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Voltage dependent anion channel (VDAC) was identified in 1976 and since that time has been extensively
studied. It is well known that VDAC transports metabolites across the outer mitochondrial membrane. The
simple transport function is indispensable for proper mitochondria functions and, consequently for cell
activity, and makes VDAC crucial for a range of cellular processes including ATP rationing, Ca2+ homeostasis
and apoptosis execution. Here, we review recent data obtained for Saccharomyces cerevisiae cells used as a
model system concerning the putative role of VDAC in communication between mitochondria and the
nucleus. The S. cerevisiae VDAC isoform known as VDAC1 (termed here YVDAC) mediates the cytosol
reduction/oxidation (redox) state that contributes to regulation of expression and activity of cellular
proteins including proteins that participate in protein import into mitochondria and antioxidant enzymes.
Simultaneously, copper-and-zinc-containing superoxide dismutase (CuZnSOD) plays an important role in
controlling YVDAC activity and expression levels. Thus, it is proposed that VDAC constitutes an important
component of a regulatory mechanism based on the cytosol redox state.
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1. Introduction
Tight coordination between the nucleus and mitochondria is
required for proper mitochondrial functioning and includes both
anterograde (nucleus to mitochondria) and retrograde (mitochondria
to nucleus) signals [1–5]. The anterograde mechanisms coordinate
gene expression in mitochondria in response to endogenous and
environmental signals that are perceived by the nucleus, whereas
retrograde mechanisms transmit signals that originate in mitochon-
dria to regulate nuclear gene expression, which can then modify
anterograde control. Signals relevant to the retrograde mechanisms
can involve reactive oxygen species (ROS) generated and released by
mitochondria because the ROS release contributes to intracellular
reduction/oxidation (redox) homeostasis and to the regulation of
signaling cascades [6–10]. However, when the release evades or
overcomes cell defences, ROS can damage a wide range of macro-
molecules in the cell, including nucleic acids, proteins and lipids,
eventually leading to cell dysfunction and death [8,11–13].

The ROS generated and released by mitochondria are mainly by-
products of cellular energy transformation performed by the mito-
chondrial respiratory chain. The best known ROS originating from
mitochondria are superoxide anion (O2
•−) and hydrogen peroxide

(H
2
O
2
), a product of O

2
•− dismutation. A fundamental defence against

O2
•− is superoxide dismutase (SOD) present in eukaryotic cells as a

manganese-containing enzyme (MnSOD or SOD2) located in the
mitochondrial matrix and as a copper-and-zinc-containing enzyme
(CuZnSOD or SOD1) located in different cell types in various
compartments including cytosol and the intermembrane space of
mitochondria [8,14–18]. Both MnSOD and CuZnSOD catalyze dis-
mutation of O2

•− to molecular oxygen and H2O2 that can be converted
to water by other antioxidant enzymes or to the hydroxyl radical in
the presence of some transitionmetals [19]. However, it is also known
that CuZnSOD is able to catalyze nitration of protein tyrosines [20] and
has peroxidase [21] and thiol oxidase [22] activities. Thus, MnSOD and
CuZnSOD display both protective and pro-oxidant properties,
depending on existing conditions [23–25]. Consequently, excessive
or deficient activity of MnSOD and CuZnSOD may be involved in
etiology of some diseases.

It has been shown that H2O2 diffuses rapidly through membranes
[26] and its release from mitochondria to the cytosol reflects the
balance between its production and consumption reactions [6].
However, O2

•− is generally membrane-impermeable [27,28] and
exits mitochondria via channels of the outer mitochondrial mem-
brane, namely the channel of the TOM complex [29] and VDAC [6]. The
TOM complex (translocase of the outer mitochondrial membrane) is a
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part of the mitochondrial protein import machinery (for reviews see,
for example, [30–33]). VDAC (voltage dependent anion channel), the
main channel of the outer mitochondrial membrane, is also known
as mitochondrial porin (for reviews see, for example, [34–39]). Phys-
iologically, VDAC functions as a major channel allowing passage of
metabolites between the intermembrane space of mitochondria
and the cytosol. The channel may be present as isoforms encoded
by separated genes, displaying different channel-forming activities
and probably playing different roles. It has been shown that VDAC
plays a crucial role in ATP rationing, Ca2+ homeostasis, and apoptosis
execution. This review will consider VDAC involvement in the deter-
mination of the intracellular redox states important for the redox
regulation of cellular protein expression and activity. The discussed
data refer to Saccharomyces cerevisiae cells used as a model system.
The involvement of VDAC in the regulatory process is consistent
with data pointing at VDAC as an important element of intracellular
signaling [3,40].

