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Eigenvalues in gaps of perturbed periodic Dirac operators:
numerical evidence
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Abstract

This paper presents a method for the numerical investigation of the distribution of the eigenvalues introduced
into a spectral gap of a periodic Dirac system by a perturbation of the type of the angular momentum term.
A number of examples illustrate the e1ectiveness of the method and show the remarkable accuracy of the
strong coupling asymptotic formula even for small values of the perturbation coupling constant. Furthermore,
the results shed some light on the spectrum in the exceptional gap of radially periodic three-dimensional Dirac
operators.
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1. Introduction

It is well known from Floquet theory (see [3]) that the one-dimensional Schr@odinger operator

− d2

dx2 + q(x) (1)

with periodic coeBcient q has a spectrum with band structure, i.e., consisting of a sequence of
intervals of purely absolutely continuous spectrum, separated in general by spectral gaps. Hempel
et al. [4,5] discovered that the associated spherically symmetric Schr@odinger operator −� + V with
V (x) = q(|x|) (x∈RN ) has intervals of pure dense point spectrum corresponding to the gaps of the
one-dimensional operator.
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Recent e1orts have very much clariHed the mechanism leading to the Hlling of spectral gaps with
eigenvalues. By a separation of variables in spherical polar coordinates, the Schr@odinger operator is
unitarily equivalent to a direct sum of one-dimensional partial-wave operators

− d2

dr2 + q(r) +
cl;N
r2 (r ∈ (0;∞));

where cl;N = l(l + N − 2) + (N − 1)(N − 3)=4, l∈N0.
Each of these half-line operators has the same essential spectrum as operator (1), with possibly

additional discrete eigenvalues in the spectral gaps. For Hxed angular momentum quantum number l,
all but a Hnite number of spectral gaps contain only Hnitely many eigenvalues. Nevertheless, in each
gap, for suBciently large l, there are inHnitely many eigenvalues accumulating at the lower end of the
gap [6–9,14]. There are no eigenvalues below the essential spectrum except in the two-dimensional
case N =2, l=0, when there are in fact inHnitely many, accumulating at the inHmum of the essential
spectrum [13]. The eigenvalues are asymptotically exponentially close to their point of accumulation
[14, Theorem 3], which accounts for the diBculty of observing even a few of them numerically
(see [1]).

Furthermore, it is known that the number of eigenvalues in a Hxed compact subinterval of a gap
grows as

√
cl;N ∼ l in the asymptotic limit l → ∞, with a factor of proportionality given by a

Weyl-type semiclassical integral in which the quasimomentum of the underlying periodic problem
takes the role of the ordinary momentum [17]. A quantitative error bound for the asymptotic formula
does not seem to be available; however, it has been observed in a numerical study [2] that it is
surprisingly accurate even for small values of l. The rapid increase in the density of eigenvalues
with growing angular momentum explains the appearance of dense point spectrum in the direct sum
of the half-line operators.

The Dirac operator

H = −i� · ∇ +  + V (x) (x∈R3)

with symmetric 4 × 4 matrices �1; �2; �3,  = �0 satisfying

�i�j + �j�i = 2�ij (i; j∈{0; 1; 2; 3})

is the analogue of the Schr@odinger operator in relativistic quantum mechanics, and one is therefore
led to expect similar spectral behaviour if the potential V has the same structure.

Unlike the Schr@odinger operator, however, the Dirac operator is always unbounded below, which
means that only part of its spectrum compares to the spectrum of the former.

Nevertheless, the relationship between the spectrum of the one-dimensional periodic Dirac operator

h = −i�2
d

dx
+ �3 + q(x);

with �2; �3 two of the Pauli matrices

�1 =
(

0 1

1 0

)
; �2 =

(
0 −i

i 0

)
; �3 =

(
1 0

0 −1

)
;
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and that of the radially periodic operator H is widely analogous to the case of Schr@odinger operators:
the absolutely continuous spectral bands are preserved, and dense point spectrum appears in the gaps
[10,12] (h has generically inHnitely many gaps [11]). The mechanism producing the eigenvalues in
gaps is also similar—H is unitarily equivalent to a direct sum of the partial-wave operators

