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It is known that the powers � n of the maximal ideal of a local Noetherian ring
share certain homological properties for all sufficiently large integers n. For
example, the natural homomorphisms R � R�� n are Golod, respectively, small,
for all large n. We give effective bounds on the smallest integers n for which such
properties begin to hold. � 2001 Academic Press

INTRODUCTION

Let R be a local commutative Noetherian ring with maximal ideal �
and residue field k � R��. We study homological properties of the
powers � n which hold for all large values of n.

� �One such property is established by Levin 19 ; he proves that the
n � �natural homomorphism R � R�� is Golod for all large n. Lee 17

defines the Golod invariant of R to be the smallest number s such that
R � R�� n is Golod for all n � s. The results of this paper are better

Ž .stated in terms of a Golod index G R , defined to be one less than the
invariant introduced by Lee.

In order to study the Golod property, we consider two related homologi-
cal properties. One is based on the notion of small homomorphism

� �introduced by Avramov 3 , and the other arises from Levin’s proof of his
theorem; we refer to the corresponding sections for precise definitions. We

Ž . Ž .define indices A R and L R , in analogy to the Golod index. Results of
Avramov and Levin show that these are natural numbers that provide
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Ž .bounds for G R as

A R � G R � L R .Ž . Ž . Ž .

Ž . Ž .We obtain bounds for A R and L R in terms of numerical invariants
Ž .of the associated graded ring gr R with respect to the �-adic filtration.�

ˆRecall that the �-adic completion R has a minimal Cohen presentation
ˆ 2Ž .R � Q�� , with Q, � a regular local ring and � 	 � . We summarize
below our results:

Ž .THEOREM 1. Let R, � be a local Noetherian ring with � � 0. Let
ˆ Ž .R � Q�� be a minimal Cohen presentation and let pol reg M denote the

Ž . Ž .Castelnuo�o�Mumford regularity of gr M o�er gr Q . The following then� �

hold:

Ž . � � i
2 4 Ž . Ž . � Ž .41 inf i � 1 � � � 	 �� � A R � L R � max 1, pol reg R .
Ž . Ž . � i
22 If R is a complete intersection, then A R � inf i � 1 � � � �
4	 �� .
Ž .3 If R is a hypersurface or a Golod Artinian ring, then

A R � G R � L R � max 1, pol reg R .� 4Ž . Ž . Ž . Ž .

Ž .4 If edim R 
 dim R � 1, or if edim R � 2, or if edim R � 3 and
Ž . Ž .R is a complete intersection, then A R � G R .

Ž . Ž . Ž .5 The graded k-algebra gr R is Koszul if and only if L R � 1.�

We study the behavior of the indices under factorization of regular
Ž .sequences. Part 2 of the next theorem answers partially a question of

� �Roos 28 .

Ž .THEOREM 2. For each local Noetherian ring R, � the following hold:

Ž . Ž . Ž . Ž Ž ..1 If x is a regular element such that x � � , then A R � A R� x .
Ž . 2 Ž . Ž .2 If x � � and the initial form of x is gr R -regular, then L R ��

Ž Ž ..L R� x .

Ž .The index L R is a particular case of an index defined in Section 3 for
Ž . Ž .any R-module M and denoted by L M . If pol reg M denotes theR
Ž .Castelnuovo�Mumford regularity of gr M over a certain polynomial�

Ž . Ž .ring, then we obtain an inequality L M � pol reg M 
 1, which givesR
Ž .the corresponding inequality of Theorem 1 1 . We obtain an application to

i Ž . � �delta invariants � M , defined by Auslander et al. 2 when R is Goren-R
� �stein and by Martsinkovsky 24 in general.

Ž .THEOREM 3. If M is a finite module o�er a nonregular local ring R, � , k ,
i Ž n . Ž .then � � M � 0 for all i � 0 and all n � pol reg M .R
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� �This generalizes a theorem of Yoshino 38 , which shows that if R is
i Ž n.Gorenstein, then � � � 0 for all large n.R

In Section 1 we discuss notions of regularity; the definitions involve
Castelnuovo�Mumford regularity over different graded rings of the associ-

Ž .ated graded module gr M . In Section 2 we construct canonical homo-�

morphisms

� M : Tor R M , k � Torgr � ŽR. gr M , k ,Ž . Ž .Ž .i i i �

which can be computed by means of free resolutions of either the first or
the second module argument. We show that M has a linear resolution,

Ž . Mmeaning reg M � 0, if and only if the maps � are bijective for all i.R i
Ž .In Section 3 we introduce for each finite R-module M the index L MR

Ž .and we bound it by pol reg M 
 1. As consequences, we obtain effective
versions of results of Levin and Avramov on Poincare series and results´
similar to those of Roos for the Bass series. Theorem 3 is proved in

Ž .Section 4. In Section 5 we define the index A R and use results of
� �Avramov 3 to establish the relevant parts of Theorems 1 and 2. In Section

Ž . Ž .6 we discuss the invariant G R and prove Theorem 1 4 . We also prove
that if edim R 
 dim R � 1, then the ring R�� n is Golod for all integers
n � 2. Since the equality edim R 
 dim R � 0 characterizes regularity,

� �this generalizes Golod’s classical example 12 .
Ž . Ž . Ž .In Section 7 we introduce the index L R by the formula L R � L �R
Ž .and derive the equalities of Theorem 1 3 from results proved earlier in

Ž .the paper. We also prove Theorem 1 5 , which extends a characterization
� �of graded Koszul algebras noted by Roos 28 . In particular, this shows that

Ž . � Ž .if R is Koszul, that is, reg k � 0, then Ext k, k is finitely generated asR R
a graded algebra under Yoneda product. While these two conditions are
equivalent for graded algebras, we give an example of a local ring for
which they are not.

Ž .In Section 8 we prove Theorem 2 2 . In Section 9 we consider graded
rings. Adapting our definitions to this case, we prove that if R is a graded

Ž . Ž . Ž .Golod ring which is not a field, then A R � G R � L R �
� Ž .4max 1, pol reg R . We end the paper with various examples.

1. REGULARITY OF MODULES

In this paper all rings are commutative Noetherian and all modules are
assumed finitely generated.

1.1. If A is a ring and a � a , . . . , a is a sequence of elements of A,1 e
Ž .then K a; A denotes the Koszul complex on a. For an A-module N we

Ž . Ž . Ž . Ž Ž ..set K a; N � K a; A � N and H� a; N � H� K a; N . If � : A �A
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Ž . Ž Ž . .B is a ring homomorphism, then clearly K a; A � B � K � a ; B . IfA
the A-module structure of N is induced through the homomorphism �,

Ž . Ž Ž . .then we systematically identify K a; N and K � a ; N .