2. The yeast S. cerevisiae as a model system to study the
involvement of VDAC in redox mechanisms

The yeast S. cerevisiae is a convenient model to investigate the func-
tional relationship between VDAC, the redox states of cell compart-
ments (e.g., mitochondria and cytosol) and expression levels and/or
activity of cellular proteins. Firstly, S. cerevisiae mitochondria express
two VDAC isoforms, of which only one has been proved to form a
channel [41]. The VDAC isoform encoded by the POR1 gene is called
VDAC1 (or porin 1) and its properties are highly conserved in other
species. The secondVDAC protein of still unknown function, encoded by
the POR2 gene, is called VDAC2 (or porin 2) and does not display a
channel-forming activity. To emphasize the difference between the
mammalian and yeast VDAC2 the term YVDAC2 is used here for the
yeast protein. Since only VDAC1 forms channels in S. cerevisiae mito-
chondria, the protein is termed here YVDAC. The presence of only one
channel-forming VDAC isoform in S. cerevisiae mitochondria simplifies
studies of the channel. Secondly, depletion of YVDAC or YVDAC2 (Δpor1
and Δpor2 mutants, respectively) distinctly affects the metabolite
passage across the outermembrane of S. cerevisiaemitochondria [42,43]
aswell as expression levels of some of themembrane proteins and their
encoding mRNAs [44,45]. Thirdly, wild type and a given VDAC isoform
mutant of S. cerevisiae display differences in the cytosol and mito-
chondrial redox states. The redox states coincide with the level of O2•

−

release from mitochondria and can be imitated by modification of
growth conditions of the cells by addition of anoxidant or antioxidant to
the growthmedium, depending on the strain studied [10,29,46]. There-
fore S. cerevisiae is a convenient model to study the activity and/or
expression levels of cellular proteins under conditions of differentiated
redox states of the cytosol and mitochondria.

3. Proper function of VDAC requires the presence of CuZnSOD

As mentioned in the Introduction, superoxide dismutases (SOD)
are fundamental components of the defence system against O2•

−

generated mainly by mitochondrial respiration. The defence, among
other effects, protects proteins against oxidation damage. Interest-
ingly, it has been reported for S. cerevisiae that one of the protected
proteins is YVDAC that is highly sensitive to oxidative damage [18,47].
Moreover, it is known that in S. cerevisiae cells CuZnSOD accounts for
90–95% of the total SOD activity and, consequently, a phenotype of
SOD1-deleted mutant (Δsod1) is much more pronounced than that of
SOD2-deleted one (Δsod2) [18,48]. Accordingly, it has been reported
that CuZnSOD plays an important role in controlling YVDAC channel
activity and expression levels [49]. As determined by a reconstituted
system, lack of proper CuZnSOD activity in S. cerevisiae cells promotes
YVDAC closing and decreases the voltage dependence of the channel.
The data points at an impairment of YVDAC gating mechanism. It
has similarly been shown for mouse VDAC2 isoform that mutation
neutralizing the voltage sensor results in a channel that lacks voltage
gating and displays lower conductance [50]. VDAC gating is currently
regarded as the major mechanism of the outer mitochondrial mem-
brane permeability control [51]. Thus, in the absence of a functional
CuZnSOD the control might be severely affected. This in turn, probably
imposes distinct effects on metabolite exchange between mitochon-
dria and the cytosol.

It is also known that CuZnSOD plays an important role in main-
taining a normal replicative life span of S. cerevisiae [48]. Therefore, it
could be hypothesized that the substantial shortening of the rep-
licative life span observed for Δsod1 mutants may result from dis-
turbed functioning of mitochondria caused by improper permeability
of the outer membrane due to impairment of YVDAC function. Alter-
natively, the lower conductance states of YVDAC could protect the
mutant cells against O2

•− release from the intermembrane space of
mitochondria to the cytosol via VDAC. Thus, VDAC might serve as a
sensor for mitochondrial O2

•− levels. It can be speculated that the
sensing mechanism probably consists in a VDAC protein modification
by the O2