hc = −i�2
d
dr

+ �3 + q(r) +
c
r
�1 (r ∈ (0;∞); c∈Z \{0});

and the angular momentum term (c=r)�1 only introduces discrete eigenvalues in the gaps of the
essential spectrum of hc, which coincides with the essential spectrum of h [12]. There is, however,
an essential di1erence in that the Dirac angular momentum term, as a matrix, does not have a
Hxed sign, and therefore the additional eigenvalues do not depend monotonically on c. Thus either
end-point of a spectral gap of h can be an accumulation point of eigenvalues of hc either for large
|c|, or for c in some Hnite interval only, depending on the properties of the periodic operator h at
that point (see the discussion at the end of Section 3).

This lack of monotonicity lies at the root of an open question about the structure of the essential
spectrum of H . The latter contains the set

�(h):=
⋃
l0∈R

�e(h + l0�1);

which for relatively bounded q is known to be either all of R or the complement of a subinterval of
a spectral gap of h [12, Theorem 1]. In the former case all spectral gaps are Hlled with eigenvalues,
but in the latter there is an exceptional gap which may or may not be empty. It is not known
whether H can have essential spectrum outside �(h). However, the relationship between �(h) and
the spectrum of H is made quantitative by the asymptotic formula for the number of eigenvalues of
hc in a compact subinterval [�1; �2] of a spectral gap of h,

lim
c→∞

N [�1; �2]
c

=
1
��

∫ ∞

0
(k(�2; 1=r) − k(�1; 1=r)) dr; (2)

where k(�; l0) denotes the quasimomentum of

−i�2u′ + (m�1 + l0�1 + q)u = �u;

�; l0 ∈R [16]. As the quasimomentum is constant in spectral gaps of h + l0�1, this implies that the
asymptotic eigenvalue density in the gap of �(h) is zero—which, however, does not rule out the
existence of dense point spectrum there.

It is the aim of the present paper to present an approach to a numerical estimation of the distribu-
tion of eigenvalues of Dirac systems of the type of hc. We focus on the speciHc perturbation �1c=r
because of its signiHcance for spherically symmetric Dirac operators, but our methods can easily be
applied to more general perturbations decaying at ∞. We follow the fundamental idea of Brown
et al. [2], with the additional complication of dealing with a matrix perturbation, and the fact that for
a Hrst-order ordinary di1erential equation system a careful study of the behaviour of Pr@ufer angles
must replace the counting of zeros of solutions.

In its practical implementation, we then use this method to check for the presence of eigenvalues
in the exceptional gap, and to see whether the asymptotic formula (2) gives a reasonably accurate
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prediction of the number of eigenvalues observed for Hnite values of c. The paper is organised as
follows. In Section 2 the spectral problem for the Dirac system hc inside a gap of h on the doubly
singular interval (0;∞) is reduced to an analysis of the growth of the Pr@ufer angle of solutions
on a Hnite interval, introducing a universally bounded error in the eigenvalue counts. In Section 3,
we explain how to calculate the Pr@ufer angles based on a piecewise-constant approximation of the
coeBcients, which is again controlled by a precise error estimate. Section 4 contains the numerical
results obtained for a couple of examples, and discusses their signiHcance for the questions raised
above.

2. Reduction to a regular problem

Consider the Dirac system on (0;∞)

− i�2u′(r) +
(
m(r)�3 + l(r)�1 + q(r) +

c
r
�1

)
u(r) = �u(r) (r ∈ (0;∞)); (3)

where m; l; q are �-periodic and essentially bounded, and c∈R; |c|¿ 1
2 . We wish to study the dis-

tribution of eigenvalues of (3) inside a spectral gap (�1; �2) of the periodic equation:

− i�2u′(x) + (m(x)�3 + l(x)�1 + q(x))u(x) = �u(x) (x∈R): (4)

To this end, we estimate the number of eigenvalues in the intervals [�j; �j+1), j∈{1; : : : ; K − 1}
obtained from a partitioning �1 ¡�1 ¡�2 ¡ · · ·¡�K ¡�2; as all subintervals of the resulting his-
togram are treated in the same way, we only consider the Hrst of them [�1; �2) in the following. As
will be seen below, we do not actually need to calculate any eigenvalues, as by relative oscillation
theory it will be suBcient to compare the growth of the Pr@ufer angles #1, #2 of R2-valued solutions
of (3), deHned by(

u1

u2

)
= %j

(
cos#j

sin#j

)
;

with %j ¿ 0, for � = �j, j∈{1; 2}.
We are facing the diBculty that both end-points in (3) are singular, as the perturbation has a

nonintegrable singularity at the origin. However, as we shall show presently, the Pr@ufer angles need
only be calculated on a compact subinterval of (0;∞), as the region close to 0 does not essentially
contribute to the spectrum, and the solutions behave like those of the periodic problem for suBciently
large r.