1.2. Let k be a field, let A � �� A be a commutative gradednn�0
algebra with A � k, and let N � �� N be a graded A-module. For0 nn�0

Ž . Ž .each d � � we denote by N d the graded A-module with N d � N .p d
p
We denote by A the maximal homogeneous ideal of A and write k for

the residue field A�A modulo the maximal homogeneous ideal of A.�1
The module N has a minimal graded free resolution

� �i 1
G � ��� � G � G � ��� � G � G ,i i
1 1 0

where for each i the module G is isomorphic to a direct sum of copies ofi
Ž . Ž . Ž .A 
j and � G 	 A G . Any two minimal graded free resolutionsi i �1 i
1

are isomorphic as complexes of graded A-modules, so the number of
Ž .direct summands of G isomorphic to A 
j is an invariant of N, calledi

AŽ .the ijth graded Betti number � N . The Castelnuo�o�Mumford regularityi j
of N is the number

reg N � sup s � � � � A N � 0 for some i � � .Ž . Ž .� 4A i , i
s

A Ž . AŽ .We note that � N � rank Tor N, k ; these numbers can be calcu-i, j k i j
lated from any free resolution of k or N over A.

� � � �1.3. Assume further that A � A A . We can present A as k u �I,0 1
� �where k u is a polynomial ring over k with variables u � u , . . . , u in1 r

degree 1 and I is a homogeneous ideal. We define the polynomial
regularity of N by the formula

pol reg N � reg N .Ž . Ž .k� u �

The next lemma shows that the right-hand side does not depend on the
choice of the presentation.

� � � �1.4. LEMMA. If A � k u �I and A � k � �J are two presentations as
Ž . Ž .abo�e, then reg N � reg N .k� u � k�� �

�	� � � �Proof. The canonical maps k u � A � k � define a surjective homo-
morphism

� � � � � �k u , � � k u � k � � Ak
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Ž .through which both 	 and � factor, so it suffices to prove that reg Nk� u �
Ž .� reg N . Using induction on the number of variables in � , it sufficesk� u, � �

Ž . Ž . � �to show that reg N � reg N , where P � k u and � is a singleP P �� �
� �variable which acts on N through a surjective homomorphism 
 : P � � A

� rsuch that 
 � 	 . Replacing � with the linear form � 
 Ý a u , whereP j�1 j j
Ž . Ž r .a � k are such that 
 � � 	 Ý a u , we can assume �N � 0. By thej j�1 j j

Ž � �.graded version of a well-known result see 10, 1.6.13 we have an exact
sequence

��� � H u; N � H u , � ; N � H u; N 
1Ž . Ž . Ž .Ž .i i i
1

�� �

H u; N � ���Ž .i
1

of Koszul homology. Since �N � 0, it splits into short exact sequences

0 � H u; N � H u , � ; N � H u; N 
1 � 0.Ž . Ž . Ž .Ž .i i i
1

Ž . Ž � �.The complex K u; P , respectively K u, � ; P � , is a minimal graded free
� �resolution of k over P, respectively P � ; hence we have

� P N � rank H u; N and � P �� � N � rank H u , � ; N .Ž . Ž . Ž . Ž .Ž . Ž .j ji , j k i i , j k i

Computing ranks from the exact sequences above, we obtain

� P N 
 � P N � � P �� � NŽ . Ž . Ž .i , j i
1, j
1 i , j

for all i, j � �. These equalities show that the regularities coincide.

Ž .1.5. If a graded A-module N has finite length, then pol reg N can be
� �expressed as the largest integer s for which N � 0. Indeed, let A � k u �Is

Ž .be a presentation as in 1.3, with variables u � u , . . . , u . Since K u; N is1 e
� � k� u �Ž .a minimal free resolution of k over k u , we have Tor N, k �i i
n

Ž . k� u �Ž .H u; N � 0 for all i � 0 and all n � s and Tor N, k �i i
n e e
s
Ž . � 4H u, N � y � N � uy � 0 � N � 0.e e
s s s

We extend next the notion of regularity to local rings. The notation for a
Ž .local ring is R, � , k , where � is the maximal ideal and k is the residue

field.

Ž .1.6. For a local ring R, � , k and an R-module M we denote by
Ž . � n n
1gr M the associated graded module � � M�� M with respect ton�0

Ž . Ž .the �-adic filtration. Thus, gr R is a graded ring and gr M is a graded
Ž . Ž .gr R -module. Note that gr R is a polynomial ring if and only if R is

regular.
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We define the regularity of M over R by the formula

reg M � reg gr MŽ . Ž .Ž .R grŽR.

and the polynomial regularity of M by the formula

pol reg M � pol reg gr M .Ž . Ž .Ž .

ˆ1.7. As usual, R denotes the �-adic completion of R. We say that
ˆ Ž .Q�� is a Cohen presentation of R if R � Q�� , where Q, � , k is a regular

local ring and � an ideal of Q. If � is contained in � 2, then we say that
the presentation is minimal. Cohen’s structure theorem guarantees that
such presentations always exist.

ˆ ˆThe ring R is R-flat, with maximal ideal � R; hence there are equalities
ˆ ˆŽ . Ž . Ž . Ž .gr R � gr R and gr M � gr M . Thus, the regularity of M over R, as

well as the polynomial regularity of M, do not change under �-adic
completion.

ˆ Ž .Let R � Q�� be a Cohen presentation. Since gr R is then a homomor-
Ž .phic image of gr Q , which is a polynomial ring, we have

pol reg M � pol reg gr M � reg gr M � reg M .Ž . Ž . Ž . Ž .Ž . Ž .grŽQ . Q

1.8. EXAMPLE. The Loewy length of an R-module M, denoted by
Ž . nll ll M , is the smallest positive integer n for which � M � 0. Recall byR

Ž . Ž Ž ..1.5 that if gr M has finite length, then pol reg gr M is equal to the
Ž .largest integer n such that gr M � 0; this is also the largest integer nn

such that � nM � 0. For an Artinian R-module M we have thus
Ž . Ž .pol reg M � ll ll M 
 1.R

ˆ1.9. EXAMPLE. Assume that R is a hypersurface; that is, R has a
ˆ Ž . Ž .Cohen presentation R � Q� � , with � � a for some a � �. In this

Ž . Ž . Ž .case, pol reg R � mult R 
 1. Indeed, it is well known that mult R is
s Ž .the smallest integer s such that a � � . By 1.7 the invariant pol reg R is

Ž .equal to the Castelnuovo�Mumford regularity of gr R over the polyno-
Ž . Ž .mial ring gr Q . If a* denotes the initial form of a in gr R , then

Ž . Ž . Ž .gr R � gr Q � a* ; hence

a*
0 � gr Q 
s � gr Q � 0Ž . Ž . Ž .

Ž . Ž . Ž .is a minimal graded free resolution of gr R over gr Q , so pol reg R �
s 
 1.
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2. LINEAR RESOLUTIONS

Ž . Ž .Let R, � , k be a local ring and set G � gr R . An R-module M is
Ž .said to have a linear resolution if reg M � 0. We describe next construc-R

tions that will be used to characterize such modules.

2.1. Let X be a complex of R-modules filtered by subcomplexes

X � F 0 � F 1 � ��� � F p � ��� .

Ž Ž . .The associated graded complex gr X , d hasF

gr X � F p�F p
1Ž .Ž . i , pF i i

and the differential d is induced by � .
Ž .If the complex X is minimal, that is, � X 	 � X, then it has a

filtration defined by F p � � p
 iX for each i; that isi i

F p � ��� � X � X � � X � ��� � � p
1X � � pX � 0.p
1 p p
1 1 0

Ž . Ž . Ž .In this case we set E X � gr X and note that E X is a complex ofF
Ž . Ž .Ž .graded G-modules, with E X � gr X 
i for each i, and the differen-i i

tial d is homogeneous of degree 0.