•− not dismutated by CuZnSOD. The possibility of the modi-
fication would increase in the presence of higher O2

•− release from
mitochondria, which in turn would increase the likelihood of VDAC
gating impairment resulting in lower conductance states of VDAC.
Consequently, smaller amounts of O2

•− would be released from the
intermembrane space of mitochondria to the cytosol via VDAC. This
effect could be protective in cases of excessive O2

•− release but could
also perturb mitochondria-dependent redox signaling [52]. On the
other hand the substantial shortening of the replicative life span
reported for S. cerevisiae cells depleted of CuZnSOD may result from
reduction in YVDAC levels in mitochondria [49]. A moderate decrease
in VDAC levels is also observed for mitochondria of mice deficient in
CuZnSOD [53]. VDAC deficiency has been reported to result in mito-
chondriopathy [54,55] that in turn makes cells susceptible to stress
and aging [56]. It cannot be excluded that the reduction in VDAC levels
in mitochondria may result from oxidative damage caused by the
absence of a functional CuZnSOD and subsequent degradation [53].
However, it is also possible that the reduction is caused by an im-
pairment of YVDAC import machinery because it has been shown for
S. cerevisiae that depletion of CuZnSOD also affects levels of the outer
mitochondrial membrane proteins crucial for VDAC import into mito-
chondria [49], namely the TOM complex and the TOB/SAM complex
(for reviews see, for example, [30–33]). Interestingly, the expression
levels of subunits of TOM and TOB/SAM complexes are influenced by
YVDAC [10,46]. Therefore the changed functioning of VDAC in the
absence of CuZnSOD may affect the expression levels of the
components of the VDAC import machinery that in turn influences
VDAC levels in mitochondria. Interestingly, it has been reported
recently that VDAC level is important for a mechanism playing a
causal role in oxidative stress-induced apoptosis [57].

4. VDAC mediates the redox state of the cytosol and mitochondria

The cytosol and mitochondria redox states in S. cerevisiae cells
change during their growth [10,46,58]. The latest data indicates that
the redox states are also distinctly influenced by the deletion of a
given VDAC isoform. It has been reported that exponentially and
stationary growing S. cerevisiae cells depleted of YVDAC or YVDAC2
(Δpor1 and Δpor2, respectively) display differences in values of the
cytosol andmitochondria redox states when compared to the isogenic
wild type and to each other [10,46]. Accordingly, the activities of the
cytosol (CuZnSOD, catalase) and mitochondrial (MnSOD, glutathione
peroxidase and glutathione reductase) antioxidant enzymes are also
influenced by the absence of either yeast VDAC isoform and coincide
with the observed changes of the redox states [46]. In general, the
redox state shift towards oxidation results in an increase in the
enzyme activities, whereas the redox state change towards reduction



Fig. 1. Strategy applied in experiments concerning role of VDAC in reduction/oxidation
mechanism.

Fig. 2. Schematic diagram of VDAC mediated reduction/oxidation mechanism involved
in regulation of expression and activity of mitochondrial proteins.
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decreases these activities. Intriguingly, the expression levels of
MnSOD and CuZnSOD are also influenced by the deletion of a given
yeast VDAC isoform [10,46]. Since antioxidant enzymes protect cells
against dangerous changes of redox states contributing simultaneous-
ly to the existing redox states and the expression levels and activities
of the cytosol and mitochondrial antioxidant enzymes are influenced
by the absence of either yeast VDAC isoform, it could be concluded
that VDAC influences the redox states of the cytosol and mitochon-
dria. Moreover, at least partially, the effect of VDAC in S. cerevisiae cells
does not depend on its channel activity.

Regarding differences concerning the cytosol and mitochondria
redox states observed for wild type, Δpor1 and Δpor2 cells, it is sug-
gested that the redox state of the cytosol is mainly mediated by YVDAC,
although YVDAC2 has a quantitative effect as well, whereas the redox
state of mitochondria depends on the presence of both YVDAC and
YVDAC2 [46]. Interestingly, the direction of the redox state shift during
cell growth (i.e., towards oxidation or reduction) is the same in
mitochondria and the cytosol only in the presence of YVDAC2. It is
therefore proposed that YVDAC2 is also necessary for the coordination
of the redox state levels between mitochondria and the cytosol. These
observations implicate two kinds of mechanisms of VDAC effects on the
redox state in S. cerevisiae cells: a non-channel and a channel-based one
[46]. Both are probably important for communication between mito-
chondria and the nucleus [3]. However, it should be remembered that
the cytosol redox state may be also influenced by other cell processes
and organelles. For example, it is well know that the endoplasmic
reticulum participates in intracellular redox homeostasis [59]. Consis-
tently, VDAC has been also detected in the endoplasmic reticulum
membranes [60], however, its role in the redox state controlling is not
known. It is also still unclear how YVDAC and YVDAC2 contribute to the
redox states of the cytosol and mitochondria. It can be speculated that
they transport metabolites that participate in the determination of the
redox states. Interestingly, the differences in the cytosol redox states
observed for wild type, Δpor1 and Δpor2 cells coincide with the dif-
ferences in the levels of O2

