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It is known that the powers m” of the maximal ideal of a local Noetherian ring
share certain homological properties for all sufficiently large integers n. For
example, the natural homomorphisms R — R/m" are Golod, respectively, small,
for all large n. We give effective bounds on the smallest integers » for which such
properties begin to hold.  © 2001 Academic Press

INTRODUCTION

Let R be a local commutative Noetherian ring with maximal ideal m
and residue field kK = R/m. We study homological properties of the
powers m” which hold for all large values of n.

One such property is established by Levin [19]; he proves that the
natural homomorphism R — R/m" is Golod for all large n. Lee [17]
defines the Golod invariant of R to be the smallest number s such that
R - R/m" is Golod for all n > s. The results of this paper are better
stated in terms of a Golod index G(R), defined to be one less than the
invariant introduced by Lee.

In order to study the Golod property, we consider two related homologi-
cal properties. One is based on the notion of small homomorphism
introduced by Avramov [3], and the other arises from Levin’s proof of his
theorem; we refer to the corresponding sections for precise definitions. We
define indices A(R) and L(R), in analogy to the Golod index. Results of
Avramov and Levin show that these are natural numbers that provide
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bounds for G(R) as
A(R) < G(R) < L(R).

We obtain bounds for A(R) and L(R) in terms of numerical invariants
of the associated graded ring gr,,(R) with respect to the m-adic filtration.
Recall that the ni-adic completion R has a minimal Cohen presentation
R = Q/a, with (Q,n) a regular local ring and a C n’>. We summarize
below our results:

_THEOREM 1. Let (R, m) be a local Noetherian ring with m # 0. Let
R = Q/a be a minimal Cohen presentation and let polreg(M) denote the
Castelnuovo—Mumford regularity of gr, (M) over gr,(Q). The following then
hold:

(1 infli > 1]la N n*? c na} < A(R) < L(R) < max{1, pol reg(R)}.

(2) If R is a complete intersection, then A(R) = inf{i > 1|ann*?
C nal.

(3) If R is a hypersurface or a Golod Artinian ring, then

A(R) = G(R) = L(R) = max{1, polreg(R)}.

4) IfedimR—dimR < 1, orif edim R <2, orif edim R = 3 and
R is a complete intersection, then A(R) = G(R).

(5) The graded k-algebra gr, (R) is Koszul if and only if L(R) = 1.

m

We study the behavior of the indices under factorization of regular
sequences. Part (2) of the next theorem answers partially a question of
Roos [28].

THEOREM 2. For each local Noetherian ring (R, m) the following hold.:

(1) Ifxis a regular element such that (x) # m, then A(R) < A(R/(x)).
(2) Ifx & m? and the initial form of x is gr, (R)-regular, then L(R) =
L(R/(x)).

The index L(R) is a particular case of an index defined in Section 3 for
any R-module M and denoted by Li(M). If polreg(M) denotes the
Castelnuovo-Mumford regularity of gr,,(M) over a certain polynomial
ring, then we obtain an inequality Lr(M) < polreg(M) + 1, which gives
the corresponding inequality of Theorem 1(1). We obtain an application to
delta invariants 8,§(M ), defined by Auslander et al. [2] when R is Goren-
stein and by Martsinkovsky [24] in general.

THEOREM 3.  If M is a finite module over a nonregular local ring (R, m, k),
then 83(m"M) = 0 for all i > 0 and all n > polreg(M).
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This generalizes a theorem of Yoshino [38], which shows that if R is
Gorenstein, then §i(m”) = 0 for all large n.

In Section 1 we discuss notions of regularity; the definitions involve
Castelnuovo—Mumford regularity over different graded rings of the associ-
ated graded module gr,,(M). In Section 2 we construct canonical homo-
morphisms

m

mM: Tor (M, k) — Torf«®(gr, (M), k),

which can be computed by means of free resolutions of either the first or
the second module argument. We show that M has a linear resolution,
meaning reg (M) = 0, if and only if the maps 7, are bijective for all i.

In Section 3 we introduce for each finite R-module M the index L (M)
and we bound it by polreg(M) + 1. As consequences, we obtain effective
versions of results of Levin and Avramov on Poincaré series and results
similar to those of Roos for the Bass series. Theorem 3 is proved in
Section 4. In Section 5 we define the index A(R) and use results of
Avramov [3] to establish the relevant parts of Theorems 1 and 2. In Section
6 we discuss the invariant G(R) and prove Theorem 1(4). We also prove
that if edim R — dim R < 1, then the ring R/m" is Golod for all integers
n > 2. Since the equality edim R — dim R = 0 characterizes regularity,
this generalizes Golod’s classical example [12].

In Section 7 we introduce the index L(R) by the formula L(R) = Lz(m)
and derive the equalities of Theorem 1(3) from results proved earlier in
the paper. We also prove Theorem 1(5), which extends a characterization
of graded Koszul algebras noted by Roos [28]. In particular, this shows that
if R is Koszul, that is, regz(k) = 0, then Ext%(k, k) is finitely generated as
a graded algebra under Yoneda product. While these two conditions are
equivalent for graded algebras, we give an example of a local ring for
which they are not.

In Section 8 we prove Theorem 2(2). In Section 9 we consider graded
rings. Adapting our definitions to this case, we prove that if R is a graded
Golod ring which is not a field, then A(R) = G(R) = L(R) =
max{1, pol reg(R)}. We end the paper with various examples.

1. REGULARITY OF MODULES

In this paper all rings are commutative Noetherian and all modules are
assumed finitely generated.

1.1. If Aisaring and a = a,,...,a, is a sequence of elements of A,
then K(a; A) denotes the Koszul complex on a. For an A-module N we
set K(a; N) =K(a; A) ® N and H,(a; N) = H,.(K(a; N)). If ¢: 4 -
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B is a ring homomorphism, then clearly K(a; A) ®, B = K(¢(a); B). If
the A-module structure of N is induced through the homomorphism ¢,
then we systematically identify K(a; N) and K(¢(a); N).

12. Let k be a field, let 4 = @ _ A4, be a commutative graded
algebra with 4, = k, and let N = & N "be a graded A-module. For
each d € Z we denote by N(d) the graded A-module with N(d), = N, .
We denote by A, the maximal homogeneous ideal of 4 and wrlte k for
the residue field A /A ., modulo the maximal homogeneous ideal of A.
The module N has a minimal graded free resolution

a; 2
G= - _>Gi_I’Gi—1_> = G, — G,,

where for each i the module G, is isomorphic to a direct sum of copies of
A(—j) and 9(G,) € (A, ,)G,_,. Any two minimal graded free resolutions
are isomorphic as complexes of graded A-modules, so the number of
direct summands of G; isomorphic to A(—j) is an invariant of N, called
the ijth graded Betti number ,BA(N ). The Castelnuovo—Mumford regularity
of N is the number

reg (N) =sup{s € Z | B, (N) #0 forsomeie N}.

We note that B,(N) = rank, Tor/"(N, k);; these numbers can be calcu-
lated from any free resolution of k or N over A.

1.3. Assume further that 4 = A,[A,]. We can present 4 as klul/I,
where k[u] is a polynomial ring over k with variables u = uy,...,u, in

degree 1 and [ is a homogeneous ideal. We define the polynomial
regularity of N by the formula

polreg(N) = regk[u](N).

The next lemma shows that the right-hand side does not depend on the
choice of the presentation.

