A Procedure for Designing Vector-valued Compactly Supported Wavelets

HAN Ke-zhong

College of Information and Statistics
Zhengzhou institute of Aeronautical Industry management
Zhengzhou 450011, China

Abstract

Wavelet analysis has been applied to many aspects in science and technology. The notion of vector-valued wavelets with four-scale dilation factor associated with an orthogonal vector-valued scaling function is introduced. The existence of orthogonal vector-valued wavelets with quaternary-scale is discussed. A necessary and sufficient condition is presented by means of vector-valued multiresolution analysis and paraunitary vector filter bank theory. An algorithm for constructing a sort of orthogonal vector-valued wavelets with compact support is proposed, and their orthogonal properties are discussed.

I. Introduction

Wavelet analysis has been a widely applied tool in engineering field. The main advantage of wavelets is their time-frequency localization property. Already they have led to exciting applications in signal analysis [1], fractals [2], image processing [3] and so on. Sampling theorems play a basic role in digital signal processing. They ensure that continuous signals can be processed by their discrete samples. Vector-valued wavelets are a class of generalized multiwavelets [4]. Chen and Cheng [5] introduced the notion of vector-valued wavelets and showed that multiwavelets can be degenerated from the component functions in vector-valued wavelets. Vector-valued wavelets and multiwavelets are different in the following sense. For example, prefiltering is usually required for discrete multiwavelet transforms but not necessary for discrete vector-valued wavelet transforms [5]. In real life, Video images are vector-valued signals. Vector-valued wavelet transforms have been recently studied for image coding by W. Li. Chen
and Cheng studied orthogonal compactly supported vector-valued wavelets with 2-scale. Inspired by [5-7], we are about to investigate the construction of a class of orthogonal compactly supported vector-valued wavelets with three-scale. Similar to uni-wavelets, it is more complicated and meaningful to investigate vector-valued wavelets with 4-scale. Based on an observation in [5,8], another purpose of this article is to introduce the notion of orthogonal vector-valued wavelet packets with three-scale and investigate their properties.

2. MULTIRESOLUTION ANALYSIS

By \(R \) and \(C \), we denote the collection of all real and all complex numbers, respectively. \(Z \) and \(Z_+ \) denote all integers and all nonnegative integers, respectively. Set \(u \) be a constant and \(2 \leq u \in Z \). By \(L^2(R, C^u) \), we denote the aggregate of arbitrary vector-valued functions \(F(t) \), i.e.,

\[
L^2(R, C^u) := \{ F(t) = (f_1(t), f_2(t), \ldots, f_u(t))^T : f_i(t) \in L^2(R), \ t = 1, 2, \cdots, u \},
\]

where \(T \) means the transpose of a vector. For example, video images and digital films are examples of vector-valued functions where \(h_i(t) \) denotes the pixel on the \(i \)-th column at time \(t \). For \(F(t) \in L^2(R, C^u) \), \(\| F \| \) denotes the norm of vector-valued function \(F(t) \), i.e.,

\[
\| F \| := \left(\sum_{i=1}^{u} \int_{R} |f_i(t)|^2 dt \right)^{1/2},
\]

and its integration is defined as

\[
\int_{R} F(t)dt := \left\{ \int_{R} f_1(t)dt, \int_{R} f_2(t)dt, \cdots, \int_{R} f_u(t)dt \right\}^T.
\]

The Fourier transform of \(F(t) \) is defined by

\[
\hat{F}(\omega) := \int_{R} F(t) \cdot e^{-i\omega t} dt.
\]

For two vector-valued functions \(F, G \in L^2(R, C^u) \), their symbol inner product is defined by

\[
\langle F(\cdot), G(\cdot) \rangle := \int_{R} F(t)G(t)^* dt,
\]

where \(* \) means the transpose and the complex conjugate, and \(I_u \) denotes the \(u \times u \) identity matrix.

A sequence \(\{G_i(t)\}_{i \in Z} \subset U \subseteq L^2(R, C^u) \) is called an orthonormal set of the subspace \(U \), if the following condition is satisfied

\[
\langle G_j(\cdot), G_k(\cdot) \rangle = \delta_{j,k} I_u, \ j, k \in Z,
\]

where \(\delta_{j,k} = 1 \) as \(j = k \) and \(\delta_{j,k} = 0 \) otherwise.

