Removable edges in a k-connected graph and a construction method for k-connected graphs ${ }^{\star}$

Jianji Su ${ }^{\text {a }}$, Xiaofeng Guo ${ }^{\mathrm{b}, *}$, Liqiong Xu^{c}
${ }^{\text {a }}$ School of Mathematical Sciences, Guangxi Normal University, Guilin Guangxi 541004, China
${ }^{\text {b }}$ School of Mathematical Sciences, Xiamen University, Xiamen Fujian 361005, China
' School of Sciences, Jimei University, Xiamen Fujian 361021, China

ARTICLE INFO

Article history:

Received 5 October 2007
Received in revised form 29 August 2008
Accepted 3 September 2008
Available online 27 September 2008

Keywords:

Removable edge
Contractible edge
Quasi connectivity
θ^{+}-operation

Abstract

An edge e of a k-connected graph G is said to be a removable edge if $G \ominus e$ is still k-connected, where $G \ominus e$ denotes the graph obtained from G by deleting e to get $G-e$ and, for any end vertex of e with degree $k-1$ in $G-e$, say x, deleting x and then adding edges between any pair of non-adjacent vertices in $N_{G-e}(x)$. Xu and Guo [Liqiong Xu, Xiaofeng Guo, Removable edges in a 5-connected graph and a construction method of 5-connected graphs, Discrete Math. 308 (2008) 1726-1731] proved that a 5-connected graph G has no removable edge if and only if $G \cong K_{6}$, using this result, they gave a construction method for 5 -connected graphs. A k-connected graph G is said to be a quasi $(k+1)$-connected if G has no nontrivial k-vertex cut. Jiang and Su [Hongxing Jiang, Jianji Su, Minimum degree of minimally quasi ($k+1$)-connected graphs, J. Math. Study 35 (2002) 187-193] conjectured that for $k \geq 4$ the minimum degree of a minimally quasi k-connected graph is equal to $k-1$. In the present paper, we prove this conjecture and prove for $k \geq 3$ that a k-connected graph G has no removable edge if and only if G is isomorphic to either K_{k+1} or (when k is even) the graph obtained from K_{k+2} by removing a 1-factor. Based on this result, a construction method for k-connected graphs is given.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Graph theoretic terminology used here generally follows that of Bondy [5]. We consider only finite and simple graphs.
Let k be an integer such that $k \geq 2$ and G be a k-connected graph. An edge e of G is said to be k-contractible if the contraction of the edge results in a k-connected graph. Tutte [26] proved that every 3 -connected graph with order at least 5 contains a 3-contractible edge, using this result, he gave a construction methods for 3-connected graphs. A construction methods of 4 -connected graphs was given by Slater [22]. A non-complete k-connected graph G is called contraction-critical k-connected if every edge of G is not k-contractible. Contractible edges in k-connected graphs and properties of contractioncritical k-connected graphs are investigated by Mader, Egawa, Enomoto, Ando, Kriesell, Kawarabayashi, Su Jianji, and Yuan Xudong et al. [1-3,7,8,12-17,19,24,25].

For removable edges of k-connected graphs, Holton et al. [10] first defined removable edges in a 3-connected graph. Later, Yin Jianhua [29] defined removable edges in a 4-connected graph.The distribution of removable edges in 3-connected and 4 -connected graphs has been studied (see [23,27]). Recently, Xu and Guo [28] generalized the concept of removable edges in a 3-connected graph and a 4 -connected graph to k-connected graphs.

[^0]Definition 1 ([28]). Let G be a k-connected graph, and let e be an edge of G. Let $G \ominus e$ denote the graph obtained from G by the following operation: (1) delete e from G to get $G-e$; (2) for any end vertex of e with degree $k-1$ in $G-e$, say x, delete x, and then add edges between any pair of non-adjacent vertices in $N_{G-e}(x)$. If $G \ominus e$ is k-connected, then e is said to be a removable edge of G, otherwise e is said to be a non-removable edge of G.

Barnette and Grunbaum [4] proved that a 3-connected graph of order at least five has a removable edge. Based on the above graph operation and fact, a constructive characterization of minimally 3-connected graphs was given by Dawes [6], which differs from the characterization provided by Tutte [26].

The graph C_{n}^{2}, for an integer $n \geq 4$, is defined as follows. Let $C_{n}=v_{1} v_{2} \cdots v_{n} v_{1}$ be an n-cycle. Then C_{n}^{2} is obtained from C_{n} by adding edges $v_{i} v_{j}$ satisfying that $j \equiv i \pm 2 \bmod n$, for each $1 \leq i \leq n$.