1.4. LEMMA. If A = klul/I and A = klv]/J are two presentations as
above, then reg; ., (N) = reg,(N).

a B
Proof. The canonical maps k[u] — A < k[v] define a surjective homo-
morphism

K[u,v] = k[u] ®, k[v] > A
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through which both @ and B factor, so it suffices to prove that reg,,,(N)
= 1€, (V). Using induction on the number of variables in v, it suffices
to show that reg,(N) = regp,(N), where P = k[u] and v is a single
variable which acts on N through a surjective homomorphism y: P[v] — A
such that y|p = . Replacing v with the linear form v — ¥_, a;u;, where
a; € k are such that y() = a(Xi_, ajuj), we can assume vN = 0. By the
graded version of a well-known result (see [10, 1.6.13]) we have an exact

sequence
- > H;(u;N) > H;(u,v;N) > H,_,(u; N(—1))
=5 H; (u;N) = -
of Koszul homology. Since vN = 0, it splits into short exact sequences
0—->H,(u;N) >H,(u,v;N) > H,_(u; N(—1)) = 0.

The complex K(u; P), respectively K(u, v; P[v]), is a minimal graded free
resolution of k over P, respectively P[v]; hence we have

B /(N) = rank,(H,(u; N)); and BIY(N) = rank,(H,(u,v; N));.
Computing ranks from the exact sequences above, we obtain
BI(N) + By a(N) = BN

for all i, j € Z. These equalities show that the regularities coincide. ||

1.5. If a graded A-module N has finite length, then polreg(/N) can be
expressed as the largest integer s for which N, # 0. Indeed, let 4 = k[ul/I
be a presentation as in 1.3, with variables u = u,...,u,. Since K(u; N) is
a minimal free resolution of k over k[u], we have Tor*l“[(N,k),,, =
H,(u; N);,, =0 for all i >0 and all n>s and Torf"“((N, k)
H,(u,N),,,={y €N, luy =0} =N, # 0.

e+s

We extend next the notion of regularity to local rings. The notation for a
local ring is (R, m, k), where m is the maximal ideal and k is the residue
field.

1.6. For a local ring (R, n1, k) and an R-module M we denote by
gr(M) the associated graded module & _ m”"M/m"*'M with respect to
the m-adic filtration. Thus, gr(R) is a graded ring and gr(M) is a graded
gr(R)-module. Note that gr(R) is a polynomial ring if and only if R is
regular.
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We define the regularity of M over R by the formula

regr(M) = reggr(R)(gr(M))

and the polynomial regularity of M by the formula

polreg(M) = polreg(gr(M)).

1.7. As usual, R denotes the - -adic completion of R. We say that
Q/a is a Cohen presentation of R if R= Q/a, where (Q, 1, k) is a regular
local ring and «a an ideal of Q. If a is contained in n?, then we say that
the presentation is minimal. Cohen’s structure theorem guarantees that
such presentations always exist.

The ring R is R-flat, with maximal ideal m R; hence there are equalities
gr(R) = gr(R) and gr(M) = gr(M). Thus, the regularity of M over R, as
well as the polynomial regularity of M, do not change under m-adic
completion.

Let R = Q/a be a Cohen presentation. Since gr(R) is then a homomor-
phic image of gr(Q), which is a polynomial ring, we have

polreg(M) = polreg(gr(M)) = reggr(Q)(gr(M)) =regy(M).

1.8. ExaMPLE. The Loewy length of an R-module M, denoted by
/¢ n(M), is the smallest positive integer n for which m”M = 0. Recall by
1.5 that if gr(M) has finite length, then polreg(gr(M)) is equal to the
largest integer n such that gr(M), # 0; this is also the largest integer n
such that m”"M # 0. For an Artinian R-module M we have thus
polreg(M) =2/ (M) — 1.

1.9. EXAMPLE. Assume that R is a hypersurface; that is, R has a
Cohen presentation R = Q/(a), with a = (a) for some a € n. In this
case, polreg(R) = mult(R) — 1. Indeed, it is well known that mult(R) is
the smallest integer s such that @ € n®. By 1.7 the invariant polreg(R) is
equal to the Castelnuovo—Mumford regularity of gr(R) over the polyno-
mial ring gr(Q). If a* denotes the initial form of a in gr(R), then
gr(R) = gr(Q)/(a*); hence

0 - gr(Q)(—5) S gr(Q) — 0

is a minimal graded free resolution of gr(R) over gr(Q), so polreg(R) =
s — 1.



POWERS OF MAXIMAL IDEAL 833
2. LINEAR RESOLUTIONS

Let (R, m, k) be a local ring and set G = gr(R). An R-module M is
said to have a linear resolution if reg z(M) = 0. We describe next construc-
tions that will be used to characterize such modules.

2.1. Let X be a complex of R-modules filtered by subcomplexes

The associated graded complex (gr.(X), d) has
(erp(X))i,, = FF/F*!

and the differential d is induced by 4d.
If the complex X is minimal, that is, J(X) € mX, then it has a
filtration defined by F = m?~'X; for each i; that is

— eee cee -1
FP = - X, 2> X, >omX,_ | = > mf X, » mfX, - 0.

In this case we set E(X) = grp(X) and note that E(X) is a complex of
graded G-modules, with E(X), = gr(X;)(—i) for each i, and the differen-
tial d is homogeneous of degree 0.

2.2. For an R-module M we choose a minimal free resolution X of M
over R. It induces a map E(X) — gr(M). Choose a graded free resolution
U of gr(M) over G and choose a lifting of the identity map on gr(M) to a
morphism of complexes of graded G-modules ™: E(X) — U; this lifting is
unique up to homotopy. For each z € X; we denote z the class of z in
E(X),, = X;/mX,. Calculating Tor (M, k) from the resolution X and
TorP(gr(M), k) from the resolution U, we define homomorphisms of
R-modules AY as

A TorR (M, k) = X; & k - H,;(U &; k), = Tor?(gr(M), k),
N (z & 1) =cls(WM(2) & 1).
We then define 7M: Tor®(M, k) — Tor(gr(M), k) to be the composition

of AM with the inclusion TorZ(gr(M), k), = TorZ(gr(M), k).

2.3. PROPOSITION. Let (R,m, k) be a local ring, let M be a finite
R-module, and let X be a minimal free resolution of M over R. The following
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properties are equivalent:

(1) The module M has a linear resolution.
(2) E(X) is a minimal free resolution of gr(M) over G.

(3) E(X) is a free resolution of gr(M) over G.

(4) For each i the maps M

M

and \M are bijective.

(5)  For each i the map 7" is surjective.

The content of the proposition is more or less known; see also [16]. Due
to lack of a proper reference, we provide a proof, based on the next
lemma.

For each integer j we denote R{j} the R-module R, filtered by F? =
mr=J,

2.4. LEMMA. Let (R, m, k) be a local ring and let M be a finite R-mod-
ule. There exists a filtered resolution X' of M with X = EB;;  Rla;} for each
i >0, such that the associated graded complex is a minimal graded free
resolution of gr(M) over G.

Proof. For an element m € M we denote by m™* its initial form in
gr,. (M) and ord(m) the order of m*. Let m¥,..., m* be a minimal system
of homogeneous generators of gr, (M) over G and set a,; = ord(m;). By
[33, II-6, Corollary 2], the elements m,,...,m, generate M. Set X/, =
€B;=1R{a0j} and let d,: X; —> M be the surjection that sends to m; the
basis element corresponding to R{a,;}. The associated graded module of
X is Uy = @_,G(—ay;), and the map d,: U, - gr(M) induced by d, is
homogeneous and surjective. We set M, = Ker(d,) and consider the
filtration F, induced by X;. Note that gr,(X;) = Ker(d,). The resolution
X' is obtained by iterating this procedure. ||

Proof of Proposition 2.3. The implications (2) = (3) and (4) = (5) are
clear.

(1) > (2). Let X' be the filtered resolution of M from Lemma 2.4.
The associated graded complex has U; = @ | G(—aq,;). Since reg (M) =
0, we get a;; =i for all i and j; hence the filtration of X' is given by
FP = m?~'X]. The compatibility of this filtration with the differential
implies that X' is a minimal free resolution. Any two minimal free
resolutions of M over R are isomorphic, and such an isomorphism
preserves the filtration described above; hence U = E(X') = E(X).