Definition 1. We say that \(H(t) \in U \subseteq L^2(R, C^u) \) is an orthogonal vector-valued function of the subspace \(U \) if its translations \(\{H(t-v)\}_{v \in Z} \) is an orthonormal collection of the subspace \(Y \), i.e.,

\[
\langle H(\cdot-n), H(\cdot-v) \rangle = \delta_{n,v} I_u, \ n, v \in Z.
\]

Definition 2 [5]. A sequence \(\{F_v(t)\}_{v \in Z} \subset U \subseteq L^2(R, C^u) \) is called an orthonormal basis of \(Y \), if it satisfies (2), and for any \(G(t) \in U \), there exists a unique sequence of \(u \times u \) constant matrices \(\{Q_k\}_{k \in Z} \) such that...
Definition 3 \(^{[5]}\) A vector-valued multiresolution analysis of \(L^2(R, C^n)\) is a nested sequence of closed subspaces \(\{Y_l\}_{l \in \mathbb{Z}}\) such that (i) \(Y_l \subseteq Y_{l+1}, \forall l \in \mathbb{Z}\); (ii) \(\bigcap_{l \in \mathbb{Z}} Y_l = \{0\}\); \(\bigcup_{l \in \mathbb{Z}} Y_l\) is dense in \(L^2(R, C^n)\), where \(0\) is the zero vector of \(L^2(R, C^n)\); (iii) \(F(t) \in Y_0\) if and only if \(F(4^l t) \in Y_l\); (iv) there is \(h(t) \in Y_0\) such that the sequence \(\{h(t - v), v \in \mathbb{Z}\}\) is an orthonormal basis of subspace \(Y_0\).

On the basis of Definition 2 and Definition 3, we obtain \(h(t)\) satisfies the following equation

\[
G(t) = \sum_{v \in \mathbb{Z}} Q_v F_v(t). \quad (4)
\]

where \(\{P_v\}_{v \in \mathbb{Z}}\) is a finite supported sequence of \(\mu \times \mu\) constant matrices, i.e., \(\{P_v\}_{v \in \mathbb{Z}}\) has only finite non-zero terms, and the others are zero matrices. By taking the Fouries transform for the both sides of (5), and assuming \(h(\xi)\) is continuous at zero, we have

\[
\hat{h}(4\omega) = \mathcal{P}(\xi) \hat{h}(\xi), \quad \xi \in R, \quad \omega \in R. \quad (6)
\]

\[
4 \mathcal{P}(\xi) = \sum_{v} P_v \cdot \exp(-iv\xi). \quad (7)
\]

Let \(W_j (j \in \mathbb{Z})\) denote the orthocomplement subspace of \(Y_j\) in \(Y_{j+1}\) and there exist three vector-valued functions \(G_s(t) \in L^2(R, C^n), s = 1, 2\) such that their translations and dilations form a Riesz basis of \(W_j\), i.e.,

\[
W_j = \text{clus}_{\xi \in R} \left(\text{span}\{G_s(4^j t - v) : s = 1, 2, 3; v \in \mathbb{Z}\} \right), j \in \mathbb{Z}. \quad (8)
\]

Since \(G_s(t) \in W_0 \subseteq Y_j\), \(s = 1, 2\), there exist three finitely supported sequences \(\{B_v^{(s)}\}_{v \in \mathbb{Z}}\) of \(\mu \times \mu\) constant matrices such that

\[
G_s(t) = \sum_{v} B_v^{(s)} h(4^j t - v), \quad s = 1, 2. \quad (9)
\]

\[
4 B^{(s)}(\xi) = \sum_{v} B_v^{(s)} \exp(-iv\xi). \quad (10)
\]

Then, the refinement equation (10) becomes the following

\[
\hat{G}_s(4\xi) = \mathcal{B}^{(s)}(\xi) \hat{h}(\xi), \quad s = 1, 2, \quad \xi \in R. \quad (11)
\]

If \(h(t) \in L^2(R, C^n)\) is an orthogonal vector-valued scaling function, then it follows from (3) that

\[
\langle h(\cdot), h(\cdot - v) \rangle = \delta_{0,v} I_v, \quad v \in \mathbb{Z}. \quad (12)
\]

We say that \(G_s(t) \in L^2(R, C^n), s = 1, 2, 3\) are orthogonal vector-valued wavelet functions associated with the
vector-valued scaling function $\mathbf{H}(t)$, if they satisfy

$$\langle h(\cdot-n), G_s(\cdot-v) \rangle = O, \quad s = 1,2, \quad n,v \in Z, \quad (13)$$

and the family $\{G_s(t-v), s = 1,2,3, \quad v \in Z\}$ is an orthonormal basis of W_0. Thus we have

$$\langle G_s(\cdot), G_s(\cdot-n) \rangle = \delta_{r,n}, \quad r,s = 1,2,3; \quad n \in Z. \quad (14)$$