•− release from their mitochondria [10,29].
The levels of the release may be modified by the activity of CuZnSOD
located in themitochondrial intermembrane space, as it has beenshown
that activity of the enzyme depends on the presence of a given yeast
VDAC isoform [10].

5. The cytosol redox state is crucial for the expression levels of
mitochondrial proteins

The intracellular redox states denote redox states of cell compart-
ments, e.g., the cytosol and mitochondria. Interestingly, it has been
reported that S. cerevisiae cells depleted of YVDAC or YVDAC2 (Δpor1
and Δpor2, respectively) display differences in levels of O2

•− release
frommitochondria that coincide with differences in the cytosol redox
state [10,29]. Simultaneously, the cells differ in the expression levels
of subunits of the TOM and TOB/SAM complexes, i.e., Tom70, Tom40
and Tob55/Sam50 [10,44–46]. Since the intracellular redox states are
known to affect expression, stability, localization, accessibility,
interactions and activity of proteins [3,4,7], it has been proposed
that the cytosol redox state modulates the expression levels of
subunits of the TOM and TOB/SAM complexes in S. cerevisiae mito-
chondria [46]. To verify this hypothesis, the relations between the
calculated cytosol and mitochondria redox states and the expression
levels of Tom70, Tom40 and Tob55/Sam50 were analyzed for wild
type, Δpor1 and Δpor2 mitochondria isolated from cells in the expo-
nential, stationary and modified exponential growth phases [46]. The
latter denotes an exponential growth phase modified toward the
stationary growth phase with regard to the cytosol and mitochondria
redox states. For the modification, an oxidant or an antioxidant were
added to a given cell culture at the early exponential growth phase
and cells were grown until standard exponential phase [46]. The
applied experimental strategy is summarized in Fig. 1. It has been
shown that modifications of the cytosol redox state, but not the
mitochondria one, towards a given status trigger the expected
changes of the expression levels of Tom70, Tom40 and Tob55/
Sam50. It means that the modification of the exponential growth
phase toward stationary growth phase with regard to the cytosol
redox state results in the expression levels of the studied proteins in
mitochondria typical for the stationary growth phase. The expression
of the studied proteins increases when the cytosol redox state
becomes more oxidized although the oxidation may occur in different
growth phases, depending on the S. cerevisiae strain studied. More-
over, in the case of Tom proteins and Tob55/Sam50, effects of inhi-
bitors of transcription and translation support the important role of
the cytosol redox state in the regulation of expression of these
proteins (unpublished results). Interestingly, MnSOD and CuZnSOD in
cytosol seem to share the mechanism of expression regulation with
Tom70, Tom40 and Tob55 [46]. Thus, the mechanism is not confined
to subunits of the protein import machinery of the outer mitochon-
drial membrane. Therefore, it could be suggested that the cytosol
redox state may influence the activity of cytoplasmic regulatory
proteins and/or nuclear transcription factors responsible for the
expression levels of mitochondrial proteins encoded by nuclear genes.
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Thus, the cytosol redox state participates in communication between
mitochondria and the nucleus.