2.2. For an R-module M we choose a minimal free resolution X of M
Ž . Ž .over R. It induces a map E X � gr M . Choose a graded free resolution

Ž . Ž .U of gr M over G and choose a lifting of the identity map on gr M to a
M Ž .morphism of complexes of graded G-modules � : E X � U; this lifting is

unique up to homotopy. For each z � X we denote z the class of z ini
Ž . RŽ .E X � X �� X . Calculating Tor M, k from the resolution X andi, i i i i

GŽ Ž . .Tor gr M , k from the resolution U, we define homomorphisms ofi
R-modules �M asi

�M : Tor R M , k � X � k � H U � k � TorG gr M , kŽ . Ž . Ž .Ž . ii i i R i G ii

M M� z � 1 � cls � z � 1 .Ž . Ž .Ž .i R G

M RŽ . GŽ Ž . .We then define � : Tor M, k � Tor gr M , k to be the compositioni i i
M GŽ Ž . . GŽ Ž . .of � with the inclusion Tor gr M , k � Tor gr M , k .i i i i

Ž .2.3. PROPOSITION. Let R, � , k be a local ring, let M be a finite
R-module, and let X be a minimal free resolution of M o�er R. The following
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properties are equi�alent:

Ž .1 The module M has a linear resolution.
Ž . Ž . Ž .2 E X is a minimal free resolution of gr M o�er G.
Ž . Ž . Ž .3 E X is a free resolution of gr M o�er G.
Ž . M M4 For each i the maps � and � are bijecti�e.i i

Ž . M5 For each i the map � is surjecti�e.i

� �The content of the proposition is more or less known; see also 16 . Due
to lack of a proper reference, we provide a proof, based on the next
lemma.

� 4 pFor each integer j we denote R j the R-module R, filtered by F �
� p
 j.

Ž .2.4. LEMMA. Let R, � , k be a local ring and let M be a finite R-mod-
� si � 4ule. There exists a filtered resolution X 
 of M with X � � R a for eachi i jj�1

i � 0, such that the associated graded complex is a minimal graded free
Ž .resolution of gr M o�er G.

Proof. For an element m � M we denote by m* its initial form in
Ž . Ž . � �gr M and ord m the order of m*. Let m , . . . , m be a minimal system� 1 s

Ž . Ž .of homogeneous generators of gr M over G and set a � ord m . By� 0 j j
� � �33, II-6, Corollary 2 , the elements m , . . . , m generate M. Set X �1 s 0

s � 4 �� R a and let � : X � M be the surjection that sends to m the0 j 0 0 jj�1
� 4basis element corresponding to R a . The associated graded module of0 j

� s Ž . Ž .X is U � � G 
a , and the map d : U � gr M induced by � is0 0 0 j 0 0 0j�1
Ž .homogeneous and surjective. We set M � Ker � and consider the0 0

� Ž � . Ž .filtration F induced by X . Note that gr X � Ker d . The resolution0 0 F 0 00

X 
 is obtained by iterating this procedure.

Ž . Ž . Ž . Ž .Proof of Proposition 2.3. The implications 2 � 3 and 4 � 5 are
clear.

Ž . Ž .1 � 2 . Let X 
 be the filtered resolution of M from Lemma 2.4.
si Ž . Ž .The associated graded complex has U � � G 
a . Since reg M �i i j Rj�1

0, we get a � i for all i and j; hence the filtration of X 
 is given byi j
F p � � p
 iX �. The compatibility of this filtration with the differentiali i
implies that X 
 is a minimal free resolution. Any two minimal free
resolutions of M over R are isomorphic, and such an isomorphism

Ž . Ž .preserves the filtration described above; hence U � E X 
 � E X .
Ž . Ž . Ž . Ž .3 � 4 . Both E X and U are graded free resolutions of gr M

Ž M . Ž .over G, so H� � � k is bijective. Since the complex E X is minimal,G
Ž Ž . . Ž . Ž Ž .we have H� E X � k � E X � k. The map � : X � k � E XG G i i R

M. Ž .� k defined by � z � 1 � z � 1 is clearly bijective. Since � �G i, i i R G i
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Ž M . M MH � � k �� for each i, the map � is bijective, and so is � ,i G i i i i
GŽ Ž . . Ž Ž . .because Tor gr M , k � E X � k � 0 for i � p.i p G i, p

Ž . Ž . M GŽ Ž . . M5 � 1 . The image of the map � is in Tor gr M , k . If � isi i i i
GŽ Ž . . Ž .surjective for each i, then Tor gr M , k � 0 for p � i; hence reg Mi p R

� 0.

M RŽ . GŽ Ž . .We defined the homomorphisms � : Tor M, k � Tor gr M , k ini i i i
Ž .terms of free resolutions of M and respectively gr M . We show next that

one can also compute these maps using free resolutions of k. To do so, we
take a more general point of view.

Ž .2.5. Let X be a minimal complex of free R-modules. Since E X � 0i, p
for p � i and E � X �� X , we havei, i i i

H E X � Z E X 	 X �� X .Ž . Ž .Ž . Ž .i ii i i i

Ž .Recall that for each z � X we denote z its class in E X . We theni i, i
define canonical homomorphisms

X X� : H X � H E X , by setting � cls z � z .Ž . Ž . Ž .Ž . Ž .ii i i i

If X and Y are two minimal complexes of R-modules, then an easy
Ž . Ž . Ž .calculation shows E X � Y � E X � E Y as complexes of gradedR G

G-modules; hence for each i we have a map

� X�R Y : H X � Y � H E X � E Y .Ž . Ž . Ž .Ž .i i R i G i

Let M and N be two R-modules. We consider them as complexes
Ž . Ž . Ž . Ž .concentrated in degree 0 and note that E M � gr M and E N � gr N .

Let � X: X � M be a minimal free resolution of M over R and let � Y:
Y � N be a minimal free resolution of N over R. They induce morphisms
Ž X . Ž . Ž . Ž Y . Ž . Ž .E � : E X � gr M and E � : E Y � gr N . For each graded free

U Ž . Ž .resolution � : U � gr M of gr M over G and each graded free resolu-
V Ž . Ž .tion � : V � gr N of gr N over G we consider morphisms of graded

M Ž . N Ž .complexes � : E X � U and � : E Y � V as in 2.2; these morphisms
are unique up to homotopy. For each integer i we set

	 � H E X � E � Y and � � H E � X � E Y .Ž . Ž . Ž . Ž .Ž . Ž .i , i i G i , i i Gi i



LIANA M. ŞEGA836

Ž .The commutative diagram below defines maps � M, N asi

Ž .� M , NiR G�Ž . Ž Ž . Ž ..Tor M, N Tor gr M , gr Ni i i

X� N MR Ž Ž ..� H � � gr Ni i G i� �Ž . Ž Ž . Ž .. Ž Ž ..H X � N H E X � gr N H U � gr Ni R i G i i G i� � �
Y V	� �Ž . Ž .H X� � H U� �i, ii G i G i

X� Y M NR Ž .� H � � �i i G i� �Ž . Ž Ž . Ž .. Ž .H X � Y H E X � E Y H U � Vi R i G i i G i

� � �

X U�� �Ž . Ž .H � � Y H � � Vi, ii R i G i

M� Y NR Ž Ž . .� H gr M � �i i G i� �Ž . Ž Ž . Ž .. Ž Ž . .H M � Y H gr M � E Y H gr M � Vi R i G i i G i

Ž . MWe note that � M, k coincides with the map � defined at thei i
beginning of the section. Thus, these maps can be calculated from any
horizontal line of the diagram above, with N � k.