Lemma 1

Let $F(t) \in L^2(R,C^n)$. Then $F(t)$ is an orthogonal vector-valued function if and only if

$$\sum_{k \in Z} \hat{F}(\xi + 2k\pi)\hat{F}(\xi + 2k\pi)^* = I_u, \quad \omega \in R. \quad (15)$$

Lemma 2. Let $h(t) \in L^2(R,C^n)$, defined by (5), is an orthogonal vector-valued scaling function, then for $\forall v \in Z$, we have the following equality,

$$\sum_{\sigma \in \mathbb{Z}} P_{\sigma} (P_{\sigma + v})^* = 4\delta_{0,v} I_u. \quad (16)$$

$$\sum_{\sigma \in 0} P(\xi + \sigma \pi / 2)P(\xi + \sigma \pi / 2)^* = I_u, \quad \xi \in R. \quad (17)$$

Proof. By substituting equation (5) into the relation (12), for $\forall k \in Z$, we obtain that

$$\delta_{0,k} I_u = \langle h(\cdot-k), h(\cdot) \rangle = \sum_{l \geq 0} \sum_{v \in Z} \int_{R} P_l h(4t-4k-l) h(4t-v)^* (P_v)^* \, dt$$

$$= \frac{1}{4} \cdot \sum_{l \geq 0} \sum_{v \in Z} P_l \langle \mathbf{H}(\cdot-4k-l), \mathbf{H}(\cdot-v) \rangle (P_v)^* = \frac{1}{4} \sum_{l \geq 0} P_l (P_{l+k})^*. \quad (18)$$

Thus, both Theorem 1 and formulas (16), (23) and (24) provide an approach to design a class of compactly supported orthogonal vector-valued wavelets.

3. CONSTRUCTION OF WAVELETS

In the following, we begin with considering the existence of a class of compactly supported orthogonal vector-valued wavelets.

Theorem 1. Let $h(t) \in L^2(R,C^n)$ defined by (5), be an orthogonal vector-valued scaling function. Assume $G_s(t) \in L^2(R,C^n)$, $s = 1,2$, and $P(\omega)$ and $B^{(s)}(\omega)$ are defined by (7) and (10), respectively.

Then $G_s(t)$ are orthogonal vector-valued wavelet functions associated with $\mathbf{H}(t)$ if and only if

$$\sum_{\sigma = 0}^3 P(\omega + \sigma \pi / 2)B^{(s)}(\omega + \sigma \pi / 2)^* = O, \quad (18)$$

$$\sum_{\sigma = 0}^3 B^{(s)}(\omega + \sigma \pi / 2)B^{(s)}(\omega + \sigma \pi / 2)^* = \delta_{s,s} I_u, \quad (19)$$
where \(r, s \in 1, 2, \omega \in R \). or equivalently,

\[
\sum_{i \in z} P_i (B_{i+4})^* = O, \quad s = 1, 2, 3, \quad v \in Z; \quad (20)
\]

\[
\sum_{i \in z} B_i^*(B_{i+4})^* = 4 \delta_{r,s} \delta_{0,v} I_u, \quad r, s = 1, 2, 3, \quad v \in Z. \quad (21)
\]

Proof. Firstly, we prove the necessity. By Lemma 1 and (6), (11) and (13), we have

\[
O = \sum_{v \in z} \hat{h}(4\omega + 2v\pi)\hat{G}_{s}(4\omega + 2v\pi)^*
\]

\[
= \sum_{v \in z} P_{\lambda} (\omega + v\pi / 2) \hat{h}(\omega + v\pi / 2)^* \cdot \hat{h}(\omega + v\pi / 2)^* B^*(\omega + v\pi / 2)^*
\]

\[
= \sum_{\sigma = 0} B^*(\omega + \sigma\pi / 2)B^*(\omega + \sigma\pi / 2)^*. \]

