partition will be consecutive, where a consecutive partition is 
one where every subset of the partition consists of consecutive elements. 
The number  of consecutive partitions is 

C(n, p) = 1 ' (2) 

the number  of ways of inserting p - 1 commas in the n - 1 spaces between 
adjacent elements. Thus even a brute force search needs only to examine a 
polynomial number of such partitions. Dynamic programming has been 
proposed to further cut down the computation. 

Other subsets of partitions have been studied. Consider order-consecutive 
partition sequences, where an ordered partition (St .... , Sp) of N~, is 
order-consecutive iff for k = 1 .... , P, U~= 1 Si is a consecutive subset of N,,. 
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Clearly a consecutive partition gives an order-consecutive partition 
sequence. Such an ordered partition can be represented by a completely 
nested set of pairs of parentheses, i.e., one with all the left parentheses 
occurring before the first right parenthesis, as for example in 

(1((2((3) 45) 6) 78) 9) (3) 

which represents the order-consecutive partition sequence 

S1 = {3}, s2 = {4, 5}, $3 = {2, 6}, $4 = {7, 8}, $5 = {1, 9}. 

Chakravarty et al. [4]  gave conditions under which there exists an 
order-consecutive optimal partition, where order-consecutive (they called it 
semi-consecutive) means that the subsets of the partition can be ordered so 
that it has the order-consecutive property. For example, suppose n = 5, 
p = 3. Then ( S  1 = {2, 3}, $2 = {4}, S 3 = {1, 5}) and ($2, S1, $31 are both 
order-consecutive partition sequences; so the unordered set {$1, $2, $3} is 
order-consecutive. None of these partitions is consecutive. Clearly a 
consecutive partition is order-consecutive. 

Boros and Hammer [2]  gave conditions under which there exists a 
nested optimal partition, where nested means that there do not exist four 
elements a < b < c < d with a and c in one subset and b and d in another. 
Clearly, an order-consecutive partition is nested since a partition that is 
not nested cannot have the order-consecutive property. An example of 
a nested partition that is not order-consecutive is {$1--{2},  $2=  {4}, 
$3-- {1, 3,5}}. 

Let the numbers of order-consecutive partition sequences, order- 
consecutive partitions, and nested partitions of N~, each with p parts, be 
OCPS(n, p), OCP(n, p), and N(n, p), respectively. Clearly 

C(n, p) ~ OCP(n, p) ~< OCPS(n, p), o e P ( n ,  p) <~ N(n, p). 

We shall determine OCP(n, p), OCPS(n, p), and N(n, p). Some numerical 
values appear at the end of this paper. 

2. THE NUMBER OF NESTED PARTITIONS 

Suppose {Sx, $2 ..... @} is a nested partition of Nn. Since the partition 
is nested, we can represent it by placing pairs of parentheses suitably 
around and between the ordered elements of Nn; e.g., with n = 9, p =4,  

(1(23) 45(6)(7) 8)(9) (4) 

represents the nested (but not order-consecutive) partition 

$1={1,4 ,5 ,8} ,$2={2,3} ,$3={6} ,$4={7} ,$5={9} .  (5) 
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Note that we place the parentheses in a pair as close together as possible; 
thus we do not allow the representation 

(1(23) 45((6) 7)8)(9) 

because here the parentheses defining the subset {7} are not as close as 
possible. Note that in a representation such as (4) of a nested partition we 
cannot have two adjacent left parentheses or two adjacent right ones; if this 
happens, the outer parenthesis can be moved to be closer to its mate. The 
only way two adjacent parentheses can occur (between two integers) is as 
a ')('-pair. We call such a configuration "N-proper." An N-proper represen- 
tation of a nested partition is clearly unique. Note that if we remove all 
)(-pairs from such a representation, the resulting configuration of 
parentheses will continue to satisfy the usual constraint that the number of 
left parentheses, counting from left to right, is never less than the number 
of right parentheses. 

It is well known that the number of ways k pairs of parentheses can 
be arranged, satisfying the usual constraint that the number of left 
parentheses, counting from left to right, is never less than the number of 
right parentheses, is the Catalan number 

k - - k +  1 

We need a simple lemma. 

LEMMA I. Let the number of ways k pairs of  parentheses can be 
arranged, subject to the usual condition and such that the mate of the first 
(left) parenthesis is the last (right) parenthesis, be C'k. Then C'k = Ck- 1. 

Proof We have the generating function 

C(x)= ~ Ckx k 
k = 0  

1 
= ~ x ( 1 - - a / 1 - - 4 x ) .  