(3) = (4). Both E(X) and U are graded free resolutions of gr(M)
over G, so H,,(\™ &; k) is bijective. Since the complex E(X) is minimal,
we have H,(E(X) &; k) = E(X) ®; k. The map v;: X, ®& k — (E(X)
®; k), ; defined by v(z ®1) =z &; 1 is clearly bijective. Since A} =
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H,(\M &; k), o v, for each i, the map AY is bijective, and so is 77,
because Tor(gr(M), k), = (E(X) &; k), , = 0 for i # p.

(5) = (1). The image of the map 7 is in Tor(gr(M), k),. If 7™ is
surjective for each i, then Tor¢(gr(M), k), = 0 for p # i; hence reg (M)
=0. 1

We defined the homomorphisms AM: TorX(M, k) — Tor(gr(M), k), in
terms of free resolutions of M and respectively gr(M). We show next that
one can also compute these maps using free resolutions of k. To do so, we
take a more general point of view.

2.5. Let X be a minimal complex of free R-modules. Since E(X),; , = 0
for p <iand E; ; = X;/m X, we have

H,(E(X)); = Z,(E(X)), € X;/mX;.

Recall that for each z € X; we denote Z its class in E(X), ;. We then
define canonical homomorphisms

v¥:H;(X) - H,(E(X)),, by setting v/*(cls(z)) = z.

If X and Y are two minimal complexes of R-modules, then an easy
calculation shows E(X ®, Y) = E(X) ®; E(Y) as complexes of graded
G-modules; hence for each i we have a map

vXeRY H(X & Y) - H,(E(X) & E(Y)),.

Let M and N be two R-modules. We consider them as complexes
concentrated in degree 0 and note that E(M) = gr(M) and E(N) = gr(N).
Let k*: X > M be a minimal free resolution of M over R and let «":
Y — N be a minimal free resolution of N over R. They induce morphisms
E(k™): E(X) — gr(M) and E(«Y): E(Y) — gr(N). For each graded free
resolution «Y: U — gr(M) of gr(M) over G and each graded free resolu-
tion k”: V' — gr(N) of gr(N) over G we consider morphisms of graded
complexes 1M: E(X) —» U and ": E(Y) — V as in 2.2; these morphisms
are unique up to homotopy. For each integer i we set

a ;= H,(E(X) & E(«x")), and B;; =H,(E(x¥) & E(Y)),.
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The commutative diagram below defines maps A,(M, N) as

A(M,N)
TorR(M, N) Tor? (gr(M), gr(N)),
vXOrN H,(:Meg gr(N));
Hl(X ®R N) _— H,(E(X) ®G gr(N)), —_— H,(U ®G gr(N)),
H,-(X@GKY)TE ai,i] H;(Usg KV):IE
V’X®RY HZ(LM®G LN),-
H(X® Y) —— H(EX)e®; EY), — H,(U & V)
H,(KX®RY)l; ﬁi,xl H (Ve V)IJ(;

pMeRY H,(gr(M) &g N);
H(M &, Y) —— H(g(M)®; E(Y)), —— H,(gri(M) &; V),

We note that A(M, k) coincides with the map AM defined at the
beginning of the section. Thus, these maps can be calculated from any
horizontal line of the diagram above, with N = k.

3. INDICES OF MODULES
Each homomorphism of R-modules ¢: M — N induces homomor-
phisms of graded vector spaces
Torf (¢, k): Torf(M, k) = Torf (N, k),
Exth(y, k): Exti(N, k) — Exth(M, k),
Exth(k, ¢): Exti(k, M) — Extji(k,N).

Let n be an integer. For each R-module M consider the canonical
inclusion

w: m"™M - m" M.

If ¢: (Q,n) — (R, m) is a surjective homomorphism of local rings, then
m"M = n"M, so the notation u{? will be used without reference to a
specific ring.

3.1. We define the Levin index of M over R by the formula
Lp(M) = inf{s > 1| Torf( u{p,k) =0 forall n>s}.

The isomorphism of functors Ext%(—, k) = Hom (Tor®(—, k), k) shows
that

Ly(M) =inf{s > 1| Ext}( uip, k) =0 forall n>s}.
Results of Levin [21] show that Lz(M) < oo; cf. 3.6 for more details.
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We define the Roos index of M over R by the formula
R (M) = inf{s > 1| Ext}(k, u{p’) = 0 forall n > s}.

Roos [26] noted that Levin’s arguments can be adapted to show that
Ry(M) < o,

Following [16], we say that a ring R is Koszul if its residue field has a
linear resolution; that is, regz(k) = 0. Recall that the notions of regularity
and polynomial regularity of local rings were discussed in the first section.

3.2. THEOREM. If (R, m) is a Koszul local ring and M is a finite
R-module, then

(1) regr(m'M) = max{reg (M) — i,0} for all i > 0.
() Lg(M) =regp(M) + 1.

3.3. THEOREM. For a finite module M over an arbitrary local ring R there
is an inequality

max{Lz(M), Ry(M)} < polreg(M) + 1.

We postpone the proofs for the moment, in order to give an application
of Theorem 3.3.
The Poincaré series of a finite R-module M is the formal power series

PR(t) = i rank, Tor* (M, k)t
i=0
The Bass series of M is the formal power series
I¥(t) = i rank, Exth(k, M)t
i=0
The Hilbert series of M is the formal power series
Hilby (¢) = i rank, (m'M,/m'" M)t
i=0

The following corollary contains effective versions of [6, 4.1.8; 21,
Theorem 2] (see also [6, 6.3.6]); we also include versions for Bass series.

3.4. COROLLARY. Set p = polreg(M). For each submodule M' con-
tained in mP* ! and for each integer n > p

P (1) = PR(£) + tPS.(1) (1) = 1§ (6) + 1} (1).
PR, (t) = HilbX.,,(—t)PE(t), 13"M(t) = Hilbk., (—t)Ik(¢).



838 LIANA M. SEGA

Proof. Let «a be the inclusion M' = M, let B be the inclusion M' <
m”*IM, and let y be the inclusion m”*'M < M. We have then a =
v o uP* Do B: hence

Torf(a, k) = Torf(y,k)eTorf(u?*D, k)oTorf( B, k).

Theorem 3.3 gives Tor®(u{#* Y, k) = 0; hence TorR(a, k) = 0. Consider
the short exact sequence

0->M3IMSM 0.

The long exact sequence obtained by applying TorX(—, k) splits into short
exact sequences. Computing ranks, we obtain the equality P, (1) = P2(¢)
+ tPR.(¢). The corresponding equality for the Bass series is obtained
similarly.

The expression for PR, (¢) can be deduced using the calculations in [21,
Theorem 2] or [6, 6.3.6]. Similar computations apply to the Bass series. |

Proof of Theorem 3.2. 'We choose a minimal free resolution Y of k over
R. By Proposition 2.3 the complex E(Y) is a minimal free resolution of k
over G. For all integers i and n we have

Torf(gr(M), k) = H,(gr(M) &; E(Y)) = H,(E(M & Y)),
Tor? (gr(m"M), k) = H;(gr(m"M) &; E(Y)) = H(E(m"M &, Y)).

Since E(m"M &, Y),.’p =EWM ®, Y) we further have

i,p+n

H(E(M & Y)),., ifp>i

HEOM & Y))y =\ 7 (M e, )),.. ifp=i.
These isomorphisms prove (1). In particular, we have regz(m"M) = 0 for
n > reg (M); hence the maps A!""™ are bijective by Proposition 2.3(4). As
shown in 2.5, we have AM""M = \,(m"M, k), and this map can be computed
from the last row of the diagram considered there, as the composition
H,(gr(m"M) &; i), o v"M®x¥ Since both IV and E(Y) are graded free
resolutions of k£ over G, the first map is an isomorphism. It follows that
p""MerY g bijective for all i and all n > reg,(M). To simplify notation,
we denote these maps by v and we recall their definition

m"M ®, Y,

L

v H(m"M 8 Y) > H(E(m"M & Y)), & (oo

v(cls(z)) =z + (m""'M &, Y)).