In [29], Yin Jianhua proved that the 4-connected graph without removable edges is either C_{5}^{2} or C_{6}^{2}. Based on this result, he provided a constructive characterization of 4-connected graphs, which is simpler than Slater's method [22].

On the other hand, Politof and Satyanarayana $[20,21]$ introduced the concept of quasi 4 -connected graphs and investigated their structure and properties, Mader [18] introduced the concept of n^{+}-connected graph analogous to the quasi $(n+1)$-connected graph. Jiang Hongxing and Su Jianji [11] further investigated some properties of quasi k-connected graphs.

Let S be a vertex cut set of a graph G with $|S|=k(k \geq 2)$. The vertex cut set S is said to be a nontrivial k-vertex cut of G, if the set of the components of $G-S$ can be partitioned into two sets, each of which has to contain at least two vertices. A $(k-1)$-connected graph is quasi k-connected if it has no nontrivial ($k-1$)-vertex cut. Clearly, every k-connected graph is quasi k-connected. A quasi k-connected graph G is minimally quasi k-connected if $G-u v$ is not quasi k-connected for all $u v \in E(G)$. Suppose that G is a quasi k-connected, $u v \in E(G)$, and $G-u v$ is not quasi k-connected. Then either $G-u v$ is not $(k-1)$-connected, or $G-u v$ is $(k-1)$-connected. If $G-u v$ is $(k-1)$-connected, then in $G-u v$ there is a nontrivial ($k-1$)-vertex cut, hence $|V(G)| \geq(k-1)+2 \times 2=k+3$.

For the removable edges, non-removable edges, and quasi connectivity of a graph G, the following results are given in Refs. [28,11].

Theorem 1 ([28]). Let G be a k-connected graph of order at least $k+3(k \geq 3)$, and $x y \in E(G)$. Then $x y$ is non-removable if and only if there exists $S \subseteq V(G-x y)$ with $|S|=k-1$ such that $G-x y-S$ has exactly two components A, B with $|A| \geq 2$ and $|B| \geq 2$, moreover $x \in A, y \in B$.
Theorem 2 ([28]). Let G be a k-connected graph of order at least $k+3(k \geq 3)$. Then G has no removable edge if and only if G is minimally quasi k-connected.

Theorem 3 ([11]). If G is minimally quasi 5-connected, then $\delta(G)=4$.
For minimally quasi k-connected graphs, the following conjecture was posed by Jiang and Su in [11].
Conjecture 1 ([11]). If G is a minimally quasi k-connected graph with $k \geq 4$, then $\delta(G)=k-1$.
Using Theorem 3, Xu and Guo [28] gave a construction method for 5-connected graphs, and pointed out that if Conjecture 1 is true then the conclusion of the following conjecture would hold.

Conjecture 2 ([28]). Let G be a k-connected $(k \geq 3)$. G has no removable edge if and only if either $G \cong K_{k+1}$ for k being odd, or G is isomorphic to either K_{k+1} or $H_{(k+2) / 2}$ for k being even (here $H_{(k+2) / 2}$ denotes the graph obtained from K_{k+2} by deleting a 1-factor).

Let G be a minimally quasi k-connected graph. Let $x y$ be an edge in G such that $\kappa(G-x y) \geq k-1$. Then in $G-x y$ there is a nontrivial $(k-1)$-vertex cut, say S. A connected component of $G-x y-S$ is called a $(x y, S)$-fragment of G. A ($x y, S$)-fragment A of G is called a $(x y, S)$-atom of G if A has the minimum number of vertices in all $(x y, S)$-fragments of G for every edge $x y$ in G with $\kappa(G-x y) \geq k-1$ and every nontrivial $(k-1)$-vertex cut S of $G-x y$. For a $(x y, S)$-fragment of G, the following property is obvious.

Property 1. Let G be a minimally quasi k-connected graph, xy an edge in G such that $\kappa(G-x y) \geq k-1$, and S a nontrivial $(k-1)$-vertex cut of $G-x y$. Then (i) $G-x y-S$ has at most three connected components; (ii) if $G-x y-S$ has exactly three components, then the component containing neither x nor y is a trivial component that is $a(x y, S)$-atom of G; (iii) if $G-x y-S$ has exactly two connected components, then every component has at least two vertices; (iv) if G is k-connected, then, for any ($x y, S$)-fragment of $G, G-x y-S$ has exactly two connected components, and $a(x y, S)$-atom of G has at least two vertices.