3. INDICES OF MODULES

Each homomorphism of R-modules � : M � N induces homomor-
phisms of graded vector spaces

Tor R� � , k : Tor R� M , k � Tor R� N , k ,Ž . Ž . Ž .
Ext� � , k : Ext� N , k � Ext� M , k ,Ž . Ž . Ž .R R R

Ext� k , � : Ext� k , M � Ext� k , N .Ž . Ž . Ž .R R R

Let n be an integer. For each R-module M consider the canonical
inclusion

�Žn. : � nM � � n
1M .M

Ž . Ž .If � : Q, � � R, � is a surjective homomorphism of local rings, then
� nM � � nM, so the notation �Žn. will be used without reference to aM
specific ring.

3.1. We define the Le�in index of M over R by the formula

L M � inf s � 1 � Tor R� �Žn. , k � 0 for all n � s .Ž . � 4Ž .R M

� Ž . Ž R Ž . .The isomorphism of functors Ext �, k � Hom Tor� �, k , k showsR k
that

L M � inf s � 1 � Ext� �Žn. , k � 0 for all n � s .Ž . � 4Ž .R R M

� � Ž .Results of Levin 21 show that L M � �; cf. 3.6 for more details.R
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We define the Roos index of M over R by the formula

R M � inf s � 1 � Ext� k , �Žn. � 0 for all n � s .Ž . � 4Ž .R R M

� �Roos 26 noted that Levin’s arguments can be adapted to show that
Ž .R M � �.R

� �Following 16 , we say that a ring R is Koszul if its residue field has a
Ž .linear resolution; that is, reg k � 0. Recall that the notions of regularityR

and polynomial regularity of local rings were discussed in the first section.

Ž .3.2. THEOREM. If R, � is a Koszul local ring and M is a finite
R-module, then

Ž . Ž i . � Ž . 41 reg � M � max reg M 
 i, 0 for all i � 0.R R

Ž . Ž . Ž .2 L M � reg M 
 1.R R

3.3. THEOREM. For a finite module M o�er an arbitrary local ring R there
is an inequality

max L M , R M � pol reg M 
 1.� 4Ž . Ž . Ž .R R

We postpone the proofs for the moment, in order to give an application
of Theorem 3.3.

The Poincare series of a finite R-module M is the formal power series´
�

R R iP t � rank Tor M , k t .Ž . Ž .ÝM k i
i�0

The Bass series of M is the formal power series

�
M i iI t � rank Ext k , M t .Ž . Ž .ÝR k R

i�0

The Hilbert series of M is the formal power series

�
R i i
1 iHilb t � rank � M�� M t .Ž . Ž .ÝM k

i�0

�The following corollary contains effective versions of 6, 4.1.8; 21,
� Ž � �.Theorem 2 see also 6, 6.3.6 ; we also include versions for Bass series.

Ž .3.4. COROLLARY. Set p � pol reg M . For each submodule M
 con-
tained in � p
1 and for each integer n � p

P R t � P R t 
 tP R t I M � t � I M t 
 tI M 
 t .Ž . Ž . Ž . Ž . Ž . Ž .M � M M 
 R R R

P n
R t � Hilb n

R 
t P R t , I � n M t � Hilb n
R 
t I k t .Ž . Ž . Ž . Ž . Ž . Ž .� M � M k R � M R



LIANA M. ŞEGA838

Proof. Let 	 be the inclusion M
 � M, let � be the inclusion M
 �
� p
1M, and let 
 be the inclusion � p
1M � M. We have then 	 �

 ��Ž p
1.� � ; hence

Tor R� 	 , k � Tor R� 
 , k �Tor R� �Ž p
1. , k �Tor R� � , k .Ž . Ž . Ž .Ž .
R Ž Ž p
1. . R Ž .Theorem 3.3 gives Tor� � , k � 0; hence Tor� 	 , k � 0. ConsiderM

the short exact sequence

	 �
0 � M � M � M� � 0.

R Ž .The long exact sequence obtained by applying Tor� �, k splits into short
R Ž . RŽ .exact sequences. Computing ranks, we obtain the equality P t � P tM � M

R Ž .
 tP t . The corresponding equality for the Bass series is obtainedM 


similarly.
R Ž . �nThe expression for P t can be deduced using the calculations in 21,� M

� � �Theorem 2 or 6, 6.3.6 . Similar computations apply to the Bass series.

Proof of Theorem 3.2. We choose a minimal free resolution Y of k over
Ž .R. By Proposition 2.3 the complex E Y is a minimal free resolution of k

over G. For all integers i and n we have

TorG gr M , k � H gr M � E Y � H E M � Y ,Ž . Ž . Ž . Ž .Ž . Ž . Ž .i i G i R

TorG gr � nM , k � H gr � nM � E Y � H E � nM � Y .Ž . Ž . Ž .Ž . Ž .Ž . Ž .i i G i R

Ž n . Ž .Since E � M � Y � E M � Y we further haveR i, p R i, p
n

H E M � Y if p � iŽ .Ž . p
ni RnH E � M � Y �Ž .Ž . pi R ½ Z E M � Y if p � i .Ž .Ž . p
ni R

Ž . Ž n .These isomorphisms prove 1 . In particular, we have reg � M � 0 forR
Ž . � n M Ž .n � reg M ; hence the maps � are bijective by Proposition 2.3 4 . AsR i

� n M Ž n .shown in 2.5, we have � � � � M, k , and this map can be computedi i
from the last row of the diagram considered there, as the composition

Ž Ž n . k . � n M�RY Ž .H gr � M � � �� . Since both V and E Y are graded freei G i i
resolutions of k over G, the first map is an isomorphism. It follows that

� n M�RY Ž .� is bijective for all i and all n � reg M . To simplify notation,i R
we denote these maps by � Žn. and we recall their definitioni

� nM � YR iŽn. n n� : H � M � Y � H E � M � Y 	 ,Ž . Ž .Ž .i i R i R i n
1� M � YR i

� Žn. cls z � z 
 � n
1M � Y .Ž .Ž . Ž .i R i
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Ž . Ž .We set l � L M and r � reg M . To prove the inequality r 
 1 � l,R R
we show that the map

H �Žn. � Y : H � nM � Y � H � n
1M � YŽ .Ž . Ž .M R R R

is zero for all n � r 
 1. Let z � � nM � Y be a cycle of degree i, withR
n � r 
 1. We regard z as a cycle of the subcomplex � n
1M � Y. SinceR