It follows from formula (14) and Lemma 1 that

\[
\delta_{r,s} I_v = \sum_{v \in z} \hat{G}_{s}(4\omega + 2v\pi)\hat{G}_{s}(4\omega + 2v\pi)^*
\]

\[
= \sum_{v \in z} B^*(\omega + v\pi / 2) \hat{h}(\omega + v\pi / 2)^* \cdot \hat{h}(\omega + v\pi / 2)^* B^*(\omega + v\pi / 2)^*
\]

\[
= \sum_{\sigma = 0} (\omega + \sigma\pi / 2)B^*(\omega + \sigma\pi / 2)^*. \]

Next, the sufficiency of the theorem will be proven. From the above calculation, we have

\[
\sum_{v \in z} \hat{h}(4\omega + 2v\pi)\hat{G}_{s}(4\omega + 2v\pi)^*
\]

\[
= \sum_{\sigma = 0} B^*(\omega + \sigma\pi / 2)B^*(\omega + \sigma\pi / 2)^* = \delta_{r,s} I_v. \]

Furthermore

\[
\langle \hat{h}(\cdot), G_{s}(-k) \rangle = \frac{2}{\pi} \int_{0}^{\pi/2} \hat{h}(4\omega + 2v\pi)
\]

\[
\cdot \hat{G}_{s}(4\omega + 2v\pi)^* e^{4ik\omega} d\omega = O, \quad s = 1, 2, 3, \quad k \in Z
\]

\[
\langle G_{s}(\cdot), G_{s}(-k) \rangle = \frac{2}{\pi} \int_{0}^{\pi/2} \hat{G}_{s}(4\omega + 2v\pi)
\]

\[
\cdot \hat{G}_{s}(4\omega + 2v\pi)^* e^{4ik\omega} d\omega = \delta_{s,s} \delta_{r,s} I_u, \quad k \in Z
\]

Thus, \(\hat{h}(t) \) and \(G_{s}(t), s = 1, 2 \) are mutually orthogonal, and \(\{ G_{s}(t), s = 1, 2, 3 \} \) are a family of orthogonal vector-valued functions. This shows the orthogonality of \(\{ G_{s}(\cdot - v), s = 1, 2, 3 \} \). Similar to [7, Proposition 1], we can prove its completeness in \(W_0 \).

Theorem 2. Let \(\hat{h}(t) \in L^2 (R, C^m) \) be a 5-coefficient compactly supported orthogonal vector-valued scaling functions satisfying the following refinement equation:
\[
\hat{h}(t) = P_0 \hat{h}(4t) + P_1 \hat{h}(4t-1) + \cdots + P_4 \hat{h}(4t-4).
\]

Assume there exists an integer \(\ell \), such that \((4I_u - P_1(P_1)^*)^{-1} P_1(P_1)^* \) is a positive definite matrix. Define \(Q_s (s = 1, 2, 3) \) to be two essentially distinct Hermitian matrices, which are all invertible and satisfy

\[
(Q_s)^2 = [4I_u - P_1(P_1)^*]^{-1} P_1(P_1)^*.
\]

Define

\[
\begin{cases}
B_j^{(s)} = Q_j P_j, & j \neq \ell, \\
B_j^{(s)} = -(Q_j)^{-1} P_j, & j = \ell,
\end{cases}
\]

Then \(G_s(t) (s = 1, 2, 3) \), defined by (24), are orthogonal vector-valued wavelets associated with \(\chi(t) \):

\[
G_s(t) = B_0^{(s)} \hat{h}(4t) + B_1^{(s)} \hat{h}(4t-1) + \cdots + B_4^{(s)} \hat{h}(4t-4)
\]

Proof. For convenience, let \(\ell = 1 \). By Lemma 2, (20) and (21), it suffices to show that \(\{B_0^{(s)}, B_1^{(s)}, B_2^{(s)}, B_3^{(s)}, B_4^{(s)} ; s = 1, 2, 3\} \) satisfy the following equations:

\[
P_0(B_4^{(s)})^* = O, \quad s = 1, 2, 3,
\]

\[
P_1(B_0^{(s)})^* = O, \quad s = 1, 2, 3,
\]

\[
P_0(B_0^{(s)})^* + P_1(B_1^{(s)})^* + \cdots + P_4(B_4^{(s)})^* = O,
\]

\[
B_0^{(r)}(B_4^{(s)})^* = O, \quad r, s \in \{1, 2, 3\},
\]

\[
B_0^{(s)}(B_0^{(s)})^* + B_1^{(s)}(B_1^{(s)})^* + \cdots + B_4^{(s)}(B_4^{(s)})^* = 4I_u.
\]

