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Abstract

The aim of this paper is to show how the decomposition of elaborate hypotheses on the structure of
covariance matrices into conditionally independent simpler hypotheses, by inducing the factorization of
the overall test statistic into a product of several independent simpler test statistics, may be used to obtain
near-exact distributions for the overall test statistics, even in situations where asymptotic distributions are
not available in the literature and adequately fit ones are not easy to obtain.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Near-exact distributions; Conditionally independent hypotheses; Likelihood ratio test statistics; Generalized
sphericity tests; Generalized near-integer Gamma distribution; Mixtures

1. Introduction

The concept of a near-exact distribution has already been introduced in a number of papers
[6,7,11,1,15,16,9,22]. In a nutshell, near-exact distributions are new asymptotic distributions that
lay closer to the exact distribution than the usual asymptotic distributions. They correspond to
what we call near-exact c.f.s (characteristic functions) which are c.f.s obtained from the exact c.f.
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by leaving most of it unchanged and replacing the remaining smaller part by an asymptotic result
(which is intended to be asymptotic both in terms of sample size and overall number of variables,
in a manner that will be more precisely stated in this section). This replacement is done in such
a way that the resulting c.f. corresponds to a distribution with a manageable c.d.f. (cumulative
distribution function) so that the computation of near-exact quantiles is rendered feasible, easy
and precise.

There are mainly two ways in which near-exact distributions, or rather, near-exact c.f.s may be
obtained. One is when the exact distribution is an infinite mixture, in which case we may cut short
the series that corresponds to the exact c.f. at a given number of terms and replace the remainder
by the c.f. of just one, or a mixture of two or three distributions of the same kind of the ones in the
infinite mixture. The parameters in these replacing parts of the c.f. are computed in such a way
that the first few derivatives at the origin match the derivatives of the part being replaced. More
precisely, if the exact c.f. of the statistic W may be written as

�W(t) =
∞∑
i=0

pi �i (t),

where pi > 0 (i = 0, 1, . . .) and
∑∞

i=0 pi = 1, and where �i (t) are c.f.s, then we will use instead
of �W(t)

�∗
W(t) =

n∗∑
i=0

pi �i (t) + θ �2(t),

where θ = 1 −∑n∗
i=0 pi and �2(t) is usually either a c.f. of the type of �i (t) or the c.f. of the

mixture of two or three such c.f.s, defined in such a way that

d

dth
θ �2(t)

∣∣∣∣
t=0

= d

dth

∞∑
i=n∗+1

pi �i (t)

∣∣∣∣∣∣
t=0

for h ∈ H (where usually we will have H = {1, 2}, H = {1, . . . , 4} or H = {1, . . . , 6}).
Another way to obtain a near-exact c.f. is through the factorization of the exact c.f. If we may

write

�W(t) = �1(t) �2(t),

where we recognize �1(t) as corresponding to a known and manageable distribution and �2(t)

as corresponding to a non-manageable distribution, then we will use as a near-exact c.f. for W

the c.f.

�∗
W(t) = �1(t) �∗

2(t), (1)

where for h ∈ H (usually with H = {1, 2}, H = {1, . . . , 4} or H = {1, . . . , 6})
d

dth
�∗

2(t)

∣∣∣∣
t=0

= d

dth
�2(t)

∣∣∣∣
t=0

(2)

in such a way that, if we write �∗
2(t) as a function of the sample size (say n) and the overall

number of variables involved (say p), that is, if we write �∗
2(t) ≡ �∗

2(t; n, p), we want

lim
n→∞

∫ +∞

−∞

∣∣∣∣�2(t)−�∗
2(t; n, p)

t

∣∣∣∣ dt = 0 and lim
p→∞

∫ +∞

−∞

∣∣∣∣�2(t)−�∗
2(t; n, p)

t

∣∣∣∣ dt = 0
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with ∫ +∞

−∞

∣∣∣∣�2(t) − �∗
2(t; n, p)

t

∣∣∣∣ dt �
∫ +∞

−∞
|�1(t)|

∣∣∣∣�2(t) − �∗
2(t; n, p)

t

∣∣∣∣ dt

� max
w

∣∣FW(w) − F ∗
W(w; n, p)

∣∣ , (3)

where FW(·) is the exact c.d.f. of W and F ∗
W(· ; n, p) is the near-exact c.d.f. of W , corresponding

to the c.f. �∗
W(t) in (1). The relation in (3) will be used at the end of Section 3 in the definition

of a measure of proximity between distributions (see expression (6)).
When dealing with l.r.t. (likelihood ratio test) statistics, mainly those more commonly used in