1
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We set [ = Lp(M) and r = regz(M). To prove the inequality r + 1 > [,
we show that the map

H(uip & YV):H(m"M & Y) > H(m""'M & Y)

iszero for all n >r + 1. Let z € m"M ® Y be a cycle of degree i, with
n>r+ 1. We regard z as a cycle of the subcomplex m”"~'M &, Y. Since
v{"~ D is bijective and v{"~D(cls(z)) = 0, it follows that z is a boundary in
m" M ®, Y.

We assume next that r + 1 > /. We want to prove that
TorC(gr(M), k);,, = 0 for all i, which contradicts r = regr(M). By the
above we have

i+r

Torf(gr(M), k), = H(E(M & Y)),,,.
Let z be an element of m"M &, Y; whose image z in E(M & Y), ;,, isa
cycle. We need to show that Z is a boundary of E(M &, Y). We regard
z as a cycle of E(m'M ®, Y). Since the map v{" is bijective, there ex-
ists a cycle z' € m'M ® Y, such that z=2" in E(m'M & Y), ;=
E(M ®;, Y), ;,,. The assumption that r >/ and the definition of / imply
that the map H(u{) & Y): Hin'M &, Y) » H(n'~'M &, Y) is zero;
hence z’ is a boundary of the complex m’~'M &, Y. It follows that z’ and
hence Z are boundaries of E(M &, Y). 1

3.5. For an arbitrary local ring (R, nm) we choose a minimal system of
generators g of m and set KX = K(g; R). If M is an R-module, then we
set K(M)=K(g; M) and H,(M) = H,(K(M)). For an R-homomor-
phism : M — M' we denote by H,(¢) the induced map H, (M) —
H,.(M'). If ¢: R — S is a surjective homomorphism of local rings with
Ker(¢) € m?, then ¢(g) is a minimal system of generators of the maximal
ideal of S. Thus, we can identify K® and K® &, S. If the R-module
structure of M is induced through the homomorphism ¢, then, as in 1.1,
we identify K(¢(g); M) and K(g, M) and let the notation K(M) refer to
either complex.

The complex Hom z(K®, M) is known to be isomorphic to K(M); cf.
[10, 1.6.10]. We denote by H*(M) its homology. Also, we denote by H*():
H*(M'’) - H*(M) the map induced by the homomorphism ¢: M — M’,
which is the k-dual of H,,(¢), and we make identifications similar ot those
above.

3.6. Levin [21, Lemma 1] proved that H, (u{?) for all large n. Also,
[21, Lemma 2] shows that H,(u{?) = 0 implies Tor®(u{?, k) = 0. In
particular, Lp(M) < oo
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3.7. Since the map H*( u§?) is dual to H, (u{P), it is also zero for all
large n. As noted by Roos [26], techniques similar to those of Levin show
that H*( u{?) = 0 implies that Ext%(k, u{?) = 0. In particular, Rz(M) <

w-

Proof of Theorem 3.3.  Since R is R-flat, with maximal ideal mR, there
are equalities L(M) = Lz(M) and R (M) = Rz(M). Thus, we can as-
sume that R has a minimal Cohen presentation R = Q/a. Since Q is
regular, the Koszul complex K¢ is a minimal free resolution of k over Q,
so Tor¢(—, k) = H, (=) and Ext§(k, —) = H*(—), in the notation of 3.5.
For any Q-module there are 1som0rphlsms H,(N) = H* (N), where

= dim(Q); cf. [10, 1.6.10]. We have thus

Ly(M) =inf{s > 1| H,(uip) =0 forall n>s}
=inf{s > 1 | H*(u{p) =0 forall n >s} = Ry(M).

By 3.5 the maps H . (u{?) and H*( u{}) do not depend on whether M is
viewed as a module over R or over Q. In our notation, 3.6 and 3.7
translate as

ax{Lr(M), Rg(M)} < Lo(M) = Ro(M) <.

Note that Q is a Koszul local ring, since gr(Q) is a polynomial ring over k,
and a minimal graded free resolution of k over this ring is given by the
Koszul complex on the variables. By 3.2 we have then L,(M) = reg,(M)
+ 1. To finish the proof, recall from 1.7 that reg,(M) = polreg(M). |

4. HIGHER DELTA INVARIANTS

For a finite module M over a Gorenstein local complete ring (R, nt)
Auslander defined the delta invariant 5,(M) to be the smallest integer n
such that there is an epimorphism X @ R" - M with X a maximal
Cohen—Macaulay module with no free summand. For an integer i > 0 he
defined the ith higher delta invariant 5x(M) by the formula &z(M) =
8x(Q%(M)), where Q%(M) denotes the ith syzygy module in a minimal
free resolution of M over R; cf. [2, Sect. 5].

If R is not regular, then Auslander proved that §;(k) = 0 for all i > 0;
cf. [2, 5.7]. Yoshino [38] studied the vanishing of the numbers §:(R/m")
for positive integers i and n. He conjectured that if R is not regular, then
they all vanish. One of his main results [38, (2.1)] shows that there exists an
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integer s such that §5(R/m") = 0 for all n > s and all i > 0, or, equiva-
lently, 85(m") = 0 for all n > s and all i > 0.

Analogs of higher delta invariants over arbitrary local rings are intro-
duced by Martsinkovsky [24], using Vogel cohomology [11]. It is proved in
[11] that Vogel cohomology, denoted EXt%(—, —), is a cohomology bifunc-
tor on the category of R-modules, and there is a natural transformation of
bifunctors, given by maps

ep(—, =) Exth(—,—) = Exth(—, —).

4.1. For a finite module M over a Gorenstein local ring R
Martsinkovsky [24] proves that 8;(M) is equal to the dimension of the
k-vector space

Ker(sp(M, k): Extp(M, k) — EXti,(M, k)).

When M = k, this dimension is zero for all i > 0 over any local ring R; cf.
[25, Theorem 6]. In general, set £4(M) = rank, Ker(ex(M, k)).

We use this definition of delta invariants to extend Yoshino’s result to
arbitrary local rings, to generalize it to submodules m"M of any finite
R-module, and to obtain bounds for the vanishing of &i(m"M).

4.2. THEOREM. If M is a finite module over a non-regular local ring
(R, m, k), then &X(m"M) =0 foralli = 0 and all n > Lz(M).
In particular, £X(m"M) = 0 for all i and all n > polreg(M).

Proof. For each integer n we set M, = m" 'M/m"M and form the
exact sequence

w7
0->m"M —m"'M->M, - 0.

It induces long exact sequences in cohomology, both for Ext and EXt. The
naturality of &j(—, k) implies that for each i there is a commutative
diagram
. Exth(ui®, k) . i .
Exti(m"~'M, k) Dl 0, Exti(m"M, k) ——— Extif '(M,, k)
a,’}(m”’lM,k)l s,"e(m”M,k)l a,"?”(M,,,k)l

A Exth( uf, k) A i .
Exti(m" M, k) DR ), Exti(m"M, k) —— Exti (M, k)
where &' and &' denote connecting homomorphisms. If n > Li(M), then
we have Exty(ufp), k) = 0 by the definition in 3.1; hence &' is injective.
Since mM, = 0, the map &"'(M,, k) can be identified with the natural
map &i"'(k, k) ® Hom,(M,, k). The map &} '(k, k) is injective by 4.1;
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hence so is s;"'(M,, k). The commutativity of the right-hand square
implies that gx(m"M, k) is injective; hence &3(m”"M) = 0. The last state-
ment of the theorem follows by 3.3. |

5. SMALL HOMOMORPHISMS

Let (R, 11, k) be a local ring and let ¢: R — S be a surjective homo-
morphism of rings. Due to the functoriality of Tor and Ext in the ring
variable there are homomorphisms of graded vector spaces

Tor¢ (k,k): Tor®(k, k) — Tors (k, k)
Ext} (k, k): Ext§(k, k) — Exti(k, k).
Recall that Ext}(k, k) is a homomorphism of k-graded algebras, where
multiplication on the Exts is given by the Yoneda products.
Following Avramov [3], we say that a surjective homomorphism ¢:
R — S is small if Tor{(k, k) is injective, or, equivalently, if the algebra

homomorphism Ext(k, k) is surjective.
For each integer n we consider the canonical homomorphism

p™: R - R/m".
By [3, 4.1] the homomorphism p™ is small for all large n.
5.1. We define the Avramov index by the formula
A(R) = inf{s = 0 p©* is small}.

