

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Removable edges in a k-connected graph and a construction method for k-connected graphs *

Jianji Su^a, Xiaofeng Guo^{b,*}, Liqiong Xu^c

- ^a School of Mathematical Sciences, Guangxi Normal University, Guilin Guangxi 541004, China
- ^b School of Mathematical Sciences, Xiamen University, Xiamen Fujian 361005, China
- ^c School of Sciences, Jimei University, Xiamen Fujian 361021, China

ARTICLE INFO

Article history: Received 5 October 2007 Received in revised form 29 August 2008 Accepted 3 September 2008 Available online 27 September 2008

Keywords: Removable edge Contractible edge Quasi connectivity θ^+ -operation

ABSTRACT

An edge e of a k-connected graph G is said to be a removable edge if $G \ominus e$ is still k-connected, where $G \ominus e$ denotes the graph obtained from G by deleting e to get G - e and, for any end vertex of e with degree k-1 in G-e, say e, deleting e and then adding edges between any pair of non-adjacent vertices in e0. Xu and Guo [Liqiong Xu, Xiaofeng Guo, Removable edges in a 5-connected graph and a construction method of 5-connected graphs, Discrete Math. 308 (2008) 1726–1731] proved that a 5-connected graph e0 has no removable edge if and only if e1 is said to be a quasi (e2 if e3 is an information method for 5-connected graphs. A e4-connected graph e6 is said to be a quasi (e4 information method for 5-connected graphs, J. Math. Study 35 (2002) 187–193] conjectured that for e6 is the minimum degree of a minimally quasi e6 is isomorphic to either e7 in the present paper, we prove this conjecture and prove for e6 is seed on this result, a construction method for e6 has no removable edge if and only if e6 is isomorphic to either e6 if has a construction method for e7. In the graph obtained from e8 by removing a 1-factor. Based on this result, a construction method for e8-connected graphs is given.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Graph theoretic terminology used here generally follows that of Bondy [5]. We consider only finite and simple graphs. Let k be an integer such that $k \ge 2$ and G be a k-connected graph. An edge e of G is said to be k-contractible if the contraction of the edge results in a k-connected graph. Tutte [26] proved that every 3-connected graph with order at least 5 contains a 3-contractible edge, using this result, he gave a construction methods for 3-connected graphs. A construction methods of 4-connected graphs was given by Slater [22]. A non-complete k-connected graph G is called *contraction-critical* k-connected if every edge of G is not K-contractible. Contractible edges in K-connected graphs and properties of contraction-critical K-connected graphs are investigated by Mader, Egawa, Enomoto, Ando, Kriesell, Kawarabayashi, Su Jianji, and Yuan Xudong et al. [1–3,7,8,12–17,19,24,25].

For removable edges of *k*-connected graphs, Holton et al. [10] first defined removable edges in a 3-connected graph. Later, Yin Jianhua [29] defined removable edges in a 4-connected graph. The distribution of removable edges in 3-connected and 4-connected graphs has been studied (see [23,27]). Recently, Xu and Guo [28] generalized the concept of removable edges in a 3-connected graph and a 4-connected graph to *k*-connected graphs.

E-mail address: xfguo@xmu.edu.cn (X. Guo).

[†] The Project Supported by NSFC, the 985 Invention Project on Information Technique of Xiamen University (2004–2007), the Natural Science Foundation of Guangxi (No. 0640063), and the Science-Technology Foundation for Young Scientists of Fujian (2007F3070).

^{*} Corresponding author.

Definition 1 ([28]). Let G be a k-connected graph, and let e be an edge of G. Let $G \ominus e$ denote the graph obtained from G by the following operation: (1) delete e from G to get G - e; (2) for any end vertex of e with degree e in e in

Barnette and Grunbaum [4] proved that a 3-connected graph of order at least five has a removable edge. Based on the above graph operation and fact, a constructive characterization of minimally 3-connected graphs was given by Dawes [6], which differs from the characterization provided by Tutte [26].