Multivariate Statistics, �1(t) is the c.f. of a sum of independent Logbeta r.v.s (random variables),
that are r.v.s whose exponential has a Beta distribution. This c.f. may be alternatively written as
the c.f. of a GIG (Generalized Integer Gamma) distribution, that is, the distribution of the sum
of a given number of independent Gamma distributions, all with different rate parameters and
integer shape parameters (see [5]), while �2(t) is the c.f. of a sum of other independent Logbeta
r.v.s, which is not possible to be written under the form of the c.f. of a GIG distribution and
which will be asymptotically replaced by the c.f. of a single Gamma distribution or the c.f. of a
mixture of two or three Gamma distributions with the same rate parameters. This replacement
was already used in [22] and is indeed well justified since a single Logbeta distribution may be
represented under the form of an infinite mixture of Exponential distributions (see [8]). A sum
of independent Logbeta random variables may thus be represented under the form of an infinite
mixture of sums of Exponential distributions, which are themselves mixtures of Exponential or
Gamma distributions.

The near-exact distributions we are interested in this paper are exactly the ones of this second
kind.

2. How may the decomposition of a complex hypothesis into more elementary hypotheses
help in building near-exact distributions for the overall test statistic?

Let us suppose we have �, the l.r.t. statistic to test a given null hypothesis H0, and that we
want to write, for W = − log �

�W(t) = �1(t) �2(t)

(the reason why we usually want to handle the c.f. of W = − log � instead of the c.f. of � is
that while the moments of � may be relatively easy to obtain and they commonly exist for any
positive integer order, and even for any order not necessarily integer just above a given negative
value, the expression for the c.f. of � may be too hard to obtain and to handle; while on the other
hand once obtained a near-exact distribution for W it will then be easy to obtain the corresponding
near-exact distribution for � = e−W ).

It may happen that this factorization may be too hard to obtain from scratch, given the com-
plexity of � itself.

But, let us suppose we may write

� =
m∏

j=1

�j , (4)

where �j is the l.r.t. statistic to test H0j |1,...,j−1, the j th nested conditionally independent null
hypothesis we may split H0 into. That is, we are assuming we may write
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H0 ≡ H0m|1,...,m−1 ◦ · · · ◦ H03|1,2 ◦ H02|1 ◦ H01,

which means that to test H0 is equivalent to test sequentially the m independent hypotheses
H0j |1,...,j−1 (j = 1, . . . , m), starting with H01 and testing then H02|1 and then H03|1,2, and so
on, and where to test H0j |1,...,j−1 is to test H0j assuming that H01 through H0,j−1 are true.
The hypotheses H0j |1,...,j−1 (j = 1, . . . , m) are all independent in the sense that under the null
hypothesis H0 it is possible to prove that the �j in (4) are independent. This is the case with
all the likelihood ratio statistics used and mentioned in this paper (see [4,18]), although in some
non-regular cases independence may not hold as [17] shows. Let us further suppose that, for

Wj = − log �j (j = 1, . . . , m),

we have available the factorizations

�Wj
(t) = �j1(t) �j2(t) . (5)

Then, under H0, given the independence of the �j and thus also of the Wj , we may easily write

�W(t) =
m∏

j=1

�Wj
(t)

=
⎧⎨
⎩

m∏
j=1

�j1(t)

⎫⎬
⎭︸ ︷︷ ︸

�1(t)

⎧⎨
⎩

m∏
j=1

�j2(t)

⎫⎬
⎭︸ ︷︷ ︸

�2(t)

= �1(t) �2(t),

where for the most common l.r.t. statistics used in Multivariate Statistics the c.f.s �j1(t) may
be obtained under the form of c.f.s of GIG distributions [6,7,22,9] and all the �j2(t) are c.f.s of
the sum of independent Logbeta r.v.s. Then, �1(t) itself will be the c.f. of a GIG distribution,
and �2(t) will be itself the c.f. of the sum of independent Logbeta r.v.s, being thus adequately
asymptotically replaced by the c.f. of a single Gamma distribution or the c.f. of the mixture of
two or three Gamma distributions, verifying (2) (see [22]) and yielding this way either a GNIG
(Generalized Near-Integer Gamma) distribution or a mixture of two or three GNIG distributions
(the GNIG distribution is the distribution of the sum of a r.v. with a GIG distribution with an
independent r.v. with a Gamma distribution with a non-integer shape parameter – for details on
this distribution see [7]).