6. Implications for the redox mechanism mediated by VDAC

The changes of the expression levels of mitochondrial proteins
triggered by the redox mechanism mediated mainly by YVDAC are
crucial for mitochondrial functions. For example, changes of the
expression levels of the TOM complex subunits, i.e., Tom proteins,
may contribute to supplementary functions of the complex. Accord-
ingly, it has been reported that the expression level of Tom40, a crucial
subunit of the TOM complex, correlates with the complex involve-
ment in metabolite transport across the outer membrane as well as
with levels of O2

•− release from S. cerevisiae mitochondria [29,44,61].
In the case of S. cerevisiae, the TOM complex may serve as a supple-
mentary pathway for metabolites across the outer membrane, even
in the presence of YVDAC, although the role of the TOM complex
increases when YVDAC is depleted. Similarly, the involvement of the
TOM complex in O2

•− release from S. cerevisiae mitochondria is
enhanced in the absence of YVDAC but also occurs in the presence of
the isoform, particularly under conditions that trigger high levels of
O2

•− release. On the other hand, the cytosol redox state mediated
mainly by YVDAC is important for the regulation of levels of mRNA
encodingnot only Tomproteins but also other proteins that participate
in protein import into mitochondria, as well as proteins that are
involved in mitochondria distribution and morphology, the mito-
chondria/nucleus communication and antioxidant activity (unpub-
lished results). Simultaneously, CuZnSOD, a fundamental defence
against O2

•− contributes to YVDAC proper activity and expression
levels [49]. The putative role of VDAC in redoxmechanism involved in
regulation of expression and activity of mitochondrial proteins is
summarized in Fig. 2. In conclusion, taking into account the data
obtained for the model system of S. cerevisiae cells, it is proposed that
VDAC is an important element of a protein network that control
functions of mitochondria by contributing to the cytosol redox state
and/or by sensing the redox state. This is in agreement with the
growing number of data showing that VDAC is a dynamic regulator, or
even governor, of mitochondrial functions [39,42,51]. Consistently, it
has been shown that VDAC can be regarded as a candidate for effective
pharmacological treatment, for example in anticancer therapy [62,63].

References

[1] J.F. Allen, The function of genomes in bioenergetic organelles, Philos. Trans. R. Soc.
Lond. B Biol. Sci. 358 (2003) 19–37.

[2] R.A. Butow, N.G. Avadhani, Mitochondrial signaling: the retrograde response, Mol
Cell. 14 (2004) 1–15.

[3] P. Pesaresi, A. Schneider, T. Kleine, D. Leister, Interorganellar communication,
Curr. Opin. Plant Biol. 10 (2007) 600–606.

[4] J.D. Woodson, J. Chory, Coordination of gene expression between organellar and
nuclear genomes, Nat. Rev. Genet. 9 (2008) 383–395.

[5] G. Cannino, C.M. Di Liegro, A.M. Rinaldi, Nuclear–mitochondrial interaction,
Mitochondrion 7 (2007) 359–366.

[6] D. Han, F. Antunes, R. Canali, D. Rettori, E. Cadenas, Voltage-dependent anion
channels control the release of the superoxide anion from mitochondria to
cytosol, J. Biol. Chem. 278 (2003) 5557–5563.

[7] H. Liu, R. Colavitti, I.I. Rovira, T. Finkel, Redox-dependent transcriptional
regulation, Circ. Res. 97 (2005) 967–974.

[8] P. Storz, Reactive oxygen species-mediated mitochondria-to-nucleus signaling: a
key to aging and radical-caused diseases, Sci STKE (2006) re3.

[9] T. Finkel, Intracellular redox regulation by the family of small GTPases, Antioxid.
Redox Signal. 8 (2006) 1857–1863.

[10] M. Budzinska, H. Galganska, M. Wojtkowska, O. Stobienia, H. Kmita, Effects of
VDAC isoforms on CuZn-superoxide dismutase activity in the intermembrane
space of Saccharomyces cerevisiaemitochondria, Biochem. Biophys. Res. Commun.
357 (2007) 1065–1070.

[11] M.R. Duchen, Roles of mitochondria in health and disease, Diabetes 53 (Suppl 1)
(2004) S96–S102.

[12] M. Monsalve, S. Borniquel, I. Valle, S. Lamas, Mitochondrial dysfunction in human
pathologies, Front Biosci. 12 (2007) 1131–1153.

[13] A.A. Fatokun, T.W. Stone, R.A. Smith, Oxidative stress in neurodegeneration and
available means of protection, Front Biosci. 13 (2008) 3288–3311.
[14] J. St-Pierre, J.A. Buckingham, S.J. Roebuck, M.D. Brand, Topology of superoxide
production from different sites in the mitochondrial electron transport chain,
J. Biol. Chem. 277 (2002) 44784–44790.