Žn
1. Žn
1.Ž Ž ..� is bijective and � cls z � 0, it follows that z is a boundary ini i
� n
1M � Y.R

We assume next that r 
 1 � l. We want to prove that
GŽ Ž . . Ž .Tor gr M , k � 0 for all i, which contradicts r � reg M . By thei i
r R

above we have

TorG gr M , k � H E M � Y .Ž . Ž .Ž . Ž .i
ri i R i
r

r Ž .Let z be an element of � M � Y whose image z in E M � Y is aR i R i, i
r
Ž .cycle. We need to show that z is a boundary of E M � Y . We regardR

r Ž r .Ž .z as a cycle of E � M � Y . Since the map � is bijective, there ex-R i
r rŽ .ists a cycle z
 � � M � Y such that z � z
 in E � M � Y �R i R i, i

Ž .E M � Y . The assumption that r � l and the definition of l implyR i, i
r
Ž Ž r . . Ž r . Ž r
1 .that the map H � � Y : H � M � Y � H � M � Y is zero;M R R R

r
1hence z
 is a boundary of the complex � M � Y. It follows that z
 andR
Ž .hence z are boundaries of E M � Y .R

Ž .3.5. For an arbitrary local ring R, � we choose a minimal system of
R Ž .generators g of � and set K � K g ; R . If M is an R-module, then we

Ž . Ž . Ž . Ž Ž ..set K M � K g ; M and H� M � H� K M . For an R-homomor-
Ž . Ž .phism � : M � M
 we denote by H� � the induced map H� M �

Ž .H� M
 . If � : R � S is a surjective homomorphism of local rings with
Ž . 2 Ž .Ker � 	 � , then � g is a minimal system of generators of the maximal

ideal of S. Thus, we can identify K S and K R � S. If the R-moduleR
structure of M is induced through the homomorphism �, then, as in 1.1,

Ž Ž . . Ž . Ž .we identify K � g ; M and K g, M and let the notation K M refer to
either complex.

Ž R . Ž .The complex Hom K , M is known to be isomorphic to K M ; cf.R
� � Ž . Ž .10, 1.6.10 . We denote by H* M its homology. Also, we denote by H* � :

Ž . Ž .H* M
 � H* M the map induced by the homomorphism � : M � M
,
Ž .which is the k-dual of H� � , and we make identifications similar ot those

above.

� � Ž Žn..3.6. Levin 21, Lemma 1 proved that H� � for all large n. Also,M
� � Ž Žn.. R Ž Žn. .21, Lemma 2 shows that H� � � 0 implies Tor� � , k � 0. InM M

Ž .particular, L M � �.R
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Ž Žn.. Ž Žn..3.7. Since the map H* � is dual to H� � , it is also zero for allM M
� �large n. As noted by Roos 26 , techniques similar to those of Levin show

Ž Žn.. � Ž Žn.. Ž .that H* � � 0 implies that Ext k, � � 0. In particular, R M �M R M R
�.

ˆ ˆProof of Theorem 3.3. Since R is R-flat, with maximal ideal � R, there
ˆ ˆŽ . Ž . Ž . Ž .are equalities L M � L M and R M � R M . Thus, we can as-ˆ ˆR R R R

sume that R has a minimal Cohen presentation R � Q��. Since Q is
regular, the Koszul complex K Q is a minimal free resolution of k over Q,

QŽ . Ž . � Ž . Ž .so Tor� 
, k � H� 
 and Ext k, 
 � H* 
 , in the notation of 3.5.Q
Ž . d
 iŽ .For any Q-module there are isomorphisms H N � H N , wherei

Ž . � �d � dim Q ; cf. 10, 1.6.10 . We have thus

L M � inf s � 1 � H� �Žn. � 0 for all n � sŽ . � 4Ž .Q M

� inf s � 1 � H* �Žn. � 0 for all n � s � R M .Ž .� 4Ž .M Q

Ž Žn.. Ž Žn..By 3.5 the maps H� � and H* � do not depend on whether M isM M
viewed as a module over R or over Q. In our notation, 3.6 and 3.7
translate as

max L M , R M � L M � R M � �.� 4Ž . Ž . Ž . Ž .R R Q Q

Ž .Note that Q is a Koszul local ring, since gr Q is a polynomial ring over k,
and a minimal graded free resolution of k over this ring is given by the

Ž . Ž .Koszul complex on the variables. By 3.2 we have then L M � reg MQ Q
Ž . Ž .
 1. To finish the proof, recall from 1.7 that reg M � pol reg M .Q

4. HIGHER DELTA INVARIANTS

Ž .For a finite module M over a Gorenstein local complete ring R, �
Ž .Auslander defined the delta in�ariant � M to be the smallest integer nR

such that there is an epimorphism X � Rn � M with X a maximal
Cohen�Macaulay module with no free summand. For an integer i � 0 he

i Ž . i Ž .defined the ith higher delta in�ariant � M by the formula � M �R R
Ž i Ž .. i Ž .� � M , where � M denotes the ith syzygy module in a minimalR R R

� �free resolution of M over R; cf. 2, Sect. 5 .
i Ž .If R is not regular, then Auslander proved that � k � 0 for all i � 0;R

� � � � i Ž n.cf. 2, 5.7 . Yoshino 38 studied the vanishing of the numbers � R��R
for positive integers i and n. He conjectured that if R is not regular, then

� Ž .�they all vanish. One of his main results 38, 2.1 shows that there exists an
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i Ž n.integer s such that � R�� � 0 for all n � s and all i � 0, or, equiva-R
i Ž n.lently, � � � 0 for all n � s and all i � 0.R

Analogs of higher delta invariants over arbitrary local rings are intro-
� � � �duced by Martsinkovsky 24 , using Vogel cohomology 11 . It is proved in

� � � Ž .11 that Vogel cohomology, denoted Ext 
, 
 , is a cohomology bifunc-ˇ R
tor on the category of R-modules, and there is a natural transformation of
bifunctors, given by maps

�� 
, 
 : Ext� 
, 
 � Ext� 
, 
 .Ž . Ž . Ž .ˇR R R

4.1. For a finite module M over a Gorenstein local ring R
� � i Ž .Martsinkovsky 24 proves that � M is equal to the dimension of theR

k-vector space

Ker � i M , k : Ext i M , k � Ext i M , k .Ž . Ž . Ž .ˇŽ .R R R

When M � k, this dimension is zero for all i � 0 over any local ring R; cf.
� � i Ž . Ž i Ž ..25, Theorem 6 . In general, set � M � rank Ker � M, k .R k R

We use this definition of delta invariants to extend Yoshino’s result to
arbitrary local rings, to generalize it to submodules � nM of any finite

i Ž n .R-module, and to obtain bounds for the vanishing of � � M .R

4.2. THEOREM. If M is a finite module o�er a non-regular local ring
Ž . i Ž n . Ž .R, � , k , then � � M � 0 for all i � 0 and all n � L M .R R

i Ž n . Ž .In particular, � � M � 0 for all i and all n � pol reg M .R

Proof. For each integer n we set M � � n
1M�� nM and form then
exact sequence

�Žn.
Mn n
1�

0 � � M � M � M � 0.n

It induces long exact sequences in cohomology, both for Ext and Ext. Theˇ
� Ž .naturality of � 
, k implies that for each i there is a commutativeR

diagram
i Žn. iŽ .Ext � , kR M �i n
1 i n i
1� �Ž . Ž . Ž .Ext � M, k Ext � M, k Ext M , kR R R n