3. Examples of application

Since decompositions of the c.f.s of the type in (5) are already available for the Wilks � statistic,
or the l.r.t. statistic to test the independence of several sets of variables (see [6,7]), and also for
the l.r.t. statistic to test sphericity (see [22]) and for the l.r.t. statistic to test the equality of several
variance–covariance matrices (see [9]), we may think of l.r.t.s whose statistic may be factorized
as in (4) and where the �j are the above mentioned statistics.

This was indeed what was somehow done when obtaining either the exact distribution for the
generalized Wilks � statistic, under the form of a GIG distribution, when at most one of the sets
of variables has an odd number of variables (see [5]) or when obtaining a near-exact distribution
for the same statistic, under the form of a GNIG distribution, for the general case when two or
more sets have an odd number of variables (see [6,7]).
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In the subsections ahead we will use the following notation:

• �1(q, p; Nj), with �1(q, p; Nj) =
∏q

j=1 |Aj |Nj /2

|A|N/2
NNp/2∏q

j=1 N
Nj p/2

j

, to denote the l.r.t. statistic

used to test H01 : �1 = · · · = �q , based on samples of size Nj (j = 1, . . . , q) from
Np(μ

j
, �j ), with Aj = �̂j , A = A1 + · · · + Aq and N = N1 + · · · + Nq ;

• �2(N; p1, . . . , pk), with �2(N; p1, . . . , pk) =
(

|A|∏k
i=1 |Aii |

)N/2

, to denote the l.r.t. statistic

used to test H02 : � = diag(�11, . . . , �ii , . . . , �kk), based on a sample of size N from
Np(μ, �), with A = �̂, Aii = �̂ii and

μ =
[
μ

1
, . . . , μ

i
, . . . , μ

k

]′
, � =

⎡
⎢⎢⎢⎢⎢⎢⎣

�11 · · · �1i · · · �1k

...
. . .

...
...

�i1 · · · �ii · · · �ik

...
...

. . .
...

�k1 · · · �ki · · · �kk

⎤
⎥⎥⎥⎥⎥⎥⎦ ;

• �3(p; N), with �3(p; N) =
⎛
⎝ |A|(

tr 1
p

A

)p

⎞
⎠N/2

, to denote the l.r.t. statistic used to test H03 :

� = σ 2Ip, based on a sample of size N from Np(μ, �), with A = �̂.

To evaluate the proximity of the approximations obtained, to the exact distribution, we will
use the measure

� = 1

2π

∫ +∞

−∞

∣∣∣∣�W(t) − �∗
W(t)

t

∣∣∣∣ dt, (6)

where �W(t) and �∗
W(t) represent respectively the exact and the approximate (near-exact) c.f. of

W , the logarithm of the l.r.t. statistic under study.
This measure of proximity has already been used in [15,22] and its values are an upper bound

on the absolute value of the difference between the corresponding c.d.f.s, with

� � max
x∈SW

|FW(x) − F ∗
W(x)|, (7)

where SW is the support of the r.v. W and FW(x) and F ∗
W(x) represent respectively the exact

c.d.f. of W and the approximate c.d.f. corresponding to �∗
W(t). This measure is related with the

Berry–Esseen bound (see [3,14,19,21, Chapter VI, Section 21]).

3.1. The test of equality of several multivariate Normal distributions

It may be the best well known example of the situation we are trying to illustrate, since we
may write in this case [2,20,25]

H0 : μ
1

= · · · = μ
q
, �1 = · · · = �q (8)

with

H0 ≡ H02|1 ◦ H01,



C.A. Coelho, F.J. Marques / Linear Algebra and its Applications 430 (2009) 2592–2606 2597

where

H01 : �1 = · · · = �q

and
H02|1 : μ

1
= · · · = μ

q

given that �1 = · · · = �q,

so that, using the notation defined at the beginning of this section, we may write the l.r.t. statistic
to test H0 in (8) as

� = �2(N; p, q − 1)�1(q, p; Nj) (with N = N1 + · · · + Nq), (9)

where p is the order of the matrices �1, . . . , �q and where, under H0 in (8), �2(N; p, q − 1) and
�1(q, p; Nj) are independent.