Enumerating the partitions that are counted by Ck according to the 
position of the mate of the first (left) parenthesis shows that 

C;(x) = C ( x ) 2  = ( C (x ) -  1)/x, 
k ~ O  

which proves the lemma. | 
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THEOREM 2. The number of nested partitions of Nn with p parts and 
having j )(-pairs is 

n - l !  
j! ( p - j ) !  ( p - j - 1 ) !  ( n - 2 p + j +  1)!" 

(6) 

Proof We show that the number we require is 

n -  1 " ~ ( 2 p - j - 2 )  Cp_y 1 

2p - j - 2 J \  j 
(7) 

which reduces to (6). We have to place p pairs of parentheses in and 
around Nn so as to define a proper nested partition, and with exactly j 
)(-pairs occurring. Suppose we remove the j )(-pairs. Then it is necessary 
that the mate of the first (left) parenthesis is the last (right) parenthesis, 
since otherwise some element of Nn would not be included in any part of 
the partition. The )(-pairs can occur anywhere between these extreme 
parentheses. We have 2p-2 j  single parentheses, which according to 
Lemma 1 can be arranged in Cp_j_ 1 ways. There are 2 p - 2 j - 2  
parentheses between the extreme pair; we can insert the j )(-pairs in 
(2p-j-2) ways. Now we have 2 p - j - 1  gaps between the single 
parentheses and the )(-pairs, each of which must be assigned at least one 
element of Am. We can do this by first placing one element in each gap and 
then permuting the remaining n - ( 2 p - j - 1 )  elements with 2 p - j - 2  

n-1 ) ways. This proves (7). | separators, in (2p j -  2 

COROLLARY 3. 

1 n n 

Proof. Using (6), a simple (Vandermonde) summation gives 

p-1 n - - l !  
j! (p_j)v  ( p - - j - - 1 ) I  (n-- 2p+j+ l)! 

j ~ O  " " 

n p i \ j / \ p - - j -  1 

COROLLARY 4. The total number of nested partitions of N~ is 

~ N(n, p)= Cn. (9) 
p = l  

Proof. Vandermonde is used again. 
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3. ThE NUMBER OF ORDER-CONSECUTIVE PARTITIONS 

Order-consecutive partition sequences can also be represented by placing 
parentheses around and between the elements of Am. For example, with 
n = 9 ,  p = 4 ,  

(1(2(3)(45) 6)(78) 9) 

represents the partition 

{$1 = {1, 9}, $2 = {2, 6}, $3 = {3}, $4= {4, 5}, S~ = {7, 8}}, 

which is order-consecutive since the ordered partition 

( $ 3 ,  $4 ,  $2 ,  $5 ,  $1)  

is order-consecutive. (Note that $3 and S 4 could be taken in the reverse 
order.) We call such a representation, with all pairs of parentheses as close 
together as possible, OCP-proper. There is now an additional constraint. 

LEMMA 5. I f  all )(-pairs in an OCP-proper configuration are deleted, 
then the remaining pairs of parentheses are completely nested. 

Proof. Suppose to the contrary that we have a right parenthesis )1 to 
the left of a left parenthesis (2 not as a )(-pair, so that there is a non-empty 
set x of integers between them. Without loss of generality, we may assume 
that no other parentheses, except possibly some that form )(-pairs, lie 
between )1 and (2, since otherwise we could replace {)1, (2} by a closer 
pair of parentheses. If there exists no )(-pair between )1 and (2, consider 

TABLE I 

Values of OCP(n, p), the Number of p-Part  Order-Consecutive Partitions of N. 

1 2 3 4 5 6 7 8 

1 i 
2 l 1 
3 1 3 1 
4 l 6 6 
5 1 10 19 
6 1 15 45 
7 1 21 90 
8 1 28 i61 

1 
10 1 
45 15 1 

141 90 21 1 
357 357 161 28 
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TABLE II 

Values of N(n, p), the Number of p-Part Nested Partitions of N, 

2 3 4 5 6 7 8 

1 1 
2 1 1 
3 1 3 1 
4 i 6 6 1 
5 1 10 20 10 
6 1 15 50 50 
7 1 21 105 175 
8 1 28 196 490 

I 
15 1 

105 21 1 
490 196 28 1 

the left parenthesis  (1 that  is the mate  of  )1 and  the right parenthesis  )2 that  
is the mate  of  (2. Then the configurat ion must  be 

""(  l w )l x (2 y )2"" ,  

where each of  w, x, y is non-empty  (and might  contain more  parentheses).  
N o w  consider the pair  of  parentheses  (o,)0 that  define the subset 
containing x. These lie beyond  (1 and  )2, so we must  have 

. . . ( oV( l  w )l x (2  y )2Z )o . . . ,  

with v and z non-empty.  But this configurat ion does not  define a order-  
consecutive parti t ion.  