For a subgraph C of G, when there is no ambiguity, we write simply C for $V(C)($ resp. $|C|$ for $|V(C)|)$.
Theorem 4 ([11]). Let k be an integer such that $k \geq 3$. If G be a minimally quasi k-connected graph with $\delta(G)=k$, and let A be $a(x y, S)$-atom of G. Then $|A|=2$. Let $x \in A$ and $A=\{x, z\}$, then $x z \in E(G), d(x)=d(z)=k$, and $|N(x) \cap N(z)|=k-2$.

In this paper, we prove that Conjecture 1 holds, and using this result prove for $k \geq 3$ that a k-connected graph G has no removable edge if and only if G is isomorphic to either K_{k+1} or (when k is even) the graph obtained from K_{k+2} by deleting a 1 -factor. Based on this result, we give a construction method for k-connected graphs.

2. Minimally quasi \boldsymbol{k}-connected graphs

We now prove Conjecture 1.
Theorem 5. If G is a minimally quasi k-connected graph with $k \geq 3$, then $\delta(G)=k-1$.
Proof. Assume that G is a minimally quasi k-connected graph. Since quasi k-connected graph is $(k-1)$-connected, $\delta(G) \geq$ $k-1$.

If $\delta(G) \geq k$, then G is k-connected. Otherwise there would be a $(k-1)$-vertex cut T of G. Since G is quasi k-connected graph, T is a trivial $(k-1)$-vertex cut of G, and in $G-T$ there is a component with only one vertex, implying $\delta(G)=k-1$, a contradiction.

It is easy to see that if G is both k-connected and minimally quasi k-connected, then G is a minimally k-connected graph, and so $\delta(G)=k$ by a result on minimally k-connected graph of Halin [9]. Hence for a minimally quasi k-connected G we have that $k-1 \leq \delta(G) \leq k$, moreover, if $\delta(G)=k$, then G is k-connected.

If $\delta(G)=k$, then G is both k-connected as well as minimally quasi- k-connected. For $u v \in E(G)$, since $G-u v$ is $(k-1)$ connected and is not quasi k-connected, by a discussion in introduction, we have $|V(G)| \geq k+3$. Then, by Theorem 2 , each edge of G is not removable.

By Theorem 4, we can choose a ($x z, S$)-atom A of G, where $A=\{x, y\}, x y \in E(G), d(x)=d(y)=k, N(x) \cap N(y)=W=$ $\left\{w_{1}, w_{2}, \ldots, w_{k-2}\right\}, z \in V(G)-A-S$. Let $B=G-A-S$, then $z \in B$. Since $x y$ is non-removable, by Theorem 1 , take a ($x y, T$)-fragment C of G such that $x \in C, y \in D=G-T-C$. It is easy to see that $A \cap C=\{x\}, A \cap D=\{y\}, z \in B \cap(C \cup T)$, and $W \subseteq S \cap T$. Noting that $|W|=k-2$ and $|S|=|T|=k-1$, if $W \neq S \cap T$, then $S \cap T=S=T$, and so $B \cap D=D-y \neq \emptyset$ and T is a $(k-1)$-separator of G, which contradicts that G is k-connected. Hence $W=S \cap T$. Similarly, we have $S \cap D \neq \emptyset$, so $|S \cap D|=1$. Let $S \cap D=\{s\}$, then s is a unique vertex in S not adjacent to x.

For every $w_{i} \in W, i=1,2, \ldots, k-2$, by Theorem 1, take a $\left(y w_{i}, T_{i}\right)$-fragment C_{i} of G such that $y \in C_{i}, w_{i} \in D_{i}=$ $G-T_{i}-C_{i}$. Let $M_{i}=C_{i} \cap S$. In the following, $i, j \in\{1,2, \ldots, k-2\}, i \neq j$.