Since factorizations of the type in (5) for the c.f. of − log �2(N; p, q − 1) and − log �1(q, p;
Nj) are available [6,7,9], the process of obtaining near-exact distributions for the l.r.t. statistic for
this test may be quite easily implemented by using the approach proposed in this paper.

For N1 = · · · = Nq = n, and α = 1, . . . , 	p/q
, the exact c.f. of W = − log �, where � is
the l.r.t. statistic in (9), may be written either as (see [2,20,25])

�W(t) =
p∏

j=1

�
(

nq−j
2

)
�
(

(n−1)q+1−j
2 − nq

2 it
)

�
(

nq−j
2 − nq

2 it
)

�
(

(n−1)q+1−j
2

)

×
p∏

j=1

q∏
k=1

�
(

n−1
2 + 1−j

2q
+ k−1

q

)
�
(

n−j
2 − n

2 it
)

�
(

n−1
2 + 1−j

2q
+ k−1

q
− n

2 it
)

�
(

n−j
2

) (10)

or as

�W(t) =
p+q−1∏

j=2
j /=αq

(
n−j/q

n

)rj
(

n−j/q
n

− it
)−rj

×
p∏

j=2

(
n−j
n

)uj
(

n−j
n

− it
)−uj

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

�1(t)

×
(

�
(

nq−1
2

)
�
(

nq−2
2 − nq

2 it
)

�
(

nq−1
2 − nq

2 it
)

�
(

nq−2
2

)
)p⊥⊥2

×
	p/2
∏
j=1

q∏
k=1

�(aj +bjk)�(aj +b∗
jk−nit)

�(aj +b∗
jk) �(aj +bjk−nit)

×
(

q∏
k=1

�(ap+bpk)

�(ap+b∗
pk)

�
(
ap+b∗

pk− n
2 it
)

�(ap+bpk− n
2 it)

)p⊥⊥2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�2(t) (11)

for suitably defined shape parameters rj (j = 2, . . . , p + q − 1; j /= αq) and uj (j = 2, . . . , p)

(see [23], also for parameters aj , bjk, ap, bpk, b∗
jk and b∗

pk).
But then, according to the explanation in the previous Sections 1 and 2, we may replace �2(t)

in (11) by

�∗
2(t) =

h/2∑
k=1

pk λsk (λ − it)−sk (12)
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with
h/2∑
k=1

pk = 1, and 0 < pk � 1; k = 1, . . . , h/2, (13)

where h = 2, h = 4 or h = 6, is the number of derivatives of �2(t) at t = 0 that will be equated
by the corresponding derivatives of �∗

2(t) at t = 0. This way we obtain

�W(t) =
p+q−1∏

j=2
j /=αq

(
n−j/q

n

)rj
(

n−j/q
n

− it
)−rj

×
p∏

j=2

(
n−j
n

)uj
(

n−j
n

− it
)−uj

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

�1(t)

×�∗
2(t)

(14)

as a near-exact c.f. for W , yielding thus near-exact distributions for W which are, according to
the number of moments of �2(t) being equated and the concomitant definition of �∗

2(t), either a
GNIG distribution or a mixture of two or three GNIG distributions of depth 2p + q − 2 − 	p/q
,
with integer shape parameters rj (j = 2, . . . , p + q − 1; j /= αq) and uj (j = 2, . . . , p) and
non-integer shape parameter sk , for the kth mixture term (k = 1, . . . , h/2). These near-exact
distributions will be respectively designated in the tables by the acronyms GNIG, M2GNIG and
M3GNIG.

Once obtained a well-fit near-exact distribution for W under the form of a GNIG distribution
or a mixture of GNIG distributions, the corresponding c.d.f.s are easily available (see [7] and
also [22,23]), being the corresponding near-exact c.d.f.s for � very easily derived by simple
exponentiation of the r.v. W . From these c.d.f.s the computation of near-exact quantiles is quick
and easy, when using one of the several available softwares able to handle extended precision
computations.

The computation of near-exact quantiles is not carried out in this subsection since this would
only be a matter of interest in order to compare them with the exact ones, but the computation of
these quantiles with enough precision (at least 12–16 decimal places) would be a difficult and time
consuming task, almost rendered useless, given the very good approximations that the near-exact
distributions developed above exhibit, which is possible to be assessed through the computation
of the values of the measure � using the c.f.s in (10) and (14) for different values of n, p and q. To
establish a comparison, we have also used the asymptotic Box-style distribution for W = − log �
in [2, Section 10.5]. Results are shown in Tables 1–6.