The graph C_n^2 , for an integer $n \ge 4$, is defined as follows. Let $C_n = v_1 v_2 \cdots v_n v_1$ be an n-cycle. Then C_n^2 is obtained from C_n by adding edges $v_i v_j$ satisfying that $j \equiv i \pm 2 \mod n$, for each $1 \le i \le n$.

In [29], Yin Jianhua proved that the 4-connected graph without removable edges is either C_5^2 or C_6^2 . Based on this result, he provided a constructive characterization of 4-connected graphs, which is simpler than Slater's method [22].

On the other hand, Politof and Satyanarayana [20,21] introduced the concept of quasi 4-connected graphs and investigated their structure and properties, Mader [18] introduced the concept of n^+ -connected graph analogous to the quasi (n+1)-connected graph. Jiang Hongxing and Su Jianji [11] further investigated some properties of quasi k-connected graphs.

Let S be a vertex cut set of a graph G with |S| = k ($k \ge 2$). The vertex cut set S is said to be a *nontrivial k-vertex cut* of G, if the set of the components of G - S can be partitioned into two sets, each of which has to contain at least two vertices. A (k - 1)-connected graph is *quasi k-connected* if it has no nontrivial (k - 1)-vertex cut. Clearly, every k-connected graph is quasi k-connected. A quasi k-connected graph G is *minimally quasi k-connected* if G - uv is not quasi k-connected for all $uv \in E(G)$. Suppose that G is a quasi k-connected, $uv \in E(G)$, and G - uv is not quasi k-connected. Then either G - uv is not (k - 1)-connected, or G - uv is (k - 1)-connected, then in G - uv there is a nontrivial (k - 1)-vertex cut, hence $|V(G)| \ge (k - 1) + 2 \times 2 = k + 3$.

For the removable edges, non-removable edges, and quasi connectivity of a graph *G*, the following results are given in Refs. [28,11].

Theorem 1 ([28]). Let G be a k-connected graph of order at least k+3 ($k \ge 3$), and $xy \in E(G)$. Then xy is non-removable if and only if there exists $S \subseteq V(G-xy)$ with |S|=k-1 such that G-xy-S has exactly two components A, B with $|A| \ge 2$ and |B| > 2, moreover $x \in A$, $y \in B$.

Theorem 2 ([28]). Let G be a k-connected graph of order at least k + 3 ($k \ge 3$). Then G has no removable edge if and only if G is minimally quasi k-connected.

Theorem 3 ([11]). If G is minimally quasi 5-connected, then $\delta(G) = 4$.

For minimally quasi k-connected graphs, the following conjecture was posed by Jiang and Su in [11].

Conjecture 1 ([11]). If G is a minimally quasi k-connected graph with k > 4, then $\delta(G) = k - 1$.

Using Theorem 3, Xu and Guo [28] gave a construction method for 5-connected graphs, and pointed out that if Conjecture 1 is true then the conclusion of the following conjecture would hold.

Conjecture 2 ([28]). Let G be a k-connected $(k \ge 3)$. G has no removable edge if and only if either $G \cong K_{k+1}$ for k being odd, or G is isomorphic to either K_{k+1} or K_{k+1} for k being even (here K_{k+2}) denotes the graph obtained from K_{k+2} by deleting a 1-factor).

Let G be a minimally quasi k-connected graph. Let XY be an edge in G such that $K(G-XY) \ge k-1$. Then in G-XY there is a nontrivial (k-1)-vertex cut, say S. A connected component of G-XY-S is called a (XY,S)-fragment of G. A (XY,S)-fragment of G is called a (XY,S)-atom of G if G has the minimum number of vertices in all (XY,S)-fragments of G for every edge G in G with G is called a G if G and every nontrivial G if G is called a G if G i

Property 1. Let G be a minimally quasi k-connected graph, xy an edge in G such that $\kappa(G-xy) \ge k-1$, and S a nontrivial (k-1)-vertex cut of G-xy. Then (i) G-xy-S has at most three connected components; (ii) if G-xy-S has exactly three components, then the component containing neither x nor y is a trivial component that is a (xy, S)-atom of G; (iii) if G-xy-S has exactly two connected components, then every component has at least two vertices; (iv) if G is G-connected, then, for any G-fragment of G-connected, G-connected components, and G-connected components, and G-connected components.