Proposition 1. Under the above hypotheses; (3) is in the limit point case at 0. Furthermore; if

rmin ¡
|c| − 1=2

max{‖q− �1‖∞; ‖q− �2‖∞} + ‖m− m0‖∞ + ‖l‖∞
for some constant m0¿ 0; then the self-adjoint operator h0 realising

− i�2
d
dr

+ m�3 + l�1 + q +
c
r
�1 (5)
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on the interval (0; rmin) with the boundary condition

u1(rmin) + u2(rmin) = 0 (6)

has no spectrum in [�1; �2].

Remark. Eq. (3) is in the limit point case at ∞ as well [18; Theorem 6.8]. We introduce the constant
m0 in order to improve the bound for rmin; obviously m0 = (supm+ inf m)=2 (if nonnegative) is the
best choice. For constant nonnegative m we then have ‖m− m0‖∞ = 0.

Proof of Proposition 1. As m�3 + l�1 + q is bounded; (3) is in the limit point case at 0 since

−i�2
d
dr

+
c
r
�1

is (even for |c|¿ 1=2) (see [12; Proof of Lemma 1]).
Therefore, h0 is essentially self-adjoint on D0 = {u∈D(h0) | u ≡ 0 near 0}. By contraposition, as-

sume that there is �∈ [�1; �2] ∩ �(h0); then for "∈ (0; 1) there is u∈D0\{0} such that
‖(h0 − �)u‖¡"‖u‖, which implies∣∣∣∣

∣∣∣∣
(
−i�2

d
dr

+ m0�3 +
c
r
�1

)
u
∣∣∣∣
∣∣∣∣6 (‖q− �‖∞ + ‖m− m0‖∞ + ‖l‖∞ + ")‖u‖:

On the other hand, an integration by parts using the boundary condition at rmin gives∣∣∣∣∣∣−i�2u′ +
(
m0�3 +

c
r
�1

)
u
∣∣∣∣∣∣2

= − m0(�1u)Tu|rmin
0 +

∫ rmin

0

(
|u′|2 +

(
m2

0 +
c2

r2

)
|u|2 +

c
r2 (�3u)Tu

)

¿m0|u(rmin)|2 +
∫ rmin

0

((
|u′|2 − 1

4r2 |u|2
)

+
(|c| − 1=2)2

r2 |u|2
)

¿
(|c| − 1=2)2

r2
min

‖u‖2;

where we have used Hardy’s inequality in the last step. For suBciently small rmin, this is a contra-
diction.

In order to treat the end-point at ∞, consider the behaviour of solutions of the unperturbed
periodic equation (4) for �∈ [�1; �2]. �1 and �2 are the end-points of an instability interval of this
equation, and thus there are �-periodic or �-semiperiodic solutions if �∈{�1; �2}. Consequently,
the corresponding Pr@ufer angles #1, #2 are �-periodic mod �, and mimicking the proof of Theorem
3.1.2 in [3] it is not diBcult to verify that they satisfy

#j(x) =
n�x
�

+ O(1) (x → ∞)

(j∈{1; 2}). Here n∈Z is the number of the instability interval. By Sturm comparison (cf
[18, Theorem 16.1]) any Pr@ufer angle of a solution of the periodic equation with �∈ [�1; �2] has
the same asymptotics, even with a uniform O(1) term.
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Thus

#1(x) =
n�x
�

+ �1(x); #2(x) =
n�x
�

+ �2(x); (x∈R)

with �-periodic �1; �2. Note that unlike the situation of Sturm–Liouville operators, where the Pr@ufer
angle has a preferred direction of growth and cannot go back across a certain threshold mod �, there
is no such restriction on the Pr@ufer angles for Dirac systems, and in particular there is no a priori
bound on �1, �2. Nevertheless, from the equation for the Pr@ufer angle,

#′ = m cos 2#− l sin 2# + q− �; (7)

we see that #1 cannot overtake #2 in the sense that #2 −#1 + m� cannot be negative to the right
of a zero for any m∈Z; it follows that if

#2 ∈ [#1 + m�;#1 + (m + 1)�)

with m∈Z at some point, then this relation is preserved throughout. Assuming m = 0 without loss
of generality, we have �16 �2 ¡�1 + �.