The results in Tables 1–6 show not only the extreme closeness to the exact distribution that all
the near-exact distributions exhibit, with, as expected, the M3GNIG distribution displaying always
the best fit and the single GNIG distribution a less good fit, although always much better than
the asymptotic distribution. Moreover, the near-exact distributions display not only an asymptotic
behaviour for increasing sample sizes but also an asymptotic behaviour for increasing values of
p and q, which is a much desirable feature. Apart from a couple of values which came out a little
too good for the M3GNIG distribution, as for example for n = 20, p = 10 and q = 5 and for
n = 13, p = 11 and q = 5, the evolution of the values of the measure � is pretty steady. Indeed
we should bear in mind that for either even p or odd q we have the exact distribution for the part
of the l.r.t. statistic which is a Wilks Lambda statistic, given under the form of a GIG distribution.

Also, even for very small sample sizes, that is, for sample sizes which are very close to the
number of variables being used, all the near-exact distributions show a very good performance,
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Table 1
Values of � for the asymptotic and near-exact distributions for the l.r.t statistic of equality of q multivariate Normal
distributions, for n=20, p=10

q = 4 q = 5 q = 6 q = 7

Asymp. 3.61×10−2 3.49×10−2 3.64×10−2 3.92×10−2

GNIG 1.19×10−6 6.13×10−7 4.61×10−7 2.89×10−7

M2GNIG 3.39×10−10 8.16×10−11 5.72×10−11 2.69×10−11

M3GNIG 1.08×10−13 2.56×10−15 6.82×10−15 2.86×10−15

Table 2
Values of � for the asymptotic and near-exact distributions for the l.r.t statistic of equality of q multivariate Normal
distributions, for n=30, p=10

q = 4 q = 5 q = 6 q = 7

Asymp. 1.06×10−2 8.98×10−3 8.30×10−3 8.10×10−3

GNIG 5.95×10−7 3.16×10−7 2.37×10−7 1.50×10−7

M2GNIG 8.08×10−11 1.94×10−11 1.46×10−11 6.94×10−12

M3GNIG 1.26×10−14 1.88×10−15 9.62×10−16 4.60×10−16

still with a clear asymptotic behaviour for increasing values of p and q, even in situations where
the asymptotic distribution breaks down (indeed not being a distribution any more).

3.2. The sphericity test

The sphericity test itself, whose null hypothesis may be written as

H0 : � = σ 2Ip (15)

may be seen as another example of a l.r.t. whose null hypothesis may be written as the composition
of two conditionally independent null hypotheses (see Chapter 10, Section 10.7.3 in [2]), since
we may indeed write H0 in (15) once again as

H0 ≡ H02|1 ◦ H01,

where

H01 : � = diag(σ 2
1 , . . . , σ 2

p)

and

H02|1 : σ 2
1 = · · · = σ 2

p

given that � = diag(σ 2
1 , . . . , σ 2

p),

so that, using the notation defined at the beginning of this section, we may write the l.r.t. statistic
to test H0 in (15) as

� = �2(n; 1, . . . , 1︸ ︷︷ ︸
p

)�1(p, 1; n),

where under H0 in (15), �2(n; 1, . . . , 1) and �1(p, 1; n) are independent (see for example [2,
Section 10.7.3]).

Although we may question the usefulness of this approach, moreover, given that very accurate
near-exact distributions have already been obtained for the sphericity l.r.t. statistic in [22], the
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Table 3
Values of � for the asymptotic and near-exact distributions for the l.r.t statistic of equality of q multivariate Normal
distributions, for n=50, p=10

q = 4 q = 5 q = 6 q = 7

Asymp. 2.94×10−3 2.34×10−3 1.98×10−3 1.77×10−3

GNIG 2.25×10−7 1.22×10−7 9.17×10−8 5.86×10−8

M2GNIG 1.13×10−11 2.50×10−12 2.15×10−12 1.04×10−12

M3GNIG 9.04×10−16 7.62×10−16 9.53×10−17 5.42×10−17

Table 4
Values of � for the asymptotic and near-exact distributions for the l.r.t statistic of equality of q multivariate Normal
distributions, for n=12, p=10

q = 4 q = 5 q = 6 q = 7

Asymp. 4.03×10−1 4.73×10−1 5.44×10−1 6.12×10−1

GNIG 1.47×10−6 6.83×10−7 5.11×10−7 3.13×10−7

M2GNIG 6.85×10−10 1.44×10−10 9.47×10−11 4.33×10−11

M3GNIG 4.27×10−13 2.70×10−14 1.90×10−14 6.92×10−15

same authors were able to obtain even more accurate near-exact distributions for moderately
large values of p for the same statistic through the use of this approach [10]. These near-exact
distributions, besides having a simpler formulation, are even more accurate than the previously
developed ones namely for larger numbers of variables (p � 10).