For a subgraph C of G, when there is no ambiguity, we write simply C for V(C) (resp. |C| for |V(C)|).

Theorem 4 ([11]). Let k be an integer such that $k \ge 3$. If G be a minimally quasi k-connected graph with $\delta(G) = k$, and let A be a(xy, S)-atom of G. Then |A| = 2. Let $x \in A$ and $A = \{x, z\}$, then $xz \in E(G)$, d(x) = d(z) = k, and $|N(x) \cap N(z)| = k - 2$.

In this paper, we prove that Conjecture 1 holds, and using this result prove for $k \ge 3$ that a k-connected graph G has no removable edge if and only if G is isomorphic to either K_{k+1} or (when k is even) the graph obtained from K_{k+2} by deleting a 1-factor. Based on this result, we give a construction method for k-connected graphs.

2. Minimally quasi k-connected graphs

We now prove Conjecture 1.

Theorem 5. If G is a minimally quasi k-connected graph with k > 3, then $\delta(G) = k - 1$.

Proof. Assume that *G* is a minimally quasi *k*-connected graph. Since quasi *k*-connected graph is (k-1)-connected, $\delta(G) \ge k-1$.

If $\delta(G) \ge k$, then G is k-connected. Otherwise there would be a (k-1)-vertex cut T of G. Since G is quasi k-connected graph, T is a trivial (k-1)-vertex cut of G, and in G-T there is a component with only one vertex, implying $\delta(G) = k-1$, a contradiction.

It is easy to see that if G is both k-connected and minimally quasi k-connected, then G is a minimally k-connected graph, and so $\delta(G)=k$ by a result on minimally k-connected graph of Halin [9]. Hence for a minimally quasi k-connected G we have that $k-1 \le \delta(G) \le k$, moreover, if $\delta(G)=k$, then G is k-connected.

If $\delta(G) = k$, then G is both k-connected as well as minimally quasi-k-connected. For $uv \in E(G)$, since G - uv is (k - 1)-connected and is not quasi k-connected, by a discussion in introduction, we have $|V(G)| \ge k + 3$. Then, by Theorem 2, each edge of G is not removable.

By Theorem 4, we can choose a (xz, S)-atom A of G, where $A = \{x, y\}$, $xy \in E(G)$, d(x) = d(y) = k, $N(x) \cap N(y) = W = \{w_1, w_2, \ldots, w_{k-2}\}$, $z \in V(G) - A - S$. Let B = G - A - S, then $z \in B$. Since xy is non-removable, by Theorem 1, take a (xy, T)-fragment C of G such that $x \in C$, $y \in D = G - T - C$. It is easy to see that $A \cap C = \{x\}$, $A \cap D = \{y\}$, $z \in B \cap (C \cup T)$, and $W \subseteq S \cap T$. Noting that |W| = k - 2 and |S| = |T| = k - 1, if $W \neq S \cap T$, then $S \cap T = S = T$, and so $B \cap D = D - y \neq \emptyset$ and $C \cap B = S \cap T$. Similarly, we have $C \cap B = S \cap T$. Similarly, we have $C \cap B = S \cap T$. Similarly, we have $C \cap B = S \cap T$. Similarly, we have $C \cap B = S \cap T$.

For every $w_i \in W$, i = 1, 2, ..., k - 2, by Theorem 1, take a (yw_i, T_i) -fragment C_i of G such that $y \in C_i$, $w_i \in D_i = G - T_i - C_i$. Let $M_i = C_i \cap S$. In the following, $i, j \in \{1, 2, ..., k - 2\}$, $i \neq j$.