If \(\{B_0^{(s)}, B_1^{(s)}, B_2^{(s)}, B_3^{(s)}, B_4^{(s)} ; s = 1, 2\} \) are given by (23), then equations (26), (27) and (29) follow from (16). For the proof of (28) and (30), it follows from (16) and (27) that

\[
P_0(B_0^{(s)})^* + P_1(B_1^{(s)})^* + P_2(B_2^{(s)})^* + P_3(B_3^{(s)})^*
\]

\[
= [P_0(P_1)^* + P_2(P_2)^* + P_3(P_3)^*] Q_s - P_1(P_1)^* (Q_s)^{-1}
\]

\[
= (P_1(P_1)^* - P_1(P_1)^*)(B_j)^{-1} = O.
\]

\[
B_0^{(s)}(B_0^{(s)})^* + B_1^{(s)}(B_1^{(s)})^* + B_2^{(s)}(B_2^{(s)})^* + B_3^{(s)}(B_3^{(s)})^*
\]

\[
= Q_s \{P_1(P_1)^* + [P_1(P_1)^*]^{-1}[4I_u - P_1(P_1)^*]P_1(P_1)^*\} (Q_s)^{-1}
\]

\[
= Q_s \{P_1(P_1)^* + [P_1(P_1)^*]^{-1}[4I_u - P_1(P_1)^*]P_1(P_1)^*\} (Q_s)^{-1}
\]
= Q_x \{ P_1 (P_1)^* + 4I_u - P_1 (P_1)^* (Q_x)^{-1} \} = 4I_u.

So, (28), (30) follow. This completes the proof of Thm 2.

Example 1. Let $\lambda(t) \in L^2(R, C^3)$ be a 5-coefficient orthogonal vector-valued scaling function satisfy the following equation:

$$h(t) = P_0 h(4t) + P_1 h(4t - 1) + \cdots + P_4 h(4t - 4).$$

where $P_3 = P_4 = O$, $P_0 (P_1)^* = O$,

$$P_0 (P_0)^* + P_1 (P_1)^* + P_2 (P_2)^* + P_3 (P_3)^* + P_4 (P_4)^* = 4I_3.$$

$$P_0 = \begin{pmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
-\frac{1}{2} & \frac{\sqrt{2}}{3} & 1 \\
0 & 0 & \frac{2\sqrt{3}}{3}
\end{pmatrix}, \quad P_1 = \begin{pmatrix}
1 & 0 & 0 \\
0 & \frac{\sqrt{2}}{6} & 0 \\
0 & 0 & \frac{\sqrt{3}}{3}
\end{pmatrix},$$

$$P_2 = \begin{pmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{2}}{3} & -1 \\
0 & 0 & \frac{2\sqrt{3}}{3}
\end{pmatrix}.$$

Suppose $\ell = 1$. By using (22), we can choose

$$Q = \begin{pmatrix}
\frac{\sqrt{2}}{2} & 0 & 0 \\
0 & \sqrt{\frac{53}{53}} & 0 \\
0 & 0 & \frac{\sqrt{2}}{4}
\end{pmatrix}, \quad Q_x = \begin{pmatrix}
\frac{\sqrt{2}}{2} & 0 & 0 \\
0 & \sqrt{\frac{53}{53}} & 0 \\
0 & 0 & -\frac{\sqrt{2}}{4}
\end{pmatrix}.$$

By applying formula (24), we get that

$$B_0^{(1)} = \begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
-\sqrt{\frac{53}{106}} & \sqrt{\frac{106}{53}} & \frac{\sqrt{53}}{3} \\
0 & 0 & \frac{\sqrt{6}}{6}
\end{pmatrix}, \quad B_0^{(3)} = \begin{pmatrix}
\frac{\sqrt{2}}{2} & 0 & 0 \\
0 & \frac{\sqrt{106}}{6} & 0 \\
0 & 0 & 2\sqrt{\frac{6}{3}}
\end{pmatrix}.$$
Applying Theorem 2, we obtain that \(G_1(t) = B_0 \) \(G(t) \)
\[+ B_1 \) \(h(4t - 1) + \cdots + B_4 \) \(h(4t - 4) \), \(t = 1, 2 \) are orthogonal vector-valued wavelet functions associated with the orthogonal vector-valued scaling function.

4. CONCLUSION

A necessary and sufficient condition on the existence of a class of orthogonal vector-valued wavelets is presented.

An algorithm for constructing a class of compactly supported orthogonal vector-valued wavelets is proposed.
References