The l.r.t. statistic to test H0 in (15) is, for a sample of size n [24,2]

� =
⎛
⎜⎝ |A|(

tr 1
p

A
)p

⎞
⎟⎠

n/2

, (16)

where A is the maximum likelihood estimator of �.
The exact c.f. of W = − log � may be written as (see [2,20,25])

�W(t) =
p∏

j=2

�
(

n−1
2 + j−1

p

)
�
(

n−j
2 − n

2 it
)

�
(
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p
− n

2 it
)

�
(

n−j
2

) (17)

or, alternatively, using the approach outlined in Section 2, as (see [10])

�W(t) =
p∏

j=2

(
n − j

n

)rj
(

n − j

n
− it

)−rj

︸ ︷︷ ︸
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�2(t)

,

(18)

where k∗ = 	p/2
 and rj = 	p−j+2
2 
 (j = 2, . . . , p).
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Table 5
Values of � for the asymptotic and near-exact distributions for the l.r.t statistic of equality of q multivariate Normal
distributions, for n=14, p=12

q = 4 q = 5 q = 6 q = 7

Asymp. 5.33×10−1 6.27×10−1 7.17×10−1 7.99×10−1

GNIG 8.58×10−7 4.64×10−7 2.63×10−7 2.03×10−7

M2GNIG 2.45×10−10 8.71×10−11 2.71×10−11 1.87×10−11

M3GNIG 7.85×10−14 2.02×10−14 2.21×10−15 1.79×10−15

Table 6
Values of � for the asymptotic and near-exact distributions for the l.r.t statistic of equality of q multivariate Normal
distributions, for n=19, p=17

q = 4 q = 5 q = 6 q = 7

Asymp. 8.45×10−1 9.84×10−1 1.11×100 1.22×100

GNIG 4.44×10−7 2.64×10−7 2.03×10−7 1.09×10−7

M2GNIG 8.23×10−11 3.38×10−11 2.23×10−11 7.87×10−12

M3GNIG 1.68×10−14 5.26×10−15 3.08×10−15 7.55×10−16

Then, if in (18) we replace �2(t) by a c.f. �∗
2(t) of the type of the one in (12), using the

specification in (13), we will obtain as near-exact distributions for W a GNIG distribution or
a mixture of two or three GNIG distributions of depth p with integer shape parameters rj and
non-integer shape parameter sk , for the kth mixture term (k = 1, . . . , h/2). As in the previous
subsection, these near-exact distributions will be respectively designated, namely in the tables, by
the acronyms GNIGnew, M2GNIGnew and M3GNIGnew (being the acronyms GNIG, M2GNIG
and M3GNIG used in Tables 8 and 9 for the corresponding near-exact distributions obtained for
the same statistic in [22], without using the decomposition approach proposed in this paper).
We will compare these near-exact distributions with the exact distribution as well as in terms of
quantiles as through the use of the measure � in (6).

Consul [12] obtained representations for the exact p.d.f. of the (2/n)th power of the l.r.t.
statistic in (16) for p = 3, 4 and 6 through the use of the Gauss hypergeometric function (as a
side note, there is only a minor typo in expression (3.14), where the constant term should be
K(n)/9! instead of 2 K(n)/9!), leading to expressions that yield easy computations when using
one of the common symbolic softwares with extended precision. However, a common expression
for general p, was only obtained by the same author, in [13], where he makes use of the Meijer
G-function. But, since the Meijer G-function is indeed only an alternative representation for a
Mellin–Barnes type of integral, its computation is still quite heavy, even when using an extended
precision software. Such representations for the p.d.f. only allow for the computation of quantiles
for the (2/n)th power of the l.r.t. statistic with the required precision (that is, up to sixteen decimal
places of precision, in order to be able to compare them with the near-exact ones) for moderate
values of p (p � 10).