Claim 1. $A \cap C_i = \{y\}, A \cap T_i = \{x\}, S \cap D_i = \{w_i\}, M_i \neq \emptyset$. Moreover, if $|M_i| = 1$, then $B \cap C_i = \emptyset$, hence $|C_i| = 2$.

Observe (xz, S)-atom A and (yw_i, T_i) -fragment C_i of G. Clearly, $y \in A \cap C_i$, $w_i \in S \cap D_i$. Since $xy, xw_i \in E(G)$, $x \in A \cap T_i$, and so $A \cap C_i = \{y\}$, $A \cap T_i = \{x\}$, $A \cap D_i = \emptyset$. From $N(y) = S \cup \{x\}$, we have $S \cap D_i = \{w_i\}$, hence $B \cap D_i \neq \emptyset$. Note that $|(T_i - \{x\}) \cup \{w_i\}| = |T_i| = k - 1$ and G is k-connected, so $G - ((T_i - \{x\}) \cup \{w_i\})$ is connected, and $z \in B \cap D_i$. In this case, if $M_i = \emptyset$, then $B \cap C_i \neq \emptyset$, $T_i - \{x\}$ is a vertex cut of G. This implies that $|T_i - \{x\}| \geq k$, contradicting $|T_i - \{x\}| = k - 2$. Hence $M_i \neq \emptyset$. If $B \cap C_i \neq \emptyset$, then $(T_i - \{x\}) \cup M_i$ is a vertex cut of G, so $|(T_i - \{x\}) \cup M_i| \geq k$, implying $|M_i| \geq 2$. Therefore if $|M_i| = 1$, then $B \cap C_i = \emptyset$, $C_i = \{y\} \cup M_i$, $|C_i| = 2$.

By Claim 1, if k = 3, then $C_1 \cap A = \{y\}$, $C_1 \cap S = M_1 = \{s\}$, $C_1 \cap B = \emptyset$, $D_1 \cap S = \{w_1\}$, $T_1 \cap S = \emptyset$, $|T_1 \cap B| = 1$. Then $C_1 = \{y, s\}$, $|T_1| = 2$, $x \in T_1$, $d_G(s) \ge k = 3$, and so s must be adjacent to both x and y, $W = \{w_1, s\}$, contradicting that |W| = k - 2 = 1.

Hence suppose k > 4.

Claim 2. $C_i \cap C_i = \{y\}, M_i \cap M_i = \emptyset.$

Observe (yw_i, T_i) -fragment C_i and (yw_j, T_j) -fragment C_j of G. By Claim 1, it is easy to see that $y \in C_i \cap C_j, x \in T_i \cap T_j, z \in D_i \cap D_j, w_i \in D_i \cap (C_i \cup T_i), w_j \in D_j \cap (C_i \cup T_i)$. Then $(T_i - C_j) \cup (T_j - C_i)$ is a separator of G, $|(T_i - C_j) \cup (T_j - C_i)| \ge k$, implying that $|(T_i - D_j) \cup (T_j - D_i)| = |T_i| + |T_j| - |(T_i - C_j) \cup (T_j - C_i)| \le k - 2$. In this case, if $|C_i \cap C_j| \ge 2$, then $(T_i - D_j) \cup (T_j - D_i) \cup \{y\}$ is a (k - 1)-separator of G, which contradicts that G is K-connected. Hence $C_i \cap C_j = \{y\}$. Since $M_i \cap M_j \subseteq C_i \cap C_j = \{y\}$ and $Y \notin M_i \cap M_j$, $M_i \cap M_j = \emptyset$.

Claim 3. $|M_i| \ge 2$.