If  there are one or more  )(-pairs between )1 and (2, let )' be the left-most 
right parenthesis  of  the )(-pairs, and let (" be the r ight-most  left parenthesis  
of  the )(-pairs. Let (i and ('  be the mates  of )1 and )', respectively, defining 
subsets 31 and S'  respectively. Similarly, let )2 and )" be the mates  of  
(2 and  (", defining subsets $2 and  S". Then  we have 

(' S t  (1 31 )1 3 '  )' S o (  tt S 't (232)2 8" )" 

where So m a y  be empty.  Since there is no left parenthesis  between )1 and 
)', ( '  must  be to the left of  )1, and because of the order-consecutive 
p roper ty  is also to the left of  (1. This implies that  S'  has a non-zero num-  
ber  of  elements between (' and (1, and also between )1 and )'. Therefore,  
S'  mus t  appea r  after $1 in any ordering of the subsets of  the par t i t ion tha t  
has the order-consecutive property .  Similarly, we conclude that  S" must  
appear  after $2. But $1 is not  consecutive to either $2 or S", and neither 
is $2 consecutive to $1 or 3' .  Hence  there  is no ordering of the four subsets 
S 1, S 2, S', S" that  preserves the order-consecut ive proper ty ,  in contra-  
diction to our  assumption.  | 



NOTE 329 

THEOREM 6. 

OCP(n, p) i~ I (2pn_jl 2 ) ( 2 p - . j - 2  ) . J  (10) 

Proof We count the number of OCP-proper configurations. There 
must be a single left parenthesis in the space before the first element and 
a single right parenthesis after the last element. Suppose the remaining 
parentheses contain j )(-pairs. Then there are 2 p -  2 j - 2  parentheses not 
involved in )(-pairs. Each of these j +  ( 2 p - - 2 j - 2 )  objects (i.e., single 
parentheses and )(-pairs) must fill a different space chosen from the n -  1 
spaces between the elements. The first factor in (9) counts the number of 
ways these spaces can be chosen. The second factor represents the number 
of ways the j )(-pairs can be inserted into a sequence of p-j-1 left 
parentheses followed by p - j -  1 right parentheses. | 

4. THE NUMBER OF ORDER-CONSECUTIVE PARTITION SEQUENCES 

Suppose S =  {S~, ..., Sp} is an order-consecutive partition sequence of 
N,. We can represent S (uniquely) by inserting 2 p - 2  characters, alter- 
nately p -  1 commas and slashes, (i.e., , / , / . . . , /  in that order) into the n 
spaces between the elements of N, (the space after the last element is 
allowed to contain a slash), subject to the constraint that if we ignore the 
slashes, the commas divide N, into a proper p-part partition, i.e., there 
must be at least one element of N, between each pair of commas. In this 
representation, the slashes indicate how each successive part of the parti- 
tion relates to the previously accumulated parts: elements between the j t h  
comma and the j t h  slash correspond to elements of Sj+a that lie to the left 
of (J~= 1Sk, and elements between the j t h  slash and the ( j +  1)th comma 
correspond to elements of Sj+I that lie to the right of this union. For 
example, the order-consecutive sequence in (3) above is here represented as 

1,/23,4/5,/67,8/9 

which shows that S 1 has just one element; $2 has two elements, both of 
which lie to the right of $1; $3 has two elements, one of which lies to the 
left of $1 u $2 and the other to the right; $4 has two elements, both to the 
right of S~ w $2 w $3 ; and $5 has two elements, one to the left and one to 
the right of U 4 = 1 Sk. 

THEOREM 7. 

o c e s ( n , p ) =  ~ ( - 1 ) p - l - k  
k=o k 2k " 

(11) 
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TABLE III 

Values of OCPS(n,  p), the Number  of p-Par t  Order-Consecutive Partition Sequences of Nn 

1 2 3 4 5 6 7 8 

1 1 
2 1 2 
3 1 5 4 
4 1 9 16 
5 1 14 41 
6 1 20 85 
7 1 27 155 
8 1 35 259 

8 
44 16 

146 112 32 
377 456 272 64 
833 1408 1312 640 128 

Proof We count the number of representations of the form described 
above. If we were to ignore the requirement that the commas define a 
proper (consecutive)p-part  partition, the number of ways of inserting the 
commas and slashes would be 

/ 21o-2 

But this counts many arrangements with parts of size zero. Using inclu- 
sion-exclusion, we first subtract the number of arrangements in which for some 
j, 0 4 j ~< p -  1, the j t h  part is empty; in these arrangements the j t h  comma is 
immediately followed by a slash and another comma. Deleting this slash and 
the second comma, we have one of the arrangements counted by 

2p-4 

Continuing, we arrive at (11) (with k = p -  1 - j ) .  | 

5. SOME RELATED TOPICS 

Let N*(n, p) denote the number of nested partitions such that the mate 
of the first left parenthesis is the last right parenthesis, i.e., both the first 
and the last element of Nn belong, to the same subset. We call this the 
*-property. 