We have computed exact quantiles for the (2/n)th power of the l.r.t. statistic in (16) for
p = 5, 6, 7, 8, 10 and given values of n and we compare them with the near-exact quantiles. The
results are presented in Table 7, where a measure

δ = − log10 |exact quantile − approx. quantile|
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Table 7
Quantiles 0.05 and 0.01 for the (2/n)th power of the l.r.t. statistic in (16)

Quantile
0.05 δ 0.01 δ

n = 7, p = 5
Exact 0.0012622014344466 0.0002183943236075
Box 0.0018598053836777 3.2 0.0004370905088500 3.7
GNIGnew 0.0012621657432522 7.4 0.0002183808232977 7.9
M2GNIGnew 0.0012622015298382 10.0 0.0002183943197572 11.4
M3GNIGnew 0.0012622014349577 12.3 0.0002183943234605 12.8

n = 13, p = 6
Exact 0.0365289320027240 0.0187996936542321
Box 0.0371562902726480 3.2 0.0193651668489626 3.2
GNIGnew 0.0365288722277811 7.2 0.0187995858186483 7.0
M2GNIGnew 0.0365289321616112 9.8 0.0187996937407390 10.1
M3GNIGnew 0.0365289320026219 13.0 0.0187996936542503 13.7

n = 9, p = 7
Exact 0.0001472413497881 0.0000242384697502
Box 0.0003324977520427 3.7 0.0000879672231885 4.2
GNIGnew 0.0001472404530786 7.2 0.0000242381703782 7.0
M2GNIGnew 0.0001472413507666 9.8 0.0000242384696727 10.1
M3GNIGnew 0.0001472413497887 13.0 0.0000242384697498 13.7

n = 14, p = 8
Exact 0.0056126167409998 0.0024755558596933
Box 0.0060583304947613 3.4 0.0027924174017203 3.5
GNIGnew 0.0056126113751765 8.3 0.0024755489107065 8.2
M2GNIGnew 0.0056126167475432 11.2 0.0024755558612765 11.8
M3GNIGnew 0.0056126167409703 13.5 0.0024755558596937 15.4

n = 16, p = 10
Exact 0.0012140286105857 0.0005064717865027
Box 0.0014135955350563 3.7 0.0006334878610630 3.9
GNIGnew 0.0012140280320840 9.2 0.0005064711210440 9.2
M2GNIGnew 0.0012140286109532 12.4 0.0005064717870345 12.3
M3GNIGnew 0.0012140286105719 13.9 0.0005064717869780 12.3

is used to have a more clear and extended assessment of the number of decimal places matched by
the approximate quantiles. In order to establish a comparison, we use Box’s asymptotic approxi-
mation (see [2, Section 10.7.4]).

We may see how all the near-exact distributions show a very good behaviour for both quantiles,
when compared with the Box asymptotic approximation, mainly for the smaller sample sizes (that
is, for the smaller differences between n and p). Only for p = 10 there seems to be a decline in
the performance of the M3GNIG near-exact distribution, but the smaller than expected value for
δ may be indeed due to a lack of precision in the computation of the exact quantile.

In Tables 8 and 9, we may examine the values of the measure � in (6), computed using the
exact c.f. in (17) and the near-exact distributions GNIG, M2GNIG and M3GNIG in [22], and the
near-exact distributions GNIGnew, M2GNIGnew and M3GNIGnew, whose c.f.s are derived from
(18) by replacing �2(t) by c.f.s of the type of �∗

2(t) in (12).
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Table 8
Values of � for the near-exact distributions for the l.r.t. test statistic of sphericity for several values of n and p

p = 10, n = 12 p = 12, n = 14 p = 14, n = 16

GNIG 1.03×10−6 5.02×10−7 2.30×10−7

M2GNIG 2.79×10−10 6.18×10−11 1.86×10−11

M3GNIG 2.20×10−13 1.74×10−14 4.82×10−15

GNIGnew 1.20×10−7 5.09×10−8 2.48×10−8

M2GNIGnew 6.59×10−11 1.60×10−11 4.86×10−12

M3GNIGnew 1.23×10−14 2.60×10−15 6.11×10−16

Table 9
Values of � for the near-exact distributions for the l.r.t. test statistic of sphericity for several values of n and p

p = 10, n = 50 p = 12, n = 52 p = 14, n = 54

GNIG 1.94×10−7 1.41×10−7 8.81×10−8

M2GNIG 1.25×10−11 3.84×10−12 2.61×10−12

M3GNIG 1.06×10−14 2.54×10−15 1.26×10−15

GNIGnew 2.66×10−8 1.62×10−8 1.06×10−8

M2GNIGnew 8.90×10−12 3.73×10−12 1.76×10−12

M3GNIGnew 2.69×10−15 7.82×10−16 2.71×10−16

We may see how the near-exact distributions developed using the decomposition technique
described in this paper have an even better behaviour than the previously developed and already
well-fit near-exact distributions, both for small and large sample sizes, displaying a good asymp-
totic behaviour both for increasing sample size and increasing number of variables.