� � �

i n
1 i n i
1Ž . Ž . Ž .� � M , k � � M , k � M , kR R R n

i Žn. iŽ .Ext � , k ˇˇ R M �i n
1 i n i
1� �Ž . Ž . Ž .Ext � M, k Ext � M, k Ext M , kˇ ˇ ˇR R R n

i iˇ Ž .where � and � denote connecting homomorphisms. If n � L M , thenR
i Žn. iŽ .we have Ext � , k � 0 by the definition in 3.1; hence � is injective.R M

i
1Ž .Since � M � 0, the map � M , k can be identified with the naturaln R n
i
1Ž . Ž . i
1Ž .map � k, k � Hom M , k . The map � k, k is injective by 4.1;R R k n R
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i
1Ž .hence so is � M , k . The commutativity of the right-hand squareR n
i Ž n . i Ž n .implies that � � M, k is injective; hence � � M � 0. The last state-R R

ment of the theorem follows by 3.3.

5. SMALL HOMOMORPHISMS

Ž .Let R, � , k be a local ring and let � : R � S be a surjective homo-
morphism of rings. Due to the functoriality of Tor and Ext in the ring
variable there are homomorphisms of graded vector spaces

Tor �� k , k : Tor R� k , k � Tor S� k , kŽ . Ž . Ž .
Ext� k , k : Ext� k , k � Ext� k , k .Ž . Ž . Ž .� S R

� Ž .Recall that Ext k, k is a homomorphism of k-graded algebras, where�

multiplication on the Exts is given by the Yoneda products.
� �Following Avramov 3 , we say that a surjective homomorphism � :

� Ž .R � S is small if Tor� k, k is injective, or, equivalently, if the algebra
� Ž .homomorphism Ext k, k is surjective.�

For each integer n we consider the canonical homomorphism

� Žn. : R � R�� n .

� � Žn.By 3, 4.1 the homomorphism � is small for all large n.

5.1. We define the A�ramo� index by the formula

A R � inf s � 0 � � Ž s
1. is small .� 4Ž .

We note that if � Ž s. is small for some integer s, then � Žn. is small for all
n � s. Indeed, if � : R�� n � R�� s is the induced map, then the functo-
riality of Tor gives

Tor��
Ž s.

k , k � Tor�� k , k �Tor��
Žn.

k , k .Ž . Ž . Ž .

Ž .Thus, the definition of A R can be reformulated in terms similar to
those of the other indices:

A R � inf s � 0 � � Žn. is small for all n � s .� 4Ž .
� �5.2. By 3, 3.9 a homomorphism � is small if and only if the induced

ˆ ˆ ˆŽ . Ž .homomorphism � : R � S is small. Thus, A R � A R and we willˆ
assume whenever necessary that R is complete, with Cohen presentation
R � Q�� as in 1.7.
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For completeness, we include a proof of the following known result.

Ž . Ž .5.3. PROPOSITION. For a local ring R, � , k an inequality A R � 1
� Ž .holds if and only if Ext k, k is generated as an algebra by its elements ofR

Ž .degree 1. Moreo�er, A R � 0 holds if and only if � � 0.

Ž .Proof. The inequality A R � 1 implies the surjectivity of the algebra
� Ž . � Ž .Ž2. 2homomorphism Ext k, k . Since Ext k, k is the tensor algebra� R � �

� �over k generated by the elements of degree 1; cf. 27, Sect. 1, Remark 3 ,
the conclusion follows.

Ž . Ž .If R � k, then it is clear that A R � 0. Conversely, if A R � 0, then
� Ž1.Ž . RŽ . 2 kŽ .we have an injection Tor k, k : Tor k, k � ��� � Tor k, k � 0;1 1 1

hence � � 0 by Nakayama’s lemma.

Recall that a ring R is said to be a complete intersection if the ideal � in
some Cohen presentation is generated by a Q-regular sequence. It is
known that this notion does not depend on the choice of the presentation;

� �cf. 3, 7.3.3 , for example. If the ideal � is principal, then R is a
hypersurface.

Ž .5.4. PROPOSITION. Let R, � be a local ring with � � 0 and minimal
ˆCohen presentation R � Q��. The following then hold:

Ž . Ž . � i
2 41 A R � inf i � 1 � � � � 	 �� .
Ž . Ž .2 If R is a complete intersection, then equality holds in 1 .
Ž . Ž . � Ž . 43 If R is a hypersurface, then A R � max 1, mult R 
 1 .
Ž . Ž . Ž .4 If x is a regular sequence in R and � � x , then A R �

Ž Ž ..A R� x .

� �The proof is based on results about small homomorphisms from 3 .

Ž .5.5. A DG algebra is a complex �, � with an unitary associative
Ž .product such that the differential satisfies the Leibnitz rule: � ab �

Ž . Ž . � a � Ž . � �� a b 
 
1 a� b , where a denotes the homological degree of a. In
addition, we assume DG algebras to be graded commutative; that is,

Ž . � a � � b � 2 � �ab � 
1 ba for all a, b � �, and a � 0 when a is odd. We refer to
� �6, 19 for details.

A system of di�ided powers on a DG algebra � is an operation that
associates to every element a � � of even positive degree a sequence of

Ž i. �elements a � � with i � 0, 1, 2, . . . satisfying certain axioms; cf. 14,
�1.7.1 . A DG �-algebra is a DG algebra with divided powers which are

Ž Ž i.. Ž . Ž i
1.compatible with the differential, in the sense that � a � � a a for
every a � � of positive even degree and every i � 1.
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� � � �By Gulliksen 13 and Schoeller 31 there exists a minimal free resolu-
tion of k over R which has a structure of a DG �-algebra; it is obtained by

Ž � �.Tate’s procedure of adjoining divided powers variables cf. 37 . We call it
R Ž .a minimal Tate resolution of k over R. Note that Tor� k, k inherits a

structure of a DG �-algebra.
Let � be a DG �-algebra and denote by � the ideal of elements of� 0

positive degree. The module of �-indecomposables of � is the quotient of
� by the submodule generated by all elements of the form u� with� 0

Žn. Ž .u, � � � and w with w � � , n � 2. We denote �� R the module� 0 2 i
R Ž .of �-indecomposables of Tor� k, k .

The next result is our main tool in the study of small homomorphisms.

Ž� �.5.6 3, 3.1 . A surjective homomorphism of local rings � : R � S is
Ž . Ž . Ž .small if and only if the induced homomorphism �� � : �� R � �� S

is injective.