We note that if p® is small for some integer s, then p™ is small for all
n > s. Indeed, if v: R/m" — R/m” is the induced map, then the functo-
riality of Tor gives

Tor?"(k, k) = Tor%(k, k)oTort" (k, k).

Thus, the definition of A(R) can be reformulated in terms similar to
those of the other indices:

A(R) = inf{s > 0| p" is small for all n > s}.

5.2. By [3, 3.9] a homomorphism ¢ is small if and only if the induced
homomorphism @: R — S is small. Thus, 4(R) = A(R) and we will
assume whenever necessary that R is complete, with Cohen presentation
R=0Q/a asin 1.7.
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For completeness, we include a proof of the following known result.

5.3. PROPOSITION. For a local ring (R, m, k) an inequality A(R) <1
holds if and only if Ext¥%(k, k) is generated as an algebra by its elements of
degree 1. Moreover, A(R) = 0 holds if and only if m = 0.

Proof. The inequality A(R) < 1 implies the surjectivity of the algebra
homomorphism Ext%e(k, k). Since Ext} ,,:(k,k) is the tensor algebra
over k generated by the elements of degree 1; cf. [27, Sect. 1, Remark 3],
the conclusion follows.

If R =k, then it is clear that A(R) = 0. Conversely, if A(R) = 0, then
we have an injection Torf"'(k, k): Torf(k, k) = m/m> — Tork(k, k) = 0;
hence m = 0 by Nakayama’s lemma. I

Recall that a ring R is said to be a complete intersection if the ideal a in
some Cohen presentation is generated by a Q-regular sequence. It is
known that this notion does not depend on the choice of the presentation;
cf. [3, 7.3.3], for example. If the ideal a is principal, then R is a
hypersurface.

5.4. PROPOSITION.A Let (R, m) be a local ring with m # 0 and minimal
Cohen presentation R = Q /a. The following then hold:

1 AR) = infli > 1|ann'"?cnal.
(2) If R is a complete intersection, then equality holds in (1).
(3) If R is a hypersurface, then A(R) = max{1, mult(R) — 1}.

@) If x is a regular sequence in R and m # (x), then A(R) <
A(R /(x)).

The proof is based on results about small homomorphisms from [3].

5.5. A DG algebra is a complex (A, d) with an unitary associative
product such that the differential satisfies the Leibnitz rule: d(ab) =
d(a)b + (—1)“ag(b), where |a| denotes the homological degree of a. In
addition, we assume DG algebras to be graded commutative; that is,
ab = (= 1)“Plpg for all a,b € A, and a’> = 0 when |a| is odd. We refer to
[6, 19] for details.

A system of divided powers on a DG algebra A is an operation that
associates to every element a € A of even positive degree a sequence of
elements a” € A with i =0,1,2,... satisfying certain axioms; cf. [14,
1.7.1]. A DG T-algebra is a DG algebra with divided powers which are
compatible with the differential, in the sense that d(a®) = d(a)a’~ P for
every a € A of positive even degree and every i > 1.
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By Gulliksen [13] and Schoeller [31] there exists a minimal free resolu-
tion of k over R which has a structure of a DG I'-algebra; it is obtained by
Tate’s procedure of adjoining divided powers variables (cf. [37]). We call it
a minimal Tate resolution of k over R. Note that Tor®(k, k) inherits a
structure of a DG I'-algebra.

Let A be a DG TI'-algebra and denote by A ., the ideal of elements of
positive degree. The module of T-indecomposables of A is the quotient of
A ., by the submodule generated by all elements of the form uv with
u,v € A, and w with w € A,;, n > 2. We denote ,(R) the module
of I'-indecomposables of Tor%(k, k).

The next result is our main tool in the study of small homomorphisms.

5.6 ([3, 3.1D. A surjective homomorphism of local rings ¢: R — § is
small if and only if the induced homomorphism 7, (¢): 7,(R) = 7,(S)
is injective.

We proceed to describe the maps 7 ,(¢) and 7,(¢).

5.7. By 5.2 we can consider a minimal Cohen presentation R = Q/a.
We then have S = Q/b for an ideal b D a. Since 7 (R) = Tor{(k, k), the
map 7,(¢) = Torf(k, k) is canonically identified with the natural map
n/n? - n/(b, n?). It is injective if and only if b € n% When this hap-
pens, (o) is bijective.

Assume that b C n® The proof of [14, Proposition 3.3.4] canonically
identifies 7,(R) with a/na and ,(S) with b /nb; under these identifica-
tions, ,(¢) is the natural homomorphism a/na — b/nb. This map is
injective if and only if a N nb C na, or, equivalently, if a minimal set of
generators of a can be completed to a minimal set of generators of b.

The behavior of smallness under factorization of a regular sequence is
described by the following result of Tate [37, Theorem 4] and Scheja [32,
Satz 1], in the form given by Gulliksen [14, 3.4.1].

5.8. Let x be a regular sequence in R and R = R/(x). The canonical
homomorphism ¢: R — R induces isomorphisms

m(¢): m(R) = 77']-(1_?) forj>3

and an exact sequence

0 - m(R) =5 ) (R) = (x)/m(x) = m(R) = a1 (R) - 0.

In particular, one sees from here: if R is regular, then m;(R) = 0 for
i # 1; if R is a complete intersection, then 7,(R) = 0 for i # 0, 1.
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5.9. LEMMA. Let (R, m, k) be a local ring, let ¢ be an ideal contained in
m?2, and let x be a regular sequence. Set S =R/c and denote by ¢ the
canonical homomorphism R — S. Also, set R = R/(x) and S = R/(c, x).
If the induced homomorphism @: R — S is small, then ¢ is small.

Proof.  The naturality of the module of indecomposables yields a com-
mutative diagram

(R o ()

o |

B 2 (3

Since @ is small, the map 7, () is injective. Also, 7 . ,(¢) is injective by
5.8, so the commutativity of the diagram implies that 7 _ ,(¢) is injective.
Since ¢ € m?, the map ,(¢) is bijective by 5.7. Thus, 7, (o) is injective;
hence ¢ is small by 5.6. |

Proof of Proposition 5.4. By 5.2 we can consider a minimal Cohen
presentation R = Q/a. Also, the hypothesis m # 0 implies that A(R) > 1.

(1) By 5.7 we have
inf{i > 1| ann'*2 cna} =inf{i > 1| 7,( p“* ") is injective}.

By 5.6 the index A(R) is an upper bound for the number on the right-hand
side.

(2) Let n>1 be an integer such that a N n"*? C na. Set § =
R/m"*! and ¢ = p"*D. Note that S = Q/b with b = (a,n"*!). We
have b € n? and a N nb c na, so 7,(¢) and m,(¢) are injective by 5.7.
Also, by 5.9 we have 7,(R) = 0 for i > 2, so 7, (¢) is injective, and then ¢
is small by 5.6.

(3) We have a = (a) and the multiplicity of R is equal to the
smallest integer n such that @ € n”. The equality 4(R) = max{1, mult(R)
— 1} then follows from (2).