First observe (xz, S)-fragment A and (yw_i, T_i) -fragment C_i of G. By Claim 1, $|M_i| \ge 1$, $A \cap C_i = \{y\}$; moreover, if $|M_i| = 1$ and let $M_i = \{t\}$, then $B \cap C_i = \emptyset$ and $C_i = \{y, t\}$. Since $N(t) \subseteq T_i \cup \{y\}$ and G is k connected, d(t) = k, $N(t) = T_i \cup \{y\}$. Note that $t \in C_i$ and $w_i \in D_i$, then $t \ne w_i$. Since ty, $tx \in E(G)$, $t \in W$. Let $t = w_j$, then $C_i = \{y, w_j\}$, $N(w_j) = T_i \cup \{y\}$, w_j is not adjacent to w_i and is adjacent to every vertex in $S - \{w_i, w_i\}$.

Next observe (xz, S)-fragment A and (yw_j, T_j) -fragment C_j of G. By Claim 1, $S \cap D_j = \{w_j\}$ and $M_j \neq \emptyset$. From the fact that w_i is the unique vertex in $S - \{w_j\}$ not adjacent to w_j , we have $M_j = \{w_i\}$. Replacing M_i with M_j , a similar argument shows that $B \cap C_j = \emptyset$, $C_j = \{w_i, y\}$, $N(w_i) = T_j \cup \{y\}$, w_i is not adjacent to w_j and is adjacent to every vertex in $S - \{w_i, w_j\}$.

Take a (xw_i, T') -fragment C' of G such that $x \in C'$, $w_i \in D'$, where D' = G - T' - C'. For (xz, S)-fragment A and (xw_i, T') -fragment C' of G, it is easy to see that $x \in A \cap C'$, $w_i \in S \cap D'$, $z \in B \cap (C' \cup T')$. Note that $yx, yw_i \in E(G)$, then $A \cap T' = \{y\}$, $A \cap C' = \{x\}$. We assert $|S \cap D'| \ge 2$. Otherwise, $S \cap D' = \{w_i\}$, $B \cap D' \ne \emptyset$, hence $(T' - \{y\}) \cup \{w_i\}$ would be a (k-1)-separator of G, contrary to G is K-connected. Note that K is a unique vertex in K not adjacent to K, so K is a unique vertex in K not adjacent to K, so K is a unique vertex in K not adjacent to K, so K is a unique vertex in K not adjacent to K, so K is a unique vertex in K not adjacent to K, so K is a unique vertex in K not adjacent to K, so K is a unique vertex in K not adjacent to K, so K is a unique vertex in K is a unique vertex in K not adjacent to K, so K is a unique vertex in K in K in K in K is a unique vertex in K in K

Hence Claim 3 holds.

Now we complete the proof of Theorem 5.

By Claims 2 and 3, $M_i \cap M_j = \emptyset$, $|M_i| \ge 2$, $|M_j| \ge 2$. From $\bigcup_{i=1}^{k-2} M_i \subseteq S$, we have that

$$2(k-2) \le \sum_{i=1}^{k-2} |M_i| \le |S| = k-1.$$

This implies $k \le 3$, contrary to the assumption $k \ge 4$.

3. A recursive construction method for k-connected graphs

By the definition of a removable edge of k-connected graphs, Xu and Guo [28] defined the following operations.

Definition 2 ([28]). Let G be a k-connected graph with $k \ge 3$, let e be a removable edge of G, and let $H = G \ominus e$. Then H is said to be obtained from G by a θ^- -operation, denoted by $H = \theta^-(G)$, and G is said to be obtained from H by a θ^+ -operation, denoted by $H = \theta^-(G)$, and H is a H-operation, and vice versa.

Let *G* be a *k*-connected graph with $k \ge 3$, and let e = xy be a removable edge of *G*. Let $E_x = \{x_i x_j | x_i, x_j \in N_{G-e}(x), x_i x_j \notin E(G)\}$, and Let $E_y = \{y_i y_j | y_i, y_j \in N_{G-e}(y), y_i y_j \notin E(G)\}$.