LEMMA 8. 

N*(n, p) -- N(n - 1, p). 
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Proof We establish a one-one mapping between the members of the 
two sets that are enumerated by N*(n, p) and N(n - 1, p). Given any (n, p) 
nested partition satisfying the * property, simply delete the element n; given 
any ( n -  1, p) nested partition, ad the element n to the subset containing 
the first element. | 

We now show that the number N(n, p) arises in some other contexts. 

THEOREM 9. The number of  ways n pairs of parentheses can be arranged 
(subject to the usual constraint) such that exactly p -  1 )(-pairs occur is 
N(n, p). 

Proof We will call the parentheses to be arranged in this theorem 
"brackets" to avoid confusion with the parenthesis that are counted by 
N(n, p). We will define a one-one mapping between arrangements of n 
pairs of brackets containing exactly p - 1 ] [-pairs and nested partitions of 
Nn into p parts. Note that this mapping is not the same as the one dis- 
cussed in the proof of Theorem 2. Some examples of the correspondence we 
shall set up, with n = 4, p = 3, are 

(1)(2)(34) [ ][ ] [ [  ]]  

(1)(23)(4) [ ] [ [  ] ] [  ] 

(12)(3)(4) [[  ] ] [  ][ ] 

(1)(2(3)4) [ ] [ [  ][  ]]  

(l(2)3)(4) [[  ][ 33[ ] 

(1(2)(3)4) [[  ][  ][  ]] .  

We proceed by induction on n. For n = 1 (and p = 1) simply transform 
the brackets into parentheses (and delete the integer 1). For general n, 
consider a p-part nested partition of N n in its parenthesis representation. 
Suppose that the mate of the first parenthesis lies in the ith space, which 
is just to the right of the element i of N,.  If 1 ~ i ~< n - 1 (as in the first five 
examples above), then this ith space must contain a )(-pair and the 
partition can be decomposed into two subpartitions, one of Ni and the 
other of { i + 1 .... , n}. Suppose that the first subpartition contains q pairs of 
parentheses (including the original pair). Then the second subpartition 
contains p - q  pairs of parentheses. By the inductive hypothesis, each of 
these subpartitions corresponds uniquely to an arrangement of brackets, 
the first having i pairs of brackets and q - 1  ][-pairs, and the second 
having n - i pairs of brackets and p - q - 1 ] I-pairs. Concatenating these 
two subpartitions introduces one more ][-pair, giving altogether an 
arrangement with n pairs of brackets containing p - 1 ] [-pairs. 
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If i = n (as in the last of the six examples above), the p-part partition of 
Nn has the *-property of Lemma 8, and we can use the one-one mapping 
in the proof of that lemma to replace the (n, p) partition by a nested 
(n - 1, p) partition, simply by deleting the last element of Nn. Now take the 
parenthesis representation of that partition, replace it (by the inductive 
hypothesis) by its corresponding bracket configuration, and place an extra 
pair of brackets around it. This gives an arrangement of 1 + (n - 1) -- n 
pairs of brackets having p -  1 ] [-pairs, as required. All the steps in these 
constructions are reversible. | 

The correspondence in Theorem 9 provides an alternative proof of (9). 
The number N(n, p) arises also in the following context: it is the number 

of weak-lead lattice paths from (0, 0) to (n, n) that have exactly p horizon- 
tal (and p vertical) segments; i.e., it is the number of arrangements of 
n votes for each of two candidates A and B such that in the counting, 
A never trails B and the votes arrive in exactly 2p blocks, alternately for 
A and B. Such vote sequences are in 1-1 correspondence with (n + 1)-node 
rooted trees, in two distinct ways: in the first, one circumnavigates the tree, 
going up a new branch for an A-vote and down the other side of an old 
branch for a B-vote. For the second correspondence, color the nodes of the 
tree black and white alternately. Circumnavigate the tree, starting at the 
(black) root, assigning labels 0, 1, 2 .... , n - 1 to the black nodes as they are 
encountered. (We do not assign a label n to the root node on completing 
the circuit.) Then, for each black node, each of its labels is replaced by a 
copy of its lowest numerical label. Now put the set of assigned labels into 
increasing order, giving cl, c2, ..., cn. Then this represents (uniquely) a vote 
sequence in which ci is the number of votes that B has obtained when A 
receives his ith vote. (See [7].) 

Finally, we present an identity for which we have only an algebraic 
proof. 

THEOREM 10. 

N(n,p)= ~ \ 2p-2 /N(p-I'J)" 
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