(4) The inequality 4(R) < A(R/(x)) follows by applying Lemma 5.9
to ¢ = m"*!, where n = A(R/(x)). Note that n > 1; cf. 5.3. |

lS.lO. Remark. The proof above shows that the number inf{i > 1| a N
n'*? c na} does not depend on the minimal Cohen presentation R = Q /a
and is an invariant of the ring R; we denote it by s(R).
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5.11. Remark. If n > A(R), then Proposition 5.4(1) implies that a N

n"*! c na; that is, any minimal system of generators of a is part of a
minimal system of generators of (a, n").

6. GOLOD RINGS AND GOLOD HOMOMORPHISMS

A surjective homomorphism ¢: R — § is called Golod if

P(1)
(PE() — 1)

PY1) = T—

Levin [19, 3.15] proves that p™ is Golod for all large n.
6.1. We define the Golod index of R by the formula

G(R) = inf{s > 0| p is Golod for all n > s}.

Note that G(R) is one less than the Golod invariant G(R) introduced in
[17].

6.2. By [3, 3.5] a Golod homomorphism is small. In particular, one has
A(R) < G(R).

6.3. The condition G(R) = 0 holds if and only if R is a field. Indeed, if
G(R) = 0, then 6.2 implies that A(R) = 0; hence R is a field by 5.3. The
converse is clear.

Golod [12] studied local rings (R, m, k) satisfying

(1 + t)edim R

PR(t) = — .
(1) 1 — X7 rank H;(K*)¢/*!

Rings with this property are now called Golod rings. If R = Q/a is a
minimal Cohen presentation as in 1.7, then H(K®) = Tor4(R, k); hence
the projection Q — Q/a is a Golod homomorphism if and only if R is a
Golod ring.
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6.4. Poincaré series are invariant under completion, so a surjective
homomorphism ¢: R — S is Golod if and only if the induced homomor-
phism &: R — § is Golod. Thus, G(R) = G(R) and we may assume
whenever necessary that R is complete.

Next we show that in some cases the indices A(R) and G(R) are equal.

6.5. THEOREM. An equality ACR) = G(R) holds if one of the following
conditions is satisfied:

(1) R is Golod and Artinian. In this case both indices are equal to
polreg(R).

(2) edim R < dim R + 1.
(3) edim R = 2.
(4) edim R = 3 and R is a complete intersection.

The proof of Theorem 6.5 requires some preparation. One of the ideas
involved is to connect Golod rings to Golod homomorphisms. To do this
we use their cohomological characterizations. As in Section 5, 7,(R)
denotes the module of indecomposables of Tor. Its vector space dual
7*(R) = Hom (7, (R), k) is a graded Lie algebra, called the homotopy
Lie algebra of R; we refer to [4, Sect. 10] for details.

6.6. Avramov and Lofwall proved that a local ring S is Golod if and
only if 72(S) is a free Lie algebra and that a homomorphism ¢: R — S
is Golod if and only if the kernel of the induced map 7*(¢): w*(S§) —
7*(R) is a free Lie algebra; cf. [3, 3.5; 5, 3.4; 22, Corollary 2.4].

6.7. PROPOSITION. Let ¢: R — § be a surjective homomorphism of local
rings. If ¢ is small and the ring S is Golod, then the homomorphism ¢ is
Golod.

Proof. The map 7*(¢) is surjective by 5.6, and 7 '(¢) is bijective by 5.7.
Denoting by L the kernel of 7*(¢), we have L' = 0. If S is Golod, then
7 >2(S) is a free Lie algebra; cf. 6.6. Subalgebras of free Lie algebras are
free by [18, A.1.10]; hence L = L>? is free and ¢ is Golod by 6.6. 1

We recall two facts on Koszul complexes, using the notation of 3.5.

6.8 ([20, 1.6]). If there is an R-submodule V' of mK* with 2 = 0 and
such that

Z . (K®) cV+ B(K¥),

then the ring R is Golod.
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6.9 ([35, Sect. 2, Lemma 1]). If (Q, n, k) is a regular local ring and p is
a positive integer, then

J(n?'K2,) = 9(K?) nnPKC.

In view of Proposition 6.7, we plan to prove most of Theorem 6.5 by
showing that, under the given assumption, the ring R/m" is Golod for all
n > A(R). If edim R = dim R, that is, if R is regular, then by Golod’s
example [12] the ring R/m” is Golod for all n > 2. The next proposition
generalizes this result; the proof uses some ideas from [36, Sect. 2, Lemma
2; 34, Sect. 5, Lemma 2].

6.10. ProposITION. If (R, m, k) is a local ring with edim R < dim R +
1, then the ring R/m" is Golod for each integer n > 2.

Proof. By 6.4 we may assume that R has a minimal Cohen presentation
R = Q/a. Since edim R < dim R + 1 and Q is catenary, it follows that
ht a < 1. Since Q is factorial, there exist an element x € 1 and an ideal b
such that a = xb. Let s be the largest integer for which x € n®. We
denote by R the ring R/m”" = Q/(n", xb) and by T its maximal ideal.
Set K = K¢ and K = KR, By 3.5 we have

K=K®, R=K/(n",xb)K.
If 7 is a cycle in K of degree j > 1 and y is its preimage in K, then
d(y) =a+xb witha € n"K; ;and b € bK;_;.

Differentiating, we obtain xd(b) = —d(a) € n"*'K. Now K is a complex
of free Q-modules. If ¢,...,c, are the coefficients of d(b) in a basis of
K;_,,then xc, € n"*! for all i. Since x is not contained in n**" and Q is
a regular ring, we conclude that ¢; € n"*'~%; hence d(b) € n""'*K.

Let T),...,T, be a basis of K,, with d(T,) = g, for each i. Note that
gi---,8, minimally generate n; hence x = a,g, + - +a,g, with a; €
w1 For t =a,T, + -+ +a,T, we have t € 1~ 'K and d(¢) = x. Setting
u =y — tb, we then obtain

d(u) =a+xb—9(t)b +td(b) =a +ti(b) € n"K.

By 6.9 there is an element v € 1"~ 'K such that d(u) = d(v). Since u is a
cycle of positive degree in K, we have u — v = d(w) for some w € K. In
conclusion, any y € Z_ ,(K) can be written as

y=t+0+d(w) withbebandd em" 'K
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The submodule V' = (¢b, "~ 'K) is contained in T K. Indeed, if the ideal
b is not contained in T, then s > 2 and hence 7 € m. The product of any
two cycles of the form 7b + 7, with b € b and 7 € m" 'K is equal to
zero; hence the ring R is Golod by 6.8. |

To continue, we need two more results of Avramov et al. [8].

6.11 (8, 6.1]). Let S be a homomorphic image of a regular local ring
Q. If pd,(S) < 3, then there is a Golod homomorphism from a complete
intersection (of codimension less than 2) onto S.

6.12 ([8, 5.13]). Let (R,n1,k) be a local ring, let ¢ be an ideal
contained in m?, and set R = R/c. If the natural homomorphism R — R
is Golod and x = x,,..., x, is a regular sequence that can be extended to
a minimal generating set for ¢, then the induced homomorphism R /(x)
— R is Golod.

Proof of Theorem 6.5. Let n be an integer such that n > A(R); that is,
the map p™ is small. We may assume that A(R) > 0; hence n > 2
(otherwise, R is a field and both indices are zero). We have to prove that
p™ is Golod.

(1) For an ideal ¢ of R the canonical map R — R /¢ is small if and
only if ¢ = (0); cf. [3, 4.7]. We have thus m” = 0; hence p™ is Golod for
trivial reasons. By 1.5, polreg(R) is the largest integer s for which m* # 0,
hence A(R) = G(R) = polreg(R).

For the rest of the proof we assume that R = Q/a with (Q, n, k)
regular and a C n?; cf. 1.7.

(2) By Proposition 6.10, the ring R = R/m’® is Golod for each
s > 2, so Proposition 6.7 implies that p is Golod.