A θ^- -operation for G is one of the following three operations:

- (1) if $d_G(x) \ge k + 1$ and $d_G(y) \ge k + 1$, $H = G \ominus e = \theta^-(G) = G e$;
- (2) if $d_G(x) = k$ and $d_G(y) \ge k + 1$, $H = G \ominus e = \theta^-(G) = G x + E_x$;
- (3) if $d_G(x) = d_G(y) = k$, $H = G \ominus e = \theta^-(G) = G x y + E_x + E_y$.

In order to give an exact definition of a θ^+ -operation, we need the following theorem.

For a k-connected graph G and a minimum vertex cut T of G, the vertex set of a connected component of G is called a T-fragment of G. A subset G of G is called a fragment of G if there is a minimum vertex cut G of G such that G is a G-fragment. A fragment of G is called an end fragment of G if any of its proper subsets is not a fragment of G.

Theorem 6. Let *H* be a *k*-connected graph with $k \ge 3$, let $X = \{x_1, x_2, ..., x_{k-1}\} \subset V(H)$ and $Y = \{y_1, y_2, ..., y_{k-1}\} \subset V(H)$. (i) If $H[X] \cong K_{k-1}$, then $G_X = (H - E_X) + x + \{xx_i | i = 1, 2, ..., k-1\} + xy$ is *k*-connected if and only if $\kappa(H - E_X) = \kappa(G_X - x) \ge k - 1$, where $E_X \subseteq E(H[X]), x \notin V(H), y \in V(H) - X$;

(ii) If $H[X] \cong K_{k-1}$ and $H[Y] \cong K_{k-1}$, then $G_{XY} = (H - E_X - E_Y) + x + y + xy + \{xx_i | i = 1, 2, ..., k-1\} + \{yy_i | i = 1, 2, ..., k-1\}$ is k-connected if and only if $|X \cap Y| \le k-2$, $\kappa(H - E_X - E_Y) = \kappa(G_{XY} - x - y) \ge k-2$, and, if $\kappa(H - E_X - E_Y) = \kappa(G_{XY} - x - y) = k-2$, any end fragment of $H - E_X - E_Y$ contains both a vertex in X and a vertex in Y, where $E_X \subseteq E(H[X])$, $E_Y \subseteq E(H[Y])$, E

Proof. The necessity is obvious. We need only prove the sufficiency.

- (i) If $\kappa(H E_X) = \kappa(G_X x) \ge k$, then G_X clearly is k-connected. Now suppose $\kappa(H E_X) = \kappa(G_X x) = k 1$. Let T be any minimum vertex cut of $H E_X$. Since H is k-connected, any fragment of $H E_X$ contains a vertex in X, and so T will not be a vertex cut in G_X . Hence G_X is k-connected.
- (ii) If $\kappa(H-E_X-E_Y)=\kappa(G_{XY}-x-y)\geq k-1$, then by reasoning similar to the proof of (i), G_{XY} is k-connected. Suppose $\kappa(H-E_X-E_Y)=\kappa(G_{XY}-x-y)=k-2$. For any minimum vertex cut T of $H-E_X-E_Y$, since any end fragment of $H-E_X-E_Y$ contains both a vertex in X and a vertex in Y, any connected component of $H-E_X-E_Y-T$ contains both a vertex in X and a vertex in Y, and so any one of T, $T\cup\{x\}$, and $T\cup\{y\}$ will not be a vertex cut of G_{XY} . For a vertex cut S of $H-E_X-E_Y$ with |S|=k-1, any connected component of $H-E_X-E_Y-S$ contains either a vertex in X or a vertex in Y, since Y is Y is Y is Y is also not a vertex cut of Y. Now it follows that Y is Y is Y-connected.