Claim 1. $A \cap C_{i}=\{y\}, A \cap T_{i}=\{x\}, S \cap D_{i}=\left\{w_{i}\right\}, M_{i} \neq \emptyset$. Moreover, if $\left|M_{i}\right|=1$, then $B \cap C_{i}=\emptyset$, hence $\left|C_{i}\right|=2$.
Observe ($x z, S$)-atom A and $\left(y w_{i}, T_{i}\right)$-fragment C_{i} of G. Clearly, $y \in A \cap C_{i}, w_{i} \in S \cap D_{i}$. Since $x y, x w_{i} \in E(G), x \in A \cap T_{i}$, and so $A \cap C_{i}=\{y\}, A \cap T_{i}=\{x\}, A \cap D_{i}=\emptyset$. From $N(y)=S \cup\{x\}$, we have $S \cap D_{i}=\left\{w_{i}\right\}$, hence $B \cap D_{i} \neq \emptyset$. Note that $\left|\left(T_{i}-\{x\}\right) \cup\left\{w_{i}\right\}\right|=\left|T_{i}\right|=k-1$ and G is k-connected, so $G-\left(\left(T_{i}-\{x\}\right) \cup\left\{w_{i}\right\}\right)$ is connected, and $z \in B \cap D_{i}$. In this case, if $M_{i}=\emptyset$, then $B \cap C_{i} \neq \emptyset, T_{i}-\{x\}$ is a vertex cut of G. This implies that $\left|T_{i}-\{x\}\right| \geq k$, contradicting $\left|T_{i}-\{x\}\right|=k-2$. Hence $M_{i} \neq \emptyset$. If $B \cap C_{i} \neq \emptyset$, then $\left(T_{i}-\{x\}\right) \cup M_{i}$ is a vertex cut of G, so $\left|\left(T_{i}-\{x\}\right) \cup M_{i}\right| \geq k$, implying $\left|M_{i}\right| \geq 2$. Therefore if $\left|M_{i}\right|=1$, then $B \cap C_{i}=\emptyset, C_{i}=\{y\} \cup M_{i},\left|C_{i}\right|=2$.

By Claim 1, if $k=3$, then $C_{1} \cap A=\{y\}, C_{1} \cap S=M_{1}=\{s\}, C_{1} \cap B=\emptyset, D_{1} \cap S=\left\{w_{1}\right\}, T_{1} \cap S=\emptyset,\left|T_{1} \cap B\right|=1$. Then $C_{1}=\{y, s\},\left|T_{1}\right|=2, x \in T_{1}, d_{G}(s) \geq k=3$, and so s must be adjacent to both x and $y, W=\left\{w_{1}, s\right\}$, contradicting that $|W|=k-2=1$.

Hence suppose $k \geq 4$.
Claim 2. $C_{i} \cap C_{j}=\{y\}, M_{i} \cap M_{j}=\emptyset$.
Observe $\left(y w_{i}, T_{i}\right)$-fragment C_{i} and $\left(y w_{j}, T_{j}\right)$-fragment C_{j} of G. By Claim 1, it is easy to see that $y \in C_{i} \cap C_{j}, x \in T_{i} \cap T_{j}$, $z \in D_{i} \cap D_{j}, w_{i} \in D_{i} \cap\left(C_{j} \cup T_{j}\right), w_{j} \in D_{j} \cap\left(C_{i} \cup T_{i}\right)$. Then $\left(T_{i}-C_{j}\right) \cup\left(T_{j}-C_{i}\right)$ is a separator of $G,\left|\left(T_{i}-C_{j}\right) \cup\left(T_{j}-C_{i}\right)\right| \geq k$, implying that $\left|\left(T_{i}-D_{j}\right) \cup\left(T_{j}-D_{i}\right)\right|=\left|T_{i}\right|+\left|T_{j}\right|-\left|\left(T_{i}-C_{j}\right) \cup\left(T_{j}-C_{i}\right)\right| \leq k-2$. In this case, if $\left|C_{i} \cap C_{j}\right| \geq 2$, then $\left(T_{i}-D_{j}\right) \cup\left(T_{j}-D_{i}\right) \cup\{y\}$ is a $(k-1)$-separator of G, which contradicts that G is k-connected. Hence $C_{i} \cap C_{j}=\{y\}$. Since $M_{i} \cap M_{j} \subseteq C_{i} \cap C_{j}=\{y\}$ and $y \notin M_{i} \cap M_{j}, M_{i} \cap M_{j}=\emptyset$.

Claim 3. $\left|M_{i}\right| \geq 2$.
First observe ($x z, S$)-fragment A and $\left(y w_{i}, T_{i}\right)$-fragment C_{i} of G. By Claim $1,\left|M_{i}\right| \geq 1, A \cap C_{i}=\{y\}$; moreover, if $\left|M_{i}\right|=1$ and let $M_{i}=\{t\}$, then $B \cap C_{i}=\emptyset$ and $C_{i}=\{y, t\}$. Since $N(t) \subseteq T_{i} \cup\{y\}$ and G is k connected, $d(t)=k, N(t)=T_{i} \cup\{y\}$. Note that $t \in C_{i}$ and $w_{i} \in D_{i}$, then $t \neq w_{i}$. Since $t y, t x \in E(G), t \in W$. Let $t=w_{j}$, then $C_{i}=\left\{y, w_{j}\right\}, N\left(w_{j}\right)=T_{i} \cup\{y\}$, w_{j} is not adjacent to w_{i} and is adjacent to every vertex in $S-\left\{w_{i}, w_{j}\right\}$.