(3) By Scheja [32, Satz 9] the ring R = R/m” = Q/(a, n") is either
Golod or a complete intersection. If it is Golod, then p™ is Golod by
Proposition 6.7. Assume now that R is a complete intersection. By Remark
5.11, a minimal system of generators of a can be completed to a minimal
system of generators of (a,n”); hence a is generated by a regular
sequence. If dim R > 0, then codim R < 1, so the problem is settled by
(2). If dim R = 0, then a is generated by a maximal regular sequence and
thus (a, n") = a. Therefore m" = 0, and p"™ is the identity map.

(4) We have a = (x) for a regular sequence x =x,,...,x.. By
Remark 5.11, x is part of a minimal system of generators of (x, n"). Set
S=R/m"=Q/(n", x). If ¢ <1, then the assertion follows from (2). If
¢ > 2, then by 6.11 there exists a regular sequence x’ in (x') € (x, m”"), of
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length at most two, such that the map Q/(x') — § is Golod. Examining
the proof of [8, 2.17], we see that we can modify x’ to be either x,, x, or
x;. The conclusion then follows from 6.12. |

Comments. We proved that A(R) = G(R) for all complete intersec-
tions R with edim R < 3. It would be interesting to see whether there are
complete intersections of higher embedding dimension for which the
equality does not hold. So far I did not find any example of a local ring
with A(R) < G(R).

7. THE LEVIN INDEX OF A RING

7.1. We define the Levin index of the ring R by the formula

L(R) = Lp(m).

n—1

We set ™ = uf: m” - m”~ ! and note that u™ = u{*~Y; hence we

have
L(R) = inf{s > 1| Tor§(u™,k) =0 forall n > s}
= max{l, Ly(R) — 1}.

7.2. THEOREM. For a local ring R there are inequalities
G(R) < L(R) < max{1,polreg(R)}.

Proof. The proof of [19, 3.15] shows that if Tor%( u™, k) = 0 for some
n > 2, then p™ is Golod; this proves the first inequality. The second one
follows from Theorem 3.3. |

7.3. The proofs of [20, 21, 28; Theorem 2] contain calculations of the
Poincaré series based on a choice of an integer s > 2 such that
TorX(u™, k) = 0 for all n > s; hence Theorem 7.2 yields

P(1)
1 — > HilbR.(—t)PE(1)

m

PkR/m”(t) —

for each n > max{1, polreg(R)}.
The next proposition follows by combining 5.4(3) and 6.5(1) with 7.2.
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7.4. PROPOSITION. Let (R, m) be a local ring which is not a field. If R is
a hypersurface or a Golod Artinian ring, then

A(R) = G(R) = L(R) = max{1, polreg(R)}.

We characterize the rings that satisfy L(R) = 1. A similar result for
graded algebras is mentioned by Roos [28, Remark 3.4].

7.5. PROPOSITION. A local ring R is Koszul if and only if L(R) = 1. If R
is Koszul, then Ext*%(k, k) is generated by its elements of degree 1.

Proof. If R is Koszul, then 3.2 gives L(R) = max{1l,regz(R)} = 1.
Conversely, assume that L(R) = 1. We denote by (X, ¢) a minimal free
resolution of k over R and set U = E(X); this is the associated graded
complex of X with respect to the natural filtration, as defined in 2.1. The
fact that L(R) = 1 means that the natural map H,,(m"X) - H,(m" 'X)
is zero for all n > 1. To prove that R is Koszul, we show that the complex
U is acyclic. For all integers i and n the module H,(U),, , is the homology
of the complex

mrX L/ mUX o X /m X, S X m X

Let X be an element in Z,(U),,, for some i > 1; that is, x € m"X,; and
d(x) € m"*2X,, . Since the map H,(m""2X) - H,(m""'X) is zero, it
follows that d(x) = d(a) for some a € m""'X,. Thus x — a is a cycle of
X of positive degree; hence x —a = d(b) for some b € X, . Since
d(b) € m"X and the map H,(m"X) - H, (m" 'X) is zero, it follows
that d(b) = d(c) for some ¢ € m"~'X,, ,. We conclude that ¥ = 3(¢) in
U; hence U is acyclic and thus regz(k) = 0 by 2.3.
The last assertion follows by 5.3. |

For graded k-algebras, the converse of the last assertion of the proposi-
tion holds by [22, Theorem 1.2]. However, the converse does not hold for
local rings, as can be seen from the following example:

7.6. Let (Q, 1, k) be a 2-dimensional regular local ring and let u, v be
a system of parameters. We set a = (u®> + v, uv) and R=Q/a =
klu,v]/(u* + v3,uv). This is a local complete intersection such that
Exth(k, k) is generated in degree 1, cf. [36, Theorem 5]. Still, gr(R) =
klu,vl/(u? uv,v*) and B§F§® # 0; hence gr(R) and thus R is not Koszul.

8. REDUCTION BY A REGULAR SEQUENCE

In this section we study the behavior of the Levin index under factoriza-
tion of a regular sequence, in connection with a question of Roos. In
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[28, 29] he introduces the graded vector spaces
Spr = Im(Extz '(¢™, k)) € Extz'(R/m"*' k),
where ¢™: R/m"*! - R/m" is the canonical map, and considers the
following properties of the ring R:
() S,»=0forall n>s.

(Z) R satisfies .#, and the induced homomorphisms §
are bijective for n = 1,...,5 — 3.

m”

m

-
e

As pointed out in [28, Remark 3.4], a graded k-algebra R is Koszul if and
only if it satisfies .#,. In general, these properties measure how far the
algebra is from being Koszul.

8.1. Roos [28, 7(iv)] asks the following question: Let R be a
Cohen—Macaulay ring and R = R/(an R-sequence). Is any of the condi-
tions Z and/or ., true for R if and only if it is true for R? Although in
[28] the ring R is graded, the question makes sense for local rings as well.

The isomorphism of functors Hom,(Tor® ,(—, k), k) = Extz'(—, k)
shows that (.#,) is equivalent to L(R) < s. Thus, the question of Roos can
be partly reformulated as whether the Levin index is invariant under
factorization of a regular sequence. We show next that the answer is
negative, unless certain assumptions are made on the regular sequence.

8.2. Let (R, m) be a regular local ring with dim(R) > 0. If x is an
element in m”\ m"*! for some integer n > 1, then L(R) =1 and
L(R/(x)) =n — 1by 7.4 and 1.9.

A sequence x = x,,...,x,, of elements in R is called strictly regular if
the initial forms x¥,..., x* form a regular sequence. It is known and easy
to see that a strictly regular sequence is an R-sequence.

We give next a partial answer to Roos’s question.

8.3. THEOREM. If (R, m) is a local ring and x = x,..., x,, is a strictly
regular sequence in m \ m?>, then the following hold:
(1) L(R) = L(R/(x)).
(2) R satisfies .#, if and only if R /(x) satisfies /.
(3) R satisfies £, if and only if R /(x) satisfies ..
The proof of the theorem follows from Proposition 8.7 below. Here are
some preliminaries:

8.4 ([6,3.1]). Let X be a minimal Tate resolution of k over R (see 5.5)
and x a regular element in m\ m? If T € X, satisfies 9(T) = x, then
X/(x,T)X is a minimal free resolution of k over R/(x).
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8.5. LEMMA. Let (R, m, k) be a local ring, let x be an element of R, and
let T be an element of X, with 3(T) = x. If (m"*': x) c m" and d(Tc) €
m"*1X for some integer n and some ¢ € X, then Tc € m"X.

Proof. The Leibnitz rule gives d(Tc) = xc — Td(c). Multiplying by T,
we obtain T9(Tc) = T(xc) = x(Tc). This implies that x(7Tc) € m"*'X. We
set b = Tc € X, (where s is the homological degree). Since X, is a free
R-module, we consider b,,...,b, to be the components of b in a basis.
Then b,x € m"*! for any i. The assumption on x implies b; € m"; hence
Tc € m"X. 1

8.6. If k is infinite, then each superficial element x which is regular
satisfies the condition (m"*': x) c m" for all large integers n; cf. [30,
Remarks, 1-9]. Such elements exist by [30, 3.2, I-8]. Also, if x € m \ m?
strictly regular, then (m”*': x) ¢ m” for all n > 0.