3.3. Generalized sphericity tests

Other tests to which the authors intend to apply the approach proposed in this paper are extended
versions of the sphericity test, which we may call the ‘multi-sample scalar-block sphericity test’
and the ‘multi-sample matrix-block sphericity test’.

For the multi-sample scalar-block sphericity test we have

H0 : �1 = · · · = �q =
⎡
⎢⎣

σ 2
1 Ip1 0

. . .
0 σ 2

k Ipk

⎤
⎥⎦ (19)

with

H0 ≡ H03|1,2 ◦ H02|1 ◦ H01,

where

H01 : �1 = · · · = �q,

H02|1 : � = diag(�11, . . . , �kk)

given that �1 = · · · = �q = �,

where � is of dimensions p×p, while �ii (i = 1, . . . , k) of dimensions pi×pi is the ith diagonal
block of �, with p =∑k

i=1 pi , and
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H03|1,2 : �ii = σ 2
i Ipi

for i = 1, . . . , k

given that � = diag(�11, . . . , �kk) and
given that �1 = · · · = �q = �,

so that we may write the l.r.t. statistic to test H0 in (19), for N = N1 + · · · + Nq as

� = �1(q, p; Nj)�2(N; p1, . . . , pk)

k∏
i=1

�3(pi; N) . (20)

Since, under H0 in (19), it is possible to prove the independence of all the statistics in (20) and
since factorizations of the type in (5) are available for the c.f.s of the logarithms of all the statistics
in (20) [6,7,9,22], the process of obtaining near-exact distributions for the l.r.t. statistic for this
test may be implemented by using the approach proposed in this paper.

Concerning the multi-sample matrix-block sphericity test, its null hypothesis may be written
as

H0 : �1 = · · · = �q = � ⊗ Ik

⎛
⎜⎝=

⎡
⎢⎣

� 0
. . .

0 �

⎤
⎥⎦
⎞
⎟⎠ (21)

with

H0 ≡ H03|1,2 ◦ H02|1 ◦ H01,

where

H01 : �1 = · · · = �q (= �),

H02|1 : � = diag(�11, . . . , �kk)

given that �1 = · · · = �q (= �),

where � is of dimensions p×p, while �ii (i = 1, . . . , k) of dimensions p∗×p∗ is the ith diagonal
block of �, with p = kp∗, and

H03|1,2 : �11 = · · · = �kk(= �)

given that � = diag(�11, . . . , �kk) and
given that �1 = · · · = �q = �,

so that we may write the l.r.t. statistic to test H0 in (21), for N = N1 + · · · + Nq as

� = �1(q, p; Nj)�2(N; p∗, . . . , p∗︸ ︷︷ ︸
k

)�1(k, p∗; N) . (22)

Since, under H0 in (21), it is possible to prove the independence of all the statistics in (22) and
since factorizations of the type in (5) are available for the c.f.s of the logarithms of all the statistics
in (22) [6,7,22], the process of obtaining near-exact distributions for the l.r.t. statistic for this test
may once again be implemented by using the approach proposed in this paper.

4. Final remarks

The use of the decomposition approach developed in this paper not only enables us to build
very accurate and manageable near-exact approximations to the exact distribution of the overall
test statistics but also concomitantly enables us to easily overcome the problems of controlling
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statistical errors (in particular the error of the first kind), which arise when we have to test
sequentially the partial hypotheses. Now we may easily compute near-exact quantiles which
enable us to carry the overall test in just one step, avoiding this way the problems brought to our
attention by [17] and avoiding also the need for any corrections of the first kind error level, like
Sidak’s correction [26,27].

We may even plan to go beyond the tests presented in the previous section, namely those
in Section 3, with virtually no limit, by adequately nesting the three elementary multivariate
likelihood ratio tests (referred at the beginning of the previous section). In every case we will
still be able to obtain near-exact distributions for the overall test statistics, in situations where the
construction of well-fit asymptotic distributions, using the usual techniques, is too complicated
or even virtually impossible.
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