Next observe ($x z, S$)-fragment A and $\left(y w_{j}, T_{j}\right)$-fragment C_{j} of G. By Claim $1, S \cap D_{j}=\left\{w_{j}\right\}$ and $M_{j} \neq \emptyset$. From the fact that w_{i} is the unique vertex in $S-\left\{w_{j}\right\}$ not adjacent to w_{j}, we have $M_{j}=\left\{w_{i}\right\}$. Replacing M_{i} with M_{j}, a similar argument shows that $B \cap C_{j}=\emptyset, C_{j}=\left\{w_{i}, y\right\}, N\left(w_{i}\right)=T_{j} \cup\{y\}, w_{i}$ is not adjacent to w_{j} and is adjacent to every vertex in $S-\left\{w_{i}, w_{j}\right\}$.

Take a $\left(x w_{i}, T^{\prime}\right)$-fragment C^{\prime} of G such that $x \in C^{\prime}, w_{i} \in D^{\prime}$, where $D^{\prime}=G-T^{\prime}-C^{\prime}$. For ($x z, S$)-fragment A and $\left(x w_{i}, T^{\prime}\right)$-fragment C^{\prime} of G, it is easy to see that $x \in A \cap C^{\prime}, w_{i} \in S \cap D^{\prime}, z \in B \cap\left(C^{\prime} \cup T^{\prime}\right)$. Note that $y x, y w_{i} \in E(G)$, then $A \cap T^{\prime}=\{y\}, A \cap C^{\prime}=\{x\}$. We assert $\left|S \cap D^{\prime}\right| \geq 2$. Otherwise, $S \cap D^{\prime}=\left\{w_{i}\right\}, B \cap D^{\prime} \neq \emptyset$, hence $\left(T^{\prime}-\{y\}\right) \cup\left\{w_{i}\right\}$ would be a $(k-1)$-separator of G, contrary to G is k-connected. Note that s is a unique vertex in S not adjacent to x, so $S \cap D^{\prime}=\left\{w_{i}, s\right\}$. Then we have $S \cap C^{\prime} \neq \emptyset$. Otherwise, $B \cap C^{\prime} \neq \emptyset,\left(T^{\prime}-\{y\}\right) \cup\{x\}$ would be a $(k-1)$-separator of G, a contradiction. Since w_{j} is a unique vertex in $S-\left\{w_{i}\right\}$ not adjacent to $w_{i}, S \cap C^{\prime}=\left\{w_{j}\right\}$. This implies that both w_{i} and s are not adjacent to w_{j}, again a contradiction.

Hence Claim 3 holds.
Now we complete the proof of Theorem 5.
By Claims 2 and $3, M_{i} \cap M_{j}=\emptyset,\left|M_{i}\right| \geq 2,\left|M_{j}\right| \geq 2$. From $\bigcup_{i=1}^{k-2} M_{i} \subseteq S$, we have that

$$
2(k-2) \leq \sum_{i=1}^{k-2}\left|M_{i}\right| \leq|S|=k-1
$$

This implies $k \leq 3$, contrary to the assumption $k \geq 4$.

3. A recursive construction method for \boldsymbol{k}-connected graphs

By the definition of a removable edge of k-connected graphs, Xu and Guo [28] defined the following operations.
Definition 2 ([28]). Let G be a k-connected graph with $k \geq 3$, let e be a removable edge of G, and let $H=G \ominus e$. Then H is said to be obtained from G by a θ^{-}-operation, denoted by $H=\theta^{-}(G)$, and G is said to be obtained from H by a θ^{+}-operation, denoted by $G=\theta^{+}(H)$. A θ^{+}-operation is said to be the inverse operation of θ^{-}-operation, and vice versa.

Let G be a k-connected graph with $k \geq 3$, and let $e=x y$ be a removable edge of G. Let $E_{x}=\left\{x_{i} x_{j} \mid x_{i}, x_{j} \in N_{G-e}(x), x_{i} x_{j} \notin\right.$ $E(G)\}$, and Let $E_{y}=\left\{y_{i} y_{j} \mid y_{i}, y_{j} \in N_{G-e}(y), y_{i} y_{j} \notin E(G)\right\}$.