Ž . Ž .We proceed to describe the maps � � and � � .1 2

5.7. By 5.2 we can consider a minimal Cohen presentation R � Q��.
Ž . RŽ .We then have S � Q�� for an ideal � � �. Since � R � Tor k, k , the1 1

Ž . �Ž .map � � � Tor k, k is canonically identified with the natural map1 1
2 Ž 2 . 2��� � �� � , � . It is injective if and only if � 	 � . When this hap-

Ž .pens, � � is bijective.1
2 � �Assume that � 	 � . The proof of 14, Proposition 3.3.4 canonically

Ž . Ž .identifies � R with ���� and � S with ����; under these identifica-2 2
Ž .tions, � � is the natural homomorphism ���� � ����. This map is2

injective if and only if � � �� 	 �� , or, equivalently, if a minimal set of
generators of � can be completed to a minimal set of generators of �.

The behavior of smallness under factorization of a regular sequence is
� � �described by the following result of Tate 37, Theorem 4 and Scheja 32,

� � �Satz 1 , in the form given by Gulliksen 14, 3.4.1 .

Ž .5.8. Let x be a regular sequence in R and R � R� x . The canonical
homomorphism � : R � R induces isomorphisms

� � : � R � � R for j � 3Ž . Ž . Ž .j j j

and an exact sequence

Ž . Ž .� � � �2 1� �

0 � � R � R � x �� x � � R � R � 0.Ž . Ž . Ž . Ž . Ž . Ž .2 2 1 1

Ž .In particular, one sees from here: if R is regular, then � R � 0 fori
Ž .i � 1; if R is a complete intersection, then � R � 0 for i � 0, 1.i
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Ž .5.9. LEMMA. Let R, � , k be a local ring, let � be an ideal contained in
� 2, and let x be a regular sequence. Set S � R�� and denote by � the

Ž . Ž .canonical homomorphism R � S. Also, set R � R� x and S � R� � , x .
If the induced homomorphism � : R � S is small, then � is small.

Proof. The naturality of the module of indecomposables yields a com-
mutative diagram

Ž .�� � �Ž . Ž .�� R �� S

� �Ž .�� �

Ž .�� � �Ž . Ž .�� R �� S

Ž . Ž .Since � is small, the map �� � is injective. Also, � � is injective by� 2
Ž .5.8, so the commutativity of the diagram implies that � � is injective.� 2

2 Ž . Ž .Since � 	 � , the map � � is bijective by 5.7. Thus, �� � is injective;1
hence � is small by 5.6.

Proof of Proposition 5.4. By 5.2 we can consider a minimal Cohen
Ž .presentation R � Q��. Also, the hypothesis � � 0 implies that A R � 1.

Ž .1 By 5.7 we have

inf i � 1 � � � � i
2 	 �� � inf i � 1 � � � Ž i
1. is injective .� 4 � 4Ž .2

Ž .By 5.6 the index A R is an upper bound for the number on the right-hand
side.

Ž . n
22 Let n � 1 be an integer such that � � � 	 ��. Set S �
n
1 Žn
1. Ž n
1.R�� and � � � . Note that S � Q�� with � � � , � . We

2 Ž . Ž .have � 	 � and � � �� 	 �� , so � � and � � are injective by 5.7.1 2
Ž . Ž .Also, by 5.9 we have � R � 0 for i � 2, so �� � is injective, and then �i

is small by 5.6.
Ž . Ž .3 We have a � a and the multiplicity of R is equal to the

n Ž . � Ž .smallest integer n such that a � � . The equality A R � max 1, mult R
4 Ž .
 1 then follows from 2 .
Ž . Ž . Ž Ž ..4 The inequality A R � A R� x follows by applying Lemma 5.9

n
1 Ž Ž ..to � � � , where n � A R� x . Note that n � 1; cf. 5.3.

�5.10. Remark. The proof above shows that the number inf i � 1 � � �
i
2 4� 	 �� does not depend on the minimal Cohen presentation R � Q��

Ž .and is an invariant of the ring R; we denote it by s R .
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Ž . Ž .5.11. Remark. If n � A R , then Proposition 5.4 1 implies that � �
� n
1 	 ��; that is, any minimal system of generators of � is part of a

Ž n.minimal system of generators of � , � .

6. GOLOD RINGS AND GOLOD HOMOMORPHISMS

A surjective homomorphism � : R � S is called Golod if

P R tŽ .kSP t � .Ž .k R1 
 t P t 
 1Ž .Ž .S

� � Žn.Levin 19, 3.15 proves that � is Golod for all large n.

6.1. We define the Golod index of R by the formula

G R � inf s � 0 � � Žn. is Golod for all n � s .� 4Ž .

Ž . Ž .Note that G R is one less than the Golod invariant G R introduced in
� �17 .

� �6.2. By 3, 3.5 a Golod homomorphism is small. In particular, one has

A R � G R .Ž . Ž .

Ž .6.3. The condition G R � 0 holds if and only if R is a field. Indeed, if
Ž . Ž .G R � 0, then 6.2 implies that A R � 0; hence R is a field by 5.3. The

converse is clear.

� � Ž .Golod 12 studied local rings R, � , k satisfying

edim R1 
 tŽ .
RP t � .Ž .k � R j
11 
 Ý rank H K tŽ .j�1 j

Rings with this property are now called Golod rings. If R � Q�� is a
Ž R. Q Ž .minimal Cohen presentation as in 1.7, then H K � Tor� R, k ; hence

the projection Q � Q�� is a Golod homomorphism if and only if R is a
Golod ring.
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6.4. Poincare series are invariant under completion, so a surjective´
homomorphism � : R � S is Golod if and only if the induced homomor-

ˆ ˆ ˆŽ . Ž .phism � : R � S is Golod. Thus, G R � G R and we may assumeˆ
whenever necessary that R is complete.

Ž . Ž .Next we show that in some cases the indices A R and G R are equal.

Ž . Ž .6.5. THEOREM. An equality A R � G R holds if one of the following
conditions is satisfied:

Ž .1 R is Golod and Artinian. In this case both indices are equal to
Ž .pol reg R .

Ž .2 edim R � dim R 
 1.
Ž .3 edim R � 2.
Ž .4 edim R � 3 and R is a complete intersection.

The proof of Theorem 6.5 requires some preparation. One of the ideas
involved is to connect Golod rings to Golod homomorphisms. To do this

Ž .we use their cohomological characterizations. As in Section 5, �� R
denotes the module of indecomposables of Tor. Its vector space dual

Ž . Ž Ž . .� * R � Hom �� R , k is a graded Lie algebra, called the homotopyk
� �Lie algebra of R; we refer to 4, Sect. 10 for details.

6.6. Avramov and Lofwall proved that a local ring S is Golod if and¨
� 2Ž .only if � S is a free Lie algebra and that a homomorphism � : R � S

Ž . Ž .is Golod if and only if the kernel of the induced map � * � : � * S �
Ž . � �� * R is a free Lie algebra; cf. 3, 3.5; 5, 3.4; 22, Corollary 2.4 .

6.7. PROPOSITION. Let � : R � S be a surjecti�e homomorphism of local
rings. If � is small and the ring S is Golod, then the homomorphism � is
Golod.

Ž . 1Ž .Proof. The map � * � is surjective by 5.6, and � � is bijective by 5.7.
Ž . 1Denoting by L the kernel of � * � , we have L � 0. If S is Golod, then

� 2Ž .� S is a free Lie algebra; cf. 6.6. Subalgebras of free Lie algebras are
� 2� �free by 18, A.1.10 ; hence L � L is free and � is Golod by 6.6.