[15] V.C. Culotta, M. Yang, T.V. O'Halloran, Activation of superoxide dismutases:
putting the metal to the pedal, Biochim. Biophys. Acta 1763 (2006) 747–758.

[16] P. Jezek, L. Hlavatá, Mitochondria in homeostasis of reactive oxygen species in cell,
tissues, and organism, Int. J. Biochem. Cell Biol. 37 (2005) 2478–2503.

[17] L.A. Sturtz, K. Diekert, L.T. Jensen, R. Lill, V.C. Culotta, A fraction of yeast Cu,
Zn-superoxide dismutase and its metallochaperone, CCS, localize to the
intermembrane space of mitochondria. A physiological role for SOD1 in
guarding against mitochondrial oxidative damage, J. Biol. Chem. 276 (2001)
38084–38089.

[18] K.M. O'Brien, R. Dirmeier, M. Engle, R.O. Poyton, Mitochondrial protein oxidation
in yeast mutants lacking manganese-(MnSOD) or copper- and zinc-containing
superoxide dismutase (CuZnSOD): evidence that MnSOD and CuZnSOD have both
unique and overlapping functions in protecting mitochondrial proteins from
oxidative damage, J. Biol. Chem. 279 (2004) 51817–51827.

[19] S.J. Stohs, D. Bagchi, Oxidative mechanisms in the toxicity of metal ions, Free
Radic. Biol. Med. 18 (1995) 321–336.

[20] J.S. Beckman, Oxidative damage and tyrosine nitration from peroxynitrite, Chem.
Res. Toxicol. 5 (1996) 836–844.

[21] S.Z. Potter, J.S. Valentine, The perplexing role of copper-zinc superoxide dismutase
in amyotrophic lateral sclerosis (Lou Gehrig's disease), J. Biol. Inorg. Chem.
8 (2003) 373–380.

[22] C.C. Winterbourn, A.V. Peskin, H.N. Parsons-Mair, Thiol oxidase activity of copper,
zinc superoxide dismutase, J. Biol. Chem. 277 (2002) 1906–1911.

[23] R.M. Tamimi, S.E. Hankinson, D. Spiegelman, G.A. Colditz, D.J. Hunter, Man-
ganese superoxide dismutase polymorphism, plasma antioxidants, cigarette
smoking, and risk of breast cancer, Cancer Epidemiol. Biomarkers Prev. 13
(2004) 989–996.

[24] V. Lushchak, H. Semchyshyn, S. Mandryk, O. Lushchak, Possible role of superoxide
dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions,
Arch. Biochem. Biophys. 441 (2005) 35–40.

[25] G. Goldsteins, V. Keksa-Goldsteine, T. Ahtoniemi, M. Jaronen, E. Arens, K. Akerman,
P.H. Chan, J. Koistinaho, Deleterious role of superoxide dismutase in the
mitochondrial intermembrane space, J. Biol. Chem. 283 (2008) 8446–8452.

[26] F. Antunes, E. Cadenas, Estimation of H2O2 gradients across biomembranes, FEBS
Lett. 475 (2000) 121–126.

[27] R.A. Gus'kova, I.I. Ivanov, V.K. Kol'tover, V.V. Akhobadze, A.B. Rubin, Permeability
of bilayer lipid membranes for superoxide (O2

−.) radicals, Biochim. Biophys. Acta
778 (1984) 579–585.

[28] D. Han, E. Williams, E. Cadenas, Mitochondrial respiratory chain-dependent
generation of superoxide anion and its release into the intermembrane space,
Biochem. J. 353 (2001) 411–416.

[29] M. Budzińska, H. Gałgańska, A. Karachitos, M. Wojtkowska, H. Kmita, The TOM
complex is involved in the release of superoxide anion from mitochondria,
J. Bioenerg. Biomembr. 41 (2009) 361–367.

[30] P. Dolezal, V. Likic, J. Tachezy, T. Lithgow, Evolution of the molecular machines for
protein import into mitochondria, Science 313 (2006) 314–318.

[31] M. Bohnert, N. Pfanner, M. van der Laan, A dynamic machinery for import of
mitochondrial precursor proteins, FEBS Lett. 581 (2007) 2802–2810.

[32] T. Becker, F.N. Vögtle, D. Stojanovski, C. Meisinger, Sorting and assembly of
mitochondrial outer membrane proteins, Biochim. Biophys. Acta 1777 (2008)
557–563.