A θ^{-}-operation for G is one of the following three operations:
(1) if $d_{G}(x) \geq k+1$ and $d_{G}(y) \geq k+1, H=G \ominus e=\theta^{-}(G)=G-e$;
(2) if $d_{G}(x)=k$ and $d_{G}(y) \geq k+1, H=G \ominus e=\theta^{-}(G)=G-x+E_{x}$;
(3) if $d_{G}(x)=d_{G}(y)=k, H=G \ominus e=\theta^{-}(G)=G-x-y+E_{x}+E_{y}$.

In order to give an exact definition of a θ^{+}-operation, we need the following theorem.
For a k-connected graph G and a minimum vertex cut T of G, the vertex set of a connected component of $G-T$ is called a T-fragment of G. A subset S of $V(G)$ is called a fragment of G if there is a minimum vertex cut T of G such that S is a T-fragment. A fragment of G is called an end fragment of G if any of its proper subsets is not a fragment of G.

Theorem 6. Let H be a k-connected graph with $k \geq 3$, let $X=\left\{x_{1}, x_{2}, \ldots, x_{k-1}\right\} \subset V(H)$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{k-1}\right\} \subset V(H)$.
(i) If $H[X] \cong K_{k-1}$, then $G_{X}=\left(H-E_{X}\right)+x+\left\{x x_{i} \mid i=1,2, \ldots, k-1\right\}+x y$ is k-connected if and only if $\kappa\left(H-E_{X}\right)=$ $\kappa\left(G_{X}-x\right) \geq k-1$, where $E_{X} \subseteq E(H[X]), x \notin V(H), y \in V(H)-X$;
(ii) If $H[X] \cong K_{k-1}$ and $H[Y] \cong K_{k-1}$, then $G_{X Y}=\left(H-E_{X}-E_{Y}\right)+x+y+x y+\left\{x x_{i} \mid i=1,2, \ldots, k-1\right\}+\left\{y y_{i} \mid i=\right.$ $1,2, \ldots, k-1\}$ is k-connected if and only if $|X \cap Y| \leq k-2, \kappa\left(H-E_{X}-E_{Y}\right)=\kappa\left(G_{X Y}-x-y\right) \geq k-2$, and, if $\kappa\left(H-E_{X}-E_{Y}\right)=\kappa\left(G_{X Y}-x-y\right)=k-2$, any end fragment of $H-E_{X}-E_{Y}$ contains both a vertex in X and a vertex in Y, where $E_{X} \subseteq E(H[X]), E_{Y} \subseteq E(H[Y]), x, y \notin V(H)$.

Proof. The necessity is obvious. We need only prove the sufficiency.
(i) If $\kappa\left(H-E_{X}\right)=\kappa\left(G_{X}-x\right) \geq k$, then G_{X} clearly is k-connected. Now suppose $\kappa\left(H-E_{X}\right)=\kappa\left(G_{X}-x\right)=k-1$. Let T be any minimum vertex cut of $H-E_{X}$. Since H is k-connected, any fragment of $H-E_{X}$ contains a vertex in X, and so T will not be a vertex cut in G_{X}. Hence G_{X} is k-connected.
(ii) If $\kappa\left(H-E_{X}-E_{Y}\right)=\kappa\left(G_{X Y}-x-y\right) \geq k-1$, then by reasoning similar to the proof of $(\mathrm{i}), G_{X Y}$ is k-connected. Suppose $\kappa\left(H-E_{X}-E_{Y}\right)=\kappa\left(G_{X Y}-x-y\right)=k-2$. For any minimum vertex cut T of $H-E_{X}-E_{Y}$, since any end fragment of $H-E_{X}-E_{Y}$ contains both a vertex in X and a vertex in Y, any connected component of $H-E_{X}-E_{Y}-T$ contains both a vertex in X and a vertex in Y, and so any one of $T, T \cup\{x\}$, and $T \cup\{y\}$ will not be a vertex cut of $G_{X Y}$. For a vertex cut S of $H-E_{X}-E_{Y}$ with $|S|=k-1$, any connected component of $H-E_{X}-E_{Y}-S$ contains either a vertex in X or a vertex in Y, since H is k-connected. Therefore, S is also not a vertex cut of $G_{X Y}$. Now it follows that $G_{X Y}$ is k-connected.