Turning now to the perturbed Eq. (3) with �∈ (�1; �2), we observe that the perturbation satisHes
the estimate

−|c|
r
6

c
r
�16

|c|
r

in the sense of quadratic forms, and hence, again using [18, Theorem 16.1] the Pr@ufer angle # of a
solution of the perturbed equation is caught between #1 and #2 mod � as soon as |c|=r is no greater
than the distance of � to the ends of the gap. Therefore, choosing rmax(�)¿rmin to be an integer
multiple of the period � with

rmax(�)¿
|c|

min{�− �1; �− �2} ;

we have

#(r) =
n�r
�

+ �(r) + m� (r¿ rmax(�))

with some m∈Z and either �16 �6 �2 or �26 �6 �1 + � throughout, depending on the initial
value of #. Consequently, � is bounded on [rmax(�);∞) with a bound uniform in �∈ (�1; �2).
Furthermore, considering � = �j, j∈{1; 2}, if m∈Z is such that the corresponding Pr@ufer angles
#1; #2 satisfy |#2(r)−#1(r) +m�|¡� for one r ¿max(rmax(�1); rmax(�2)), then the same holds true
for all such r.

With these relations in mind, one can obtain an estimate for the number N∞[�1; �2) of eigenval-
ues in [�1; �2) of the self-adjoint realisation h∞ of (5) on the interval [rmin;∞) with the bound-
ary condition (6) at rmin, from a knowledge of the growth of the Pr@ufer angles #j on the com-
pact intervals [rmin; rmax(�j)], j∈{1; 2}. We Hx the initial value such that #j(rmin) = 3�=4. Then
[18, Theorem 16.4] gives the bounds

lim sup
x→∞

1
�

(#2(x) − #1(x)) − 26N∞[�1; �2)6 lim inf
x→∞

1
�

(#2(x) − #1(x)) + 2:
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To keep track of the global growth of the Pr@ufer angle #j, we introduce the half-plane number Hj(x),
deHned to be the integer such that

#j(x)∈ [Hj(x)�; (Hj(x) + 1)�):

In the following, we denote by Poor(x) the largest integer not exceeding x, and by ceil(x) the
smallest integer not less than x, for x∈R. Thus, Hj(x) = Poor(#j(x)=�).

Since #j(x) − xn�=� is caught mod � between the �-periodic �1; �2, we Hnd

|Hj(rmax(�j)) − Hj(rmax(�j) + K�) − Kn|6 1 (K ∈N0):

Hence for K ∈N such that K�¿max{rmax(�1); rmax(�2)}, we Hnd

Poor
(

1
�

(#2(K�) − #1(K�))
)
6H2(rmax(�2)) − H1(rmax(�1)) +

n(rmax(�1) − rmax(�2))
�

+ 2:

As observed above, this estimate continues to hold if K� is replaced by r¿max(rmax(�1), rmax(�2)).
Similarly we have

ceil
(

1
�

(#2(r) − #1(r))
)
¿H2(rmax(�2)) − H1(rmax(�1)) +

n(rmax(�1) − rmax(�2))
�

− 2;

and hence∣∣∣∣N∞[�1; �2) −
(
H2(rmax(�2)) − H1(rmax(�1)) +

n(rmax(�1) − rmax(�2))
�

)∣∣∣∣6 4:

The self-adjoint operator hc realising (5) on the whole interval (0;∞) is a two-dimensional extension
of a two-dimensional restriction of the direct sum h0 ⊕ h∞, so the decomposition principle (cf.
[12, Lemma 6]) yields the following estimate.