[33] D. Mokranjac, W. Neupert, Thirty years of protein translocation into mitochon-
dria: unexpectedly complex and still puzzling, Biochim. Biophys. Acta 1793
(2009) 33–41.

[34] R. Benz, Permeation of hydrophilic solutes through mitochondrial outer
membranes: review on mitochondrial porins, Biochim. Biophys. Acta 1197
(1994) 167–196.

[35] E. Blachly-Dyson, M. Forte, VDAC channels, IUBMB Life 52 (2001) 113–118.
[36] V.DePinto, A.Messina, R. Accardi,R. Aiello, F. Guarino,M.F. Tomasello,M. Tommasino,

G. Tasco, R. Casadio, R. Benz, F.DeGiorgi, F. Ichas,M. Baker, A. Lawen,New functionsof
an old protein: the eukaryotic porin or voltage dependent anion selective channel
(VDAC), Ital. J. Biochem. 52 (2003) 17–24.

[37] M. Colombini, VDAC: the channel at the interface between mitochondria and the
cytosol, Mol. Cell. Biochem. 256–257 (2004) 107–115.

[38] V. Shoshan-Barmatz, N. Keinan, H. Zaid, Uncovering the role of VDAC in the
regulation of cell life and death, J. Bioenerg. Biomembr. 40 (2008) 183–191.

[39] C.A. Mannella, K.W. Kinnally, Reflections on VDAC as a voltage-gated channel and
a mitochondrial regulator, J. Bioenerg. Biomembr. 40 (2008) 149–155.

[40] J.J. Lemasters, E. Holmuhamedov, Voltage-dependent anion channel (VDAC) as
mitochondrial governator—thinking outside the box, Biochim. Biophys. Acta 1762
(2006) 181–190.

[41] E. Blachly-Dyson, J. Song, W.J. Wolfgang, M. Colombini, M. Forte, Multicopy
suppressors of phenotypes resulting from the absence of yeast VDAC encode a
VDAC-like protein, Mol. Cell. Biol. 17 (1997) 5727–5738.

[42] A. Lee, X. Xu, E. Blachly-Dyson, M. Forte, M. Colombini, The role of yeast VDAC
genes on the permeability of the mitochondrial outer membrane, J. Membr. Biol.
161 (1998) 173–181.

[43] H. Kmita, O. Stobienia, J. Michejda, The access of metabolites into yeast
mitochondria in the presence and absence of the voltage dependent anion
selective channel (YVDAC1), Acta Biochim. Pol. 46 (1999) 991–1000.

[44] N. Antos, M. Budzińska, H. Kmita, An interplay between the TOM complex and
porin isoforms in the yeast Saccharomyces cerevisiae mitochondria, FEBS Lett. 500
(2001) 12–16.



1280 H. Galganska et al. / Biochimica et Biophysica Acta 1797 (2010) 1276–1280
[45] H. Kmita, N. Antos, M. Wojtkowska, L. Hryniewiecka, Processes underlying the
upregulation of Tom proteins in S. cerevisiae mitochondria depleted of the VDAC
channel, J. Bioenerg. Biomembr. 36 (2004) 187–193.

[46] H. Galganska, M. Budzinska, M. Wojtkowska, H. Kmita, Redox regulation of
protein expression in Saccharomyces cerevisiae mitochondria: possible role of
VDAC, Arch. Biochem. Biophys. 479 (2008) 39–45.

[47] C.F. Mello, R. Sultana, M. Piroddi, J. Cai, W.M. Pierce, J.B. Klein, D.A. Butterfield,
Acrolein induces selective protein carbonylation in synaptosomes, Neuroscience
147 (2007) 674–679.

[48] J.Wawryn,A. Swieciło,G.Bartosz, T. Biliński, Effect of superoxidedismutasedeficiency
on the life spanof the yeast Saccharomyces cerevisiae. Anoxygen-independent roleof
Cu, Zn-superoxide dismutase, Biochim. Biophys. Acta 1570 (2002) 199–202.

[49] A. Karachitos, H. Galganska,M.Wojtkowska,M. Budzinska, O. Stobienia, G. Bartosz,
H. Kmita, Cu, Zn-superoxide dismutase is necessary for proper function of VDAC in
Saccharomyces cerevisiae cells, FEBS Lett. 583 (2009) 449–455.