Definition 3. Let H be a k-connected graph with $k \geq 3$, and let $X=\left\{x_{1}, x_{2}, \ldots, x_{k-1}\right\} \subset V(H)$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{k-1}\right\} \subset$ $V(H)$. Let G be a k-connected graph obtained from H by a θ^{+}-operation. The θ^{+}-operation is one of the following three operations:
(1) $G=\theta^{+}(H)=H+x y$, where $x, y \in V(H)$, and $x y \notin E(H)$;
(2) $H[X] \cong K_{k-1}, G=\theta^{+}(H)=H-E_{X}+x+\left\{x x_{i} \mid i=1,2, \ldots, k-1\right\}+x y$, where $x \notin V(H), y \in V(H)-X$, and $E_{X} \subseteq E(H[X])$ such that $\kappa\left(H-E_{X}\right)=\kappa(G-x) \geq k-1$;
(3) $H[X] \cong K_{k-1}$ and $H[Y] \cong K_{k-1}, G=\theta^{+}(H)=H-E_{X}-E_{Y}+x+y+x y+\left\{x x_{i} \mid i=1,2, \ldots, k-1\right\}+\left\{y y_{i} \mid i=1,2, \ldots\right.$, $k-1\}$, where $x, y \notin V(H),|X \cap Y| \leq k-2$, and $E_{X} \subseteq E(H[X])$ and $E_{Y} \subseteq E(H[Y])$ such that $\kappa\left(H-E_{X}-E_{Y}\right)=\kappa(G-x-y) \geq$ $k-2$, and, if $\kappa\left(H-E_{X}-E_{Y}\right)=\kappa(G-x-y)=k-2$, any end fragment of $H-E_{X}-E_{Y}$ contains both a vertex in X and a vertex in Y.

Theorem 7. Let G be a k-connected graph with $k \geq 3$. Then G has no removable edge if and only if G is isomorphic to either K_{k+1} or (when k is even) the graph obtained from K_{k+2} by deleting a 1-factor.

Proof. The sufficiency is obvious. We need only prove the necessity.
Suppose that G has no removable edge.
If $|V(G)| \geq k+3$, then, by Theorems 2 and $5, G$ is minimally quasi k-connected and $\delta(G)=k-1$, contradicting that G is k-connected. Hence $k+1 \leq|V(G)| \leq k+2$.

If $|V(G)|=k+1$, then $\bar{G} \cong K_{k+1}$.
If $|V(G)|=k+2$ and k is even, then G can only be the graph obtained from K_{k+2} by removing a 1-factor.
If $|V(G)|=k+2$ and k is odd, G is a spanning subgraph of K_{k+2} with $\delta(G)=k$. So G can be obtained from K_{k+2} by removing $(k+1) / 2$ independent edges. Then G has a vertex of degree $k+1$ whose any incident edge would be a removable edge of G, a contradiction.

The proof is thus completed.
By Theorem 7, we can give a recursive construction method of k-connected graphs.
Theorem 8. Let G be a k-connected graph with $k \geq 3$. Then (i) G can be transformed by a number of θ^{-}-operations into either K_{k+1} or (when k is even) the graph $H_{(k+2) / 2}$ obtained from K_{k+2} by deleting a 1-factor; (ii) G can be obtained from either K_{k+1} or $H_{(k+2) / 2}$ by a number of θ^{+}-operations.

Proof. (i) Let G be a k-connected graph with $k \geq 3$, and suppose that G is not K_{k+1} or (when k is even) $H_{(k+2) / 2}$. Then, by Theorem 7, G has a removable edge, say e_{1}, and $G_{1}=\theta^{-}(G)=G \ominus e_{1}$ is a k-connected graph with less edges or less vertices than G. Repeating the above discuss, by the finiteness of G, we can obtain a series of k-connected graphs $G_{1}, G_{2}, \ldots, G_{t}$ so that $G_{i+1}=\theta^{-}\left(G_{i}\right), i=1,2, \ldots, t-1$, and G_{t} is isomorphic to either K_{k+1} or (when k is even) $H_{(k+2) / 2}$.
(ii) By using θ^{+}-operations, G can be obtained from either K_{k+1} or (when k is even) $H_{(k+2) / 2}$.