Proposition 2. The number N [�1; �2) of eigenvalues in [�1; �2) of hc satis5es∣∣∣∣N [�1; �2) −
(
H2(rmax(�2)) − H1(rmax(�1)) +

n(rmax(�1) − rmax(�2))
�

)∣∣∣∣6 6:

Note that this error estimate is universal and does not depend on the position of �1; �2 in the gap.
In particular, the error does not accumulate across several adjacent subintervals in the histogram.

3. The numerical procedure

The considerations of Section 2 have reduced the problem to calculating the half-plane number
of the Pr@ufer angle of the solution of (3) on [rmin; rmax(�)] with initial condition u(a) = ( 1

−1 ) for a
given �∈ (�1; �2). Instead of numerically solving the nonlinear di1erential equation for the Pr@ufer
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angle, we make use of the fact that the Dirac system

− i�2u′ + (m0�3 + l0�1 + q0)u = �u (8)

with constant m0; l0; q0 ∈R admits an explicit solution in the form of a transfer matrix for the interval
[x; x + L],

u(x + L) =

(
cos(C; L) − l0 sin(C; L) (m0 − q0 + �)sin(C; L)

(m0 + q0 − �) sin(C; L) cos(C; L) + l0 sin(C; L)

)
u(x);

where C = l2
0 + m2

0 − (q0 − �)2, and

cos(C; L) =




cos
√−CL if C¡ 0;

1 if C = 0;

cosh
√
CL if C¿ 0;

sin(C; L) =




sin
√−CL√−C

if C¡ 0;

L if C = 0;

sinh
√
CL√

C
if C¿ 0:

At face value, this only gives the value of u(x + L) in terms of u(x), and hence just the Pr@ufer
angle mod �. However, because of the simple structure of the solutions of (8), one can also infer
the change of the global half-plane number from these data. In the elliptic case C¡ 0 the half-plane
number changes either by the even number

sgn(q0 − �)2 Poor
(
L
√−C
2�

+
1
2

)

or by the odd number

sgn(q0 − �)
(

1 + 2 Poor
(
L
√−C
2�

))

across the interval (x; x + L]; and which of the two cases applies is clear from whether u(x) and
u(x + L) lie in the same or opposite (upper or lower) half-planes of R2.

In the hyperbolic-parabolic case C¿ 0 the equation for the Pr@ufer angle (7) shows that it can
only change by less than �, as the right-hand side changes sign as # varies, thus introducing critical
points where #′=0. Consequently, the half-plane number changes by at most ±1; if u(x) and u(x+L)
are in opposite half-planes, it increases if

u1(x)u2(x + L) − u2(x)u1(x + L)¿ 0

and decreases otherwise.
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Taking these observations together and using the continuity of solutions, we can thus calculate
the solution and half-plane number for a Dirac system with piecewise constant coeBcients. Given
"¿ 0, we approximate the angular momentum term �1c=r by a piecewise constant function �1l̃(r)
such that

sup
r∈[rmin ;rmax(�)]

∣∣∣c
r
− l̃(r)

∣∣∣6 ":

As a result, we actually estimate the number of eigenvalues of the perturbed operator h̃c = hc +
�1(l̃(r) − c=r). However, these are just the eigenvalues of hc shifted by at most "; indeed, by
operator perturbation theory (cf [12, Lemma 6]) the total spectral multiplicities of hc and h̃c satisfy
the estimate

Nhc[�1 + "; �2 − ")6Nh̃c[�1; �2)6Nhc[�1 − "; �2 + "):

In particular, in the histogram of eigenvalue counts an eigenvalue shifted out of one interval will
reappear in a neighbouring interval. Thus, in conjunction with the universality of the Hrst error esti-
mate (Proposition 2), we can expect that the histogram will give a reliable picture of the eigenvalue
distribution inside the gap.

If the periodic coeBcients m; l; q are piecewise constant, we can perform the calculation as outlined
above; otherwise we replace them by piecewise constant functions invoking the same perturbation
argument.

This numerical procedure was implemented in a C++ programme which accepts piecewise con-
stant periodic coeBcients m; l; q.