Definition 3. Let H be a k-connected graph with $k \ge 3$, and let $X = \{x_1, x_2, \dots, x_{k-1}\} \subset V(H)$ and $Y = \{y_1, y_2, \dots, y_{k-1}\} \subset V(H)$. Let G be a k-connected graph obtained from H by a θ^+ -operation. The θ^+ -operation is one of the following three operations:

- (1) $G = \theta^+(H) = H + xy$, where $x, y \in V(H)$, and $xy \notin E(H)$;
- (2) $H[X] \cong K_{k-1}$, $G = \theta^+(H) = H E_X + x + \{xx_i|i = 1, 2, ..., k-1\} + xy$, where $x \notin V(H)$, $y \in V(H) X$, and $E_X \subseteq E(H[X])$ such that $\kappa(H E_X) = \kappa(G x) \ge k 1$;
- (3) $H[X] \cong K_{k-1}$ and $H[Y] \cong K_{k-1}$, $G = \theta^+(H) = H E_X E_Y + x + y + xy + \{xx_i|i=1,2,\ldots,k-1\} + \{yy_i|i=1,2,\ldots,k-1\}$, where $x,y \notin V(H)$, $|X \cap Y| \le k-2$, and $E_X \subseteq E(H[X])$ and $E_Y \subseteq E(H[Y])$ such that $\kappa(H E_X E_Y) = \kappa(G x y) \ge k-2$, and, if $\kappa(H E_X E_Y) = \kappa(G x y) = k-2$, any end fragment of $H E_X E_Y$ contains both a vertex in X and a vertex in Y.

Theorem 7. Let G be a k-connected graph with $k \ge 3$. Then G has no removable edge if and only if G is isomorphic to either K_{k+1} or (when k is even) the graph obtained from K_{k+2} by deleting a 1-factor.

Proof. The sufficiency is obvious. We need only prove the necessity.

Suppose that *G* has no removable edge.

If $|V(G)| \ge k+3$, then, by Theorems 2 and 5, G is minimally quasi k-connected and $\delta(G) = k-1$, contradicting that G is *k*-connected. Hence $k + 1 \le |V(G)| \le k + 2$.

If |V(G)| = k + 1, then $G \cong K_{k+1}$.

If |V(G)| = k + 2 and k is even, then G can only be the graph obtained from K_{k+2} by removing a 1-factor.

If |V(G)| = k + 2 and k is odd, G is a spanning subgraph of K_{k+2} with $\delta(G) = k$. So G can be obtained from K_{k+2} by removing (k+1)/2 independent edges. Then G has a vertex of degree k+1 whose any incident edge would be a removable edge of G, a contradiction.

The proof is thus completed.

By Theorem 7, we can give a recursive construction method of k-connected graphs.

Theorem 8. Let G be a k-connected graph with $k \geq 3$. Then (i) G can be transformed by a number of θ^- -operations into either K_{k+1} or (when k is even) the graph $H_{(k+2)/2}$ obtained from K_{k+2} by deleting a 1-factor; (ii) G can be obtained from either K_{k+1} or $H_{(k+2)/2}$ by a number of θ^+ -operations.

Proof. (i) Let G be a k-connected graph with $k \geq 3$, and suppose that G is not K_{k+1} or (when k is even) $H_{(k+2)/2}$. Then, by Theorem 7, G has a removable edge, say e_1 , and $G_1 = \theta^-(G) = G \ominus e_1$ is a k-connected graph with less edges or less vertices than G. Repeating the above discuss, by the finiteness of G, we can obtain a series of k-connected graphs G_1, G_2, \ldots, G_t so that $G_{i+1} = \theta^-(G_i)$, $i = 1, 2, \dots, t-1$, and G_t is isomorphic to either K_{k+1} or (when k is even) $H_{(k+2)/2}$.

(ii) By using θ^+ -operations, G can be obtained from either K_{k+1} or (when k is even) $H_{(k+2)/2}$.