8.7. PROPOSITION.  Let (R, m, k) be a graded Noetherian ring, let x be a
regular element not contained in m?, and set R = R /(x) and ™ = m /(x).
For any positive integer n such that (im""': x) ¢ m” the following hold:

(1) The induced homomorphism S » — S, is surjective.

(2) The induced homomorphism S+ = 8,1 is injective.

Proof. We first reformulate the statement in terms of homology. For
each s we denote by U,,. the image of (Tor® (), k)) in Tor® ,(R/m?, k).
In view of the isomorphisms Hom(Tor® (—, k), k) = Extz '(—, k), we
conclude that U, . is canonically isomorphic to the vector-space dual of
S .+ Thus, for (1) we have to prove that the induced map U,,» — U, is
injective and for (2) we have to prove that the induced map U,,»-1 = Ugn—
is surjective.

Let X be a minimal Tate resolution of £ over R. By 8.4 the complex
X/(x,T)X is a minimal free resolution of k over R/(x), where T € X,
satisfies d(T) = x. For all integers i we identify T0r>1(R/rn k) with

H_,(X/m'X) and Tor® (R/m', k) with H_ (X /(m’, x, T)X). Overbars
denote residue classes, as appropriate to the context.

(1) Let cls(y) be an element of H. ,(X/m""'X) whose image in
Uy 1s zero.

Thus d(y) € m""'X and

y=24d(a) +b+x +Tg withbem"Xanda,c,g €X.



854 LIANA M. SEGA

The Leibnitz rule gives xc = d(Tc) + Td(c) and we obtain

y=2d(a) +b+ d(Tc) + To(c) + Tg = d(a’) + b + Tg’
with a’, g’ € X.

Differentiating, we get d(Tg’) = d(y) — d(b). Since d(y) € m"*'X and
b € m"X, we obtain J(Tg') € m"*1X. By Lemma 8.5 we have Tg' € m"X
and thus y is a boundary in X/m”"X. We thus have cls(¥) =0 in
H_ (X/m"X); hence the map U,.» — Uy, is injective.

m nt

(2) Forcls(y) € H, (X/(m", x,T)X) we have
d(y) =a+xb+ Tc witha € m"X and b,c € X.
The Leibnitz rule gives xb = d(Th) + Td(b) and thus
d(y —Tb) =a + Tc' withc' €X.

Differentiating, we obtain Jd(Tc¢’) = —d(a); since a € m"X, we have
d(a) € m""'X. Lemma 8.5 yields Tc’ € m"X; hence d(y — Th) € m"X.
We conclude that 5 — 7b is a cycle in X/m"X and thus cls(y) is the
image of cls(y — Th) € H, (X/m"X). Thus, the induced map
H. (X/m"X) - H_ (X/(m", x, T)X) is surjective. This implies the sur-

jectivity of the map U »-1 = Ugu-1. |

9. GRADED RINGS

In this section we consider graded Noetherian rings. Let & be a field.
Adapting the notation of a local ring, we denote by (R, n1, k) a graded
Noetherian ring R = @_ R, satisfying R = R [R,], with maximal irrele-
vant ideal m = @ R, and R, = k. We use the notation k also for the
residue field R/m. All R-homomorphisms are assumed to be homoge-
neous. The notions and results used so far have analogous graded versions.
We only mention that the notion corresponding to a minimal Cohen
presentation is a presentation of the form R = kluy,...,u,]/a, with a
homogeneous ideal a € n?, where n = (u,...,u,) and that the Koszul
complexes K® are understood as K® = K(g, R) for a chosen basis g of
R,. Also, Tate resolutions become graded resolutions in a natural way.

9.1. Let R = kluy,...,u,]/a be a minimal presentation as above. We
noted in Remark 5.10 that the number s(R) = infi > 1 |a N n'*? c na}
does not depend on the choice of the presentation. It is easy to see that
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s(R) is equal to 1 if a = (0) and is one less the maximum of the degrees of
a minimal system of generators of a, otherwise.

All the results of this paper have analogous versions for graded rings.
There are also some improvements of the statements, which are collected
in the next theorem.

9.2. THEOREM. Let R be a graded ring as above, which is not a field.

(1) The ring R is Koszul if and only if ACR) =1, if and only if
G(R) = 1, and if and only if L(R) = 1.

(2) s(R) < A(R) < L(R) < max{1, polreg(R)}.

(3) If R is a complete intersection, then A(R) = s(R).

(4)  If a linear form y is a non-zero divisor, then L(R) = L(R /(y)).
(5) IfRis Golod, then A(R) = G(R) = L(R) = max({1, pol reg(R)}.

The proofs of (1)—(4) are mainly contained in the previous sections. The
only part that needs a proof is (5).

9.3. We denote by MH(K®) the set of all matric Massey products of
H. (K®), as defined in [23, Sect. 1]. It is a submodule of H. ,(K®),
containing the usual products. The map H(K¥): K® — K* induced by a
homomorphism of local rings @: R — S satisfies H(K*)MH(K*)) c
MH(K®) (see [23, 3.10]). By [3, 4.6], if ¢ is small then the induced
homomorphism

¢:H_ (K*)/MH(K") - H_ (K*)/MH(K?)

is injective. Also, Golod [12] shows that the ring R is Golod if and only if
MH(KR) = 0; cf. [5, (2.3)]. For our purposes, we will use the graded
version of these results.

Proof of Proposition 9.2(5). Set n = A(R) + 1 and § = R/m". In par-
ticular, the map p™: R — § is small. Note that n > 2 by 5.3. Since R is a
Golod ring, we have MH(K®) =0 by 9.3 and then the induced map
H. (K®) - H_ (K?) is injective by 9.3. Set s = polreg(R). There exists
then an integer i such that H,(K%), # 0; hence H,(K?®),,, # 0. Since
K% =K®/m"K® by 3.5, we observe that H(K?), = 0 for all j > n +i.
We conclude that i + s < n + i; that is, n > s, and hence A(R) > 5. From
Theorem 9.2(2) we also know that L(R) < max{l, s}, so the inequalities
between the indices give the desired equalities. [l

Comments. By 6.5 and 9.2(5) all Golod rings R which are either
hypersurfaces, or local and Artinian, or graded satisfy the equality A(R) =



856 LIANA M. SEGA

G(R). I do not know whether Golod local rings of positive dimension
satisfy this equality.

9.4. If R is a complete intersection on quadrics, then R is a Koszul
algebra. Thus s(R) = A(R) = G(R) = L(R) = 1, while polreg(R) =
codim R — 1. We note that all Koszul algebras which are not regular rings
satisfy s(R) = A(R) = 1; thus, the equality between these two invariants is
not specific to complete intersections.

9.5. Consider the ring R = k[u, v]/(u?, uv?). Since codim(R) = 1, this
ring is Golod by a result of Shamash [34, Sect. 5, Corollary (2)]. Note that
s(R) = 2 and polreg(R) = 3. By Theorem 9.2(5) we have A(R) = G(R) =
L(R) = 3. Thus, we have 4(R) > s(R) in this case.

9.6. Consider the ring R = k[u,v]/(u? v?). Since edim(R) < 2, we
know that 2 = s(R) = A(R) = G(R) by 6.5. Also, polreg(R) = 4 and we
can see that L(R) = 4. Indeed, by Tate [37, Theorem 4] a minimal free
resolution of k£ over R has the form

X=RS,Y,UV|dU) =u,d(V)=v,d(S) =uU,d(T) =0vV).

Express Tor® (R/m* k) as H_(X/m*X) and Tor® (R/m’ k) as
H. (X/m’X). For degree reasons, the image of u?UT is a cycle in
X/m*X, which is not a boundary in X/m3X; hence the map
Tor® (R/m* k) - Tor® (R/m?, k) is not zero.
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