The location of the nth instability interval is determined based on its characterization as the
interval in which the discriminant D of the periodic equation has absolute value larger than 2 and
the half-plane number after one period of the Pr@ufer angle with #(0) = 0 (corresponding to the
solution with u(0) = ( 1

0 ) is either n or n− 1. Furthermore, in the case of constant m¿ 0, the partial
derivatives (9=9m)D, (9=9q)D of the discriminant with respect to (constant) perturbations of the
coeBcients m and q are calculated at the end-points of the instability interval. According to the
relative oscillation–nonoscillation criterion [15], a gap end-point is [not] an accumulation point of
eigenvalues if

m�2 + 2
(
c2 9D
9m + c

9D
9q

)
¡ 0 [¿ 0]; (9)

depending on the sign of (9=9m)D, this is the case either for suBciently large c, or only on some
bounded c interval.

With a chosen "¿ 0 for the piecewise-constant approximation of the perturbation, the interval
[�1 + "; �2 − "] is divided into subintervals of equal length for the histogram. In the case l ≡ 0 we
calculate an approximation of the integral on the right-hand side of the asymptotic formula (2) for
each subinterval, in order to compare the actual number of eigenvalues from our numerical estimate
to the value given by the asymptotic formula.
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4. Examples

1. The Dirac–Meissner operator
Consider (3) with m ≡ 1, l ≡ 0 and the 2-periodic potential

q(r) =
{
a; r ∈ [0; 1) mod 2;

−a; r ∈ [1; 2) mod 2:

For a= 1, the corresponding set �(h) has a gap coinciding with the 0th gap (−0:845502; 0:845502)
of the periodic operator h (cf. [10, Section 3]); hence the asymptotic density (2) vanishes identically
in the 0th gap. Both end-points of this gap are not accumulation points of eigenvalues by criterion
(9). Eigenvalue histograms were computed by the method of Section 3 for coupling constants c =
10j (j∈{1; : : : ; 7}) and accuracy " = 0:01. In all cases one single eigenvalue was reported in the
subinterval [0:50131; 0:668402], which, however, may well be spurious in view of Proposition 2.
In any case, no signiHcant number of eigenvalues could be found in the Hrst gap, suggesting that
indeed �e = �(h) in this case.

Table 1 shows the results for the 1st gap (1:491123; 2:126314) and the 2nd gap (3:214706; 3:400224),
both with "= 0:01. For each �-subinterval, the eigenvalue counts for di1erent values of the coupling
constant c are shown; the last column gives the value of the right-hand side of the asymptotic
formula (2).

In both gaps and for all values of c considered, the lower end-point is an accumulation point of
eigenvalues while the upper end-point is not. The calculated eigenvalue counts are remarkably close

Table 1

� c = 10 100 1000 10,000 100,000 1,000,000 10,000,000 asympt. int.

1.501123 2 13 123 1230 12298 122973 1229729 0.1229728571.562642 0 5 47 476 4757 47570 475698 0.0475698491.624161 1 3 32 319 3191 31907 319074 0.0319073891.685681 0 2 25 243 2431 24315 243150 0.0243149561.747200 0 2 19 197 1969 19685 196849 0.0196849131.808719 0 2 17 166 1652 16520 165200 0.0165199921.870238 0 1 14 142 1420 14202 142024 0.0142024511.931757 1 2 13 124 1242 12426 124252 0.0124252101.993276 0 1 11 110 1102 11016 110163 0.0110162492.054795 0 1 10 99 987 9871 98708 0.0098708012.116314

3.224706 1 4 31 319 3188 31872 318731 0.3187308983.241258 0 1 19 182 1826 18263 182624 0.1826238583.257810 0 2 13 135 1354 13542 135420 0.1354192533.274362 0 1 12 110 1103 11034 110345 0.1103446573.290913 0 1 8 95 945 9444 94441 0.0944408613.307465 0 0 9 83 833 8330 83292 0.0832928283.324017 0 1 8 75 749 7495 74958 0.0749576723.340569 0 2 7 68 685 6844 68438 0.0684382033.357121 0 0 6 65 631 6317 63166 0.0631664803.373673 0 1 6 58 588 5880 58794 0.0587935583.390224
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Table 2

� c = 10 100 1000 10,000 100,000 1,000,000 10,000,000 asympt. int.