References

- [1] K. Ando, K. Kawarabayashi, A. Kaneko, Contractible edges in minimally k-connected graphs, SUT J. Math. 36 (1) (2000) 99–103.
- [2] K. Ando, K. Kawarabayashi, Some forbidden subgraph conditions for a graph to have a k-contractible edge, Discrete Math. 267 (2003) 3-11.
- [3] K. Ando, Trivially non-contractible edges in a contraction critically 5-connected graph, Discrete Math. 293 (2005) 61-72.
- [4] D.W. Barnette, D.B. Grünbaum, On Steinitz's theorem concerning convex 3-polytopes and some properties of planar graph, in: Many Facets of Graph Theory, in: Lecture Notes in Mathematics, vol. 110, Springer-Verlag, New York, 1966, pp. 27-40.
- [5] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press LTD, 1966.
- [6] R.W. Dawes, Minimally 3-connected graphs, J. Combin. Theory Ser. B 40 (1986) 159-168.
- [7] Y. Egawa, H. Enomoto, A. Saito, Contractible edges in triangle-free graphs, Combinatorica 6 (1986) 269–274.
- [8] Y. Egawa, Contractible Edges in n-connected graphs with minimum degree greater than or equal to $\lfloor \frac{5}{4}n \rfloor$, Graphs Combin. 7 (1991) 15–21.
- [9] R. Halin, A theorem on *n*-connected graphs, J. Combin. Theory 7 (1969) 150–154. [10] D.A. Holton, B. Jackson, A. Saito, N.C. Wormald, Removable edges in 3-connected graphs, J. Graph Theory 14 (4) (1990) 465–473.
- [11] Hongxing Jiang, Jianji Su, Minimum degree of minimally quasi (k+1)-connected graphs, J. Math. Study 35 (2002) 187–193.
- [12] K. Kawarabayashi, Note on contractible edges in k-connected graphs, Australas J. Combin. 24 (2001) 165–168.
- [13] K. Kawarabayashi, Contractible edges and triangles in k-connected graphs, J. Combin. Theory Ser. B 85 (2002) 207–221.
- [14] M. Kriesell, A degree sum condition for the existence of a contractible edge in a k-connected graph, J. Combin. Theory Ser. B 82 (2001) 81–101.
- [15] M. Kriesell, A survey on contractible edges in graphs of a prescribed vertex connectivity, Graphs Combin. 18 (2002) 1–30.
- [16] M. Kriesell, Closed separator sets, Combinatorica 25 (5) (2005) 575–598.
- [17] W. Mader, Generalization of critical connectivity of graphs, Discrete Math. 72 (1988) 267–283.
- [18] W. Mader, 3n-5 edges force a subdivision of K_5 , Combinatorica 18 (4) (1998) 569–595.
- [19] N. Martinov, Uncontractible 4-connected graphs, J. Graph Theory 6 (1982) 343–344.
- [20] T. Politof, A. Satyanarayana, Minors of quasi 4-connected graphs, Discrete Math. 126 (1994) 245–256.
- [21] T. Politof, A. Satyanarayana, The structure of quasi 4-connected graphs, Discrete Math. 161 (1996) 217-228.
- [22] P.J. Slater, A classification of 4-connected graphs, J. Combin. Theory Ser. B 17 (1974) 281–298.
- [23] Jianji Su, The number of removable edges in 3-connected graphs, J. Combin. Theory Ser. B 75 (1) (1999) 74-87.
- [24] Jianji Su, Xudong Yuan, Contractible edges in 7-connected graphs, Graphs Combin. 21 (2005) 445-457.
- [25] Jianji Su, Xudong Yuan, A new degree sum condition for the existence of contractible edge in a k-connected graphs, J. Combin. Theory Ser. B 96 (2006) 276-295.
- [26] W.T. Tutte, A theory of 3-connected graphs, Nederl, Akad, wet, Proc. Ser. A 64 (1961) 441-455.
- [27] Jichang Wu, Xueliang Li, Jianji Su, The number of removable edges in 4-connected graphs, J. Combin. Theory Ser. B 92 (2004) 13–40.
- [28] Liqiong Xu, Xiaofeng Guo, Removable edges in a 5-connected graph and a construction method of 5-connected graphs, Discrete Math. 308 (2008) 1726-1731.
- [29] Jianhua Yin, Removable edges in 4-connected graphs and the structure of 4-connected graphs, J. Sys. Sci. Math. Sci. 19 (4) (1999) 434-438.