[50] A.G. Komarov, D. Deng,W.J. Craigen,M. Colombini, New insights into themechanism
of permeation through large channels, Biophys. J. 89 (2005) 3950–3959.

[51] T.K. Rostovtseva, S.M. Bezrukov, VDAC regulation: role of cytosolic proteins and
mitochondrial lipids, J. Bioenerg. Biomembr. 40 (2008) 163–170.

[52] K. Chen, S.R. Thomas, A. Albano, M.P. Murphy MP, J.F.J. Keaney, Mitochondrial
function is required for hydrogen peroxide-induced growth factor receptor
transactivation and downstream signaling, J. Biol. Chem. 279 (2004) 35079–35086.

[53] S. Elchuri, T.D. Oberley, W. Qi, R.S. Eisenstein, L. Jackson Roberts, H. Van Remmen,
C.J. Epstein, T.T. Huang, CuZnSOD deficiency leads to persistent and widespread
oxidativedamageandhepatocarcinogenesis later in life,Oncogene24(2005)367–380.

[54] M. Huizing, W. Ruitenbeek, F.P.V. DePinto, U. Wendel, F.J. Trijbels, L.M. Smit,
H.J. ter Laak, L.P. van den Heuvel, Deficiency of the voltage-dependent anion
channel: a novel cause of mitochondriopathy, Pediatr. Res. 39 (1996) 760–765.
[55] V. De Pinto, A. Messina, A. Schmid, S. Simonetti, F. Carnevale, R. Benz, Char-
acterization of channel-forming activity in muscle biopsy from a porin-deficient
human patient, J. Bioenerg. Biomembr. 32 (2000) 585–593.

[56] L.J. Martin, Mitochondriopathy in Parkinson disease and amyotrophic lateral
sclerosis, J. Neuropathol. Exp. Neurol. 65 (2006) 1103–1110.

[57] F. Tomasello, A. Messina, L. Lartigue, L. Schembri, C. Medina, S. Reina, D. Thoraval,
M. Crouzet, F. Ichas, V. De Pinto, F. De Giorgi, Outer membrane VDAC1 controls
permeability transition of the inner mitochondrial membrane in cellulo during
stress-induced apoptosis, Cell Res. 19 (2009) 1363–1376.

[58] T. Drakulic,M.D. Temple, R. Guido, S. Jarolim,M. Breitenbach, P.V.Attfield, I.W.Dawes,
Involvement of oxidative stress response genes in redox homeostasis, the level of
reactive oxygen species, and ageing in Saccharomyces cerevisiae, FEMS Yeast Res. 5
(2005) 1215–1228.

[59] A. Goerlach, P. Klappa, T. Kietzmann, The endoplasmic reticulum: folding, calcium
homeostasis, signaling, and redoxcontrol, Antioxid. RedoxSignal. 8 (2006)1391–1418.

[60] V. Shoshan-Barmatz, A. Israelson, The voltage-dependent anion channel in
endoplasmic/sarcoplasmic reticulum: characterization, modulation and possible
function, J. Membr. Biol. 204 (2005) 57–66.

[61] N. Antos, O. Stobienia, M. Budzińska, H. Kmita, Under conditions of insufficient
permeability of VDAC1, external NADH may use the TOM complex channel to
cross the outer membrane of Saccharomyces cerevisiae mitochondria, J. Bioenerg.
Biomembr. 33 (2001) 119–126.

[62] J.C. Lai, W. Tan, L. Benimetskaya, P. Miller, M. Colombini, C.A. Stein, A phar-
macologic target of G3139 in melanoma cells may be the mitochondrial VDAC,
Proc. Natl Acad. Sci. U. S. A. 103 (2006) 7494–7499.

[63] E. Simamura, H. Shimada, T. Hatta, K. Hirai, Mitochondrial voltage-dependent
anion channels (VDACs) as novel pharmacological targets for anti-cancer agents,
J. Bioenerg. Biomembr. 40 (2008) 213–217.


	Communication between mitochondria and nucleus: Putative role for VDAC in reduction/oxidation m.....
	Introduction
	The yeast S. cerevisiae as a model system to study the involvement of VDAC in redox mechanisms
	Proper function of VDAC requires the presence of CuZnSOD
	VDAC mediates the redox state of the cytosol and mitochondria
	The cytosol redox state is crucial for the expression levels of mitochondrial proteins
	Implications for the redox mechanism mediated by VDAC
	References