−0.048900 0 0 1 7 64 639 6408 0.00064080−0.039120 0 0 0 4 45 460 4587 0.00045864−0.029340 0 1 0 2 31 311 3109 0.00031080−0.019560 0 0 0 2 19 180 1806 0.00018061−0.009780 0 0 0 0 4 58 591 0.000059280.000000 0 1 3 3 7 61 594 0.000059280.009780 0 0 0 2 19 180 1806 0.000180610.019560 0 0 0 2 31 311 3109 0.000310800.029340 0 0 0 4 45 459 4587 0.000458640.039120 1 1 2 8 65 641 6409 0.000640800.048900

1.475555 0 0 2 9 97 967 9668 0.000966871.493040 0 0 1 10 102 1020 10210 0.001020891.510526 1 1 2 12 108 1083 10809 0.001080831.528011 0 0 1 12 115 1150 11499 0.001150001.545497 0 0 1 12 124 1236 12361 0.001236041.562982 0 0 1 14 137 1367 13668 0.001366811.580468 0 0 1 16 160 1593 15929 0.001592981.597953 0 0 2 14 140 1411 14125 0.001412401.615439 1 1 2 13 137 1367 13658 0.001365871.632925 0 0 2 14 137 1360 13595 0.001359441.650410

to the value obtained by multiplying the asymptotic integral by c in the whole range of coupling
constants.

Qualitatively similar results were obtained for the 0th, 1st and 2nd gaps for the operator with
a = 1

2 .
In the case a = 10, �(h) covers the whole real line (cf. [10]). The results of the histogram

calculation with "=0:001 for the 0th gap (−0:049900; 0:049900) and the 1st gap (1:474555; 1:651410)
are collected in Table 2. For all values of c studied, the end-points for both gaps are not accumulation
points of eigenvalues, with the single exception of the lower end-point of the 0th gap for c=10. Note
that none of the inHnitely many gap eigenvalues appear in the histogram; even when the calculation
was pushed much closer to the gap edge ("= 0:0000001) no more eigenvalues were observed. Thus,
interesting spectral e1ects may actually occur extremely close to the essential spectrum, which escape
the attention of numerical calculation; the observed essential absence of eigenvalues in the 0th gap
for a = 1; a = 1

2 must therefore be taken with some caution.
Table 2 again shows excellent agreement with the asymptotic formula throughout the c region. In

the 0th gap 3 possibly spurious eigenvalues appear near 0 for c = 10j, j∈{3; 4; 5; 6; 7}; though not
for c∈{10; 100}.

2. As a second example with less symmetry, we consider (3) with m ≡ 1, l ≡ 0 and the 1-periodic
potential with

q(r) = r2 (r ∈ [0; 1)):

In practice, this function q is replaced by a piecewise-constant function q̃ with ‖q̃− q‖∞¡ 1
200 .
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Table 3

� c = 10 100 1000 10,000 100,000 1,000,000 asympt. int.

−3.003616 0 1 6 59 591 5908 0.00590793−2.991922 0 0 7 65 651 6511 0.00651145−2.980227 1 2 8 74 731 7306 0.00730433−2.968533 0 1 8 84 842 8419 0.00841929−2.956838 0 1 10 101 1012 10123 0.01012350−2.945143 0 1 14 132 1316 13153 0.01315301−2.933449 1 2 20 206 2059 20596 0.02059485−2.921754

3.589501 1 2 20 202 2028 20276 0.020275503.601004 0 1 13 130 1300 13005 0.013004983.612506 0 1 10 101 1003 10023 0.010023483.624008 0 1 9 83 834 8342 0.008341953.635510 0 1 7 73 724 7241 0.007241333.647012 1 2 7 65 647 6456 0.006454873.658514 0 0 6 59 586 5860 0.005859943.670016

The asymptotic density in the 0th gap (−0:663414; 1:330506) vanishes identically, and both
end-points are not accumulation points of eigenvalues. No eigenvalues were observed in the cal-
culated histograms.

The results for the −1st gap (−3:013616;−2:911754) and the 1st gap (3:579501; 3:680016), with
" = 0:01, are shown in Table 3; note again the excellent agreement with the asymptotic formula
throughout, in spite of the fact that " is almost as large as the length of each subinterval.
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