References

[1] K. Ando, K. Kawarabayashi, A. Kaneko, Contractible edges in minimally k-connected graphs, SUT J. Math. 36 (1) (2000) 99-103.
[2] K. Ando, K. Kawarabayashi, Some forbidden subgraph conditions for a graph to have a k-contractible edge, Discrete Math. 267 (2003) 3-11.
[3] K. Ando, Trivially non-contractible edges in a contraction critically 5-connected graph, Discrete Math. 293 (2005) 61-72.
[4] D.W. Barnette, D.B. Grünbaum, On Steinitz's theorem concerning convex 3-polytopes and some properties of planar graph, in: Many Facets of Graph Theory, in: Lecture Notes in Mathematics, vol. 110, Springer-Verlag, New York, 1966, pp. 27-40.
[5] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press LTD, 1966.
[6] R.W. Dawes, Minimally 3-connected graphs, J. Combin. Theory Ser. B 40 (1986) 159-168.
[7] Y. Egawa, H. Enomoto, A. Saito, Contractible edges in triangle-free graphs, Combinatorica 6 (1986) 269-274.
[8] Y. Egawa, Contractible Edges in n-connected graphs with minimum degree greater than or equal to $\left\lfloor\frac{5}{4} n\right\rfloor$, Graphs Combin. 7 (1991) 15-21.
[9] R. Halin, A theorem on n-connected graphs, J. Combin. Theory 7 (1969) 150-154.
[10] D.A. Holton, B. Jackson, A. Saito, N.C. Wormald, Removable edges in 3-connected graphs, J. Graph Theory 14 (4) (1990) 465-473.
[11] Hongxing Jiang, Jianji Su, Minimum degree of minimally quasi $(k+1)$-connected graphs, J. Math. Study 35 (2002) 187-193.
[12] K. Kawarabayashi, Note on contractible edges in k-connected graphs, Australas J. Combin. 24 (2001) 165-168.
[13] K. Kawarabayashi, Contractible edges and triangles in k-connected graphs, J. Combin. Theory Ser. B 85 (2002) 207-221.
[14] M. Kriesell, A degree sum condition for the existence of a contractible edge in a k-connected graph, J. Combin. Theory Ser. B 82 (2001) $81-101$.
[15] M. Kriesell, A survey on contractible edges in graphs of a prescribed vertex connectivity, Graphs Combin. 18 (2002) 1-30.
[16] M. Kriesell, Closed separator sets, Combinatorica 25 (5) (2005) 575-598.
[17] W. Mader, Generalization of critical connectivity of graphs, Discrete Math. 72 (1988) 267-283.
[18] W. Mader, 3n-5 edges force a subdivision of K_{5}, Combinatorica 18 (4) (1998) 569-595.
[19] N. Martinov, Uncontractible 4-connected graphs, J. Graph Theory 6 (1982) 343-344.
[20] T. Politof, A. Satyanarayana, Minors of quasi 4-connected graphs, Discrete Math. 126 (1994) 245-256.
[21] T. Politof, A. Satyanarayana, The structure of quasi 4-connected graphs, Discrete Math. 161 (1996) 217-228.
[22] P.J. Slater, A classification of 4-connected graphs, J. Combin. Theory Ser. B 17 (1974) 281-298.
[23] Jianji Su, The number of removable edges in 3-connected graphs, J. Combin. Theory Ser. B 75 (1) (1999) 74-87.
[24] Jianji Su, Xudong Yuan, Contractible edges in 7-connected graphs, Graphs Combin. 21 (2005) 445-457.
[25] Jianji Su, Xudong Yuan, A new degree sum condition for the existence of contractible edge in a k-connected graphs, J. Combin. Theory Ser. B 96 (2006) 276-295.
[26] W.T. Tutte, A theory of 3-connected graphs, Nederl. Akad. wet. Proc. Ser. A 64 (1961) 441-455.
[27] Jichang Wu, Xueliang Li, Jianji Su, The number of removable edges in 4-connected graphs, J. Combin. Theory Ser. B 92 (2004) 13-40.
[28] Liqiong Xu, Xiaofeng Guo, Removable edges in a 5-connected graph and a construction method of 5-connected graphs, Discrete Math. 308 (2008) 1726-1731.
[29] Jianhua Yin, Removable edges in 4-connected graphs and the structure of 4-connected graphs, J. Sys. Sci. Math. Sci. 19 (4) (1999) 434-438.

[^0]: The Project Supported by NSFC, the 985 Invention Project on Information Technique of Xiamen University (2004-2007), the Natural Science Foundation of Guangxi (No. 0640063), and the Science-Technology Foundation for Young Scientists of Fujian (2007F3070).

 * Corresponding author.

 E-mail address: xfguo@xmu.edu.cn (X. Guo).