We recall two facts on Koszul complexes, using the notation of 3.5.

Ž� �. R 26.8 20, 1.6 . If there is an R-submodule V of � K with V � 0 and
such that

Z K R 	 V 
 B K R ,Ž . Ž .�1

then the ring R is Golod.
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Ž� �. Ž .6.9 35, Sect. 2, Lemma 1 . If Q, � , k is a regular local ring and p is
a positive integer, then

� � p
1K Q � � K Q � � pK Q .Ž .Ž .�1

In view of Proposition 6.7, we plan to prove most of Theorem 6.5 by
showing that, under the given assumption, the ring R�� n is Golod for all

Ž .n � A R . If edim R � dim R, that is, if R is regular, then by Golod’s
� � nexample 12 the ring R�� is Golod for all n � 2. The next proposition

�generalizes this result; the proof uses some ideas from 36, Sect. 2, Lemma
�2; 34, Sect. 5, Lemma 2 .

Ž .6.10. PROPOSITION. If R, � , k is a local ring with edim R � dim R 

1, then the ring R�� n is Golod for each integer n � 2.

Proof. By 6.4 we may assume that R has a minimal Cohen presentation
R � Q��. Since edim R � dim R 
 1 and Q is catenary, it follows that
ht � � 1. Since Q is factorial, there exist an element x � � and an ideal �
such that � � x�. Let s be the largest integer for which x � � s. We

n nŽ .denote by R the ring R�� � Q� � , x� and by � its maximal ideal.
Q RSet K � K and K � K . By 3.5 we have

nK � K � R � K� � , x� K .Ž .Q

If y is a cycle in K of degree j � 1 and y is its preimage in K , then

� y � a 
 xb with a � � nK and b � � K .Ž . j
1 j
1

Ž . Ž . n
1Differentiating, we obtain x� b � 
� a � � K. Now K is a complex
Ž .of free Q-modules. If c , . . . , c are the coefficients of � b in a basis of1 r

K , then xc � � n
1 for all i. Since x is not contained in � s
1 and Q isj
2 i
n
1
s Ž . n
1
sa regular ring, we conclude that c � � ; hence � b � � K.i

Ž .Let T , . . . , T be a basis of K , with � T � g for each i. Note that1 e 1 i i
g , . . . , g minimally generate �; hence x � a g 
 ��� 
a g with a �1 e 1 1 e e i

s
1 s
1 Ž .� . For t � a T 
 ��� 
a T we have t � � K and � t � x. Setting1 1 e e
u � y 
 tb, we then obtain

� u � a 
 xb 
 � t b 
 t� b � a 
 t� b � � nK .Ž . Ž . Ž . Ž .
n
1 Ž . Ž .By 6.9 there is an element � � � K such that � u � � � . Since u is a

Ž .cycle of positive degree in K , we have u 
 � � � w for some w � K. In
Ž .conclusion, any y � Z K can be written as�1

n
1y � tb 
 � 
 � w with b � � and � � � KŽ .
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n
1Ž .The submodule V � t� , � K is contained in � K. Indeed, if the ideal
� is not contained in � , then s � 2 and hence t � �. The product of any

n
1two cycles of the form tb 
 � , with b � � and � � � K is equal to
zero; hence the ring R is Golod by 6.8.

� �To continue, we need two more results of Avramov et al. 8 .

Ž� �.6.11 8, 6.1 . Let S be a homomorphic image of a regular local ring
Ž .Q. If pd S � 3, then there is a Golod homomorphism from a completeQ

Ž .intersection of codimension less than 2 onto S.

Ž� �. Ž .6.12 8, 5.13 . Let R, � , k be a local ring, let � be an ideal
2contained in � , and set R � R��. If the natural homomorphism R � R

is Golod and x � x , . . . , x is a regular sequence that can be extended to1 r
Ž .a minimal generating set for � , then the induced homomorphism R� x

� R is Golod.

Ž .Proof of Theorem 6.5. Let n be an integer such that n � A R ; that is,
Žn. Ž .the map � is small. We may assume that A R � 0; hence n � 2

Ž .otherwise, R is a field and both indices are zero . We have to prove that
� Žn. is Golod.

Ž .1 For an ideal � of R the canonical map R � R�� is small if and
Ž . � � n Žn.only if � � 0 ; cf. 3, 4.7 . We have thus � � 0; hence � is Golod for

Ž . strivial reasons. By 1.5, pol reg R is the largest integer s for which � � 0;
Ž . Ž . Ž .hence A R � G R � pol reg R .

Ž .For the rest of the proof we assume that R � Q�� with Q, � , k
regular and � 	 � 2; cf. 1.7.

sŽ .2 By Proposition 6.10, the ring R � R�� is Golod for each
s � 2, so Proposition 6.7 implies that � Žn. is Golod.

n nŽ . � � Ž .3 By Scheja 32, Satz 9 the ring R � R�� � Q� � , � is either
Golod or a complete intersection. If it is Golod, then � Žn. is Golod by
Proposition 6.7. Assume now that R is a complete intersection. By Remark
5.11, a minimal system of generators of � can be completed to a minimal

Ž n.system of generators of � , � ; hence � is generated by a regular
sequence. If dim R � 0, then codim R � 1, so the problem is settled by
Ž .2 . If dim R � 0, then � is generated by a maximal regular sequence and

Ž n. n Žn.thus � , � � �. Therefore � � 0, and � is the identity map.
Ž . Ž .4 We have � � x for a regular sequence x � x , . . . , x . By1 c

Ž n.Remark 5.11, x is part of a minimal system of generators of x, � . Set
n Ž n . Ž .S � R�� � Q� � , x . If c � 1, then the assertion follows from 2 . If

Ž . Ž n.c � 2, then by 6.11 there exists a regular sequence x
 in x
 	 x, � , of



LIANA M. ŞEGA850

Ž .length at most two, such that the map Q� x
 � S is Golod. Examining
� �the proof of 8, 2.17 , we see that we can modify x
 to be either x , x or1 2

x . The conclusion then follows from 6.12.1

Ž . Ž .Comments. We proved that A R � G R for all complete intersec-
tions R with edim R � 3. It would be interesting to see whether there are
complete intersections of higher embedding dimension for which the
equality does not hold. So far I did not find any example of a local ring

Ž . Ž .with A R � G R .

7. THE LEVIN INDEX OF A RING

7.1. We define the Le�in index of the ring R by the formula

L R � L � .Ž . Ž .R

We set �Žn. � �Žn.: � n � � n
1 and note that �Žn. � �Žn
1.; hence weR �

have

L R � inf s � 1 � Tor�R �Žn. , k � 0 for all n � sŽ . � 4Ž .
� max 1, L R 
 1 .� 4Ž .R

7.2. THEOREM. For a local ring R there are inequalities

G R � L R � max 1, pol reg R .� 4Ž . Ž . Ž .

� � R Ž Žn. .Proof. The proof of 19, 3.15 shows that if Tor� � , k � 0 for some
n � 2, then � Žn. is Golod; this proves the first inequality. The second one
follows from Theorem 3.3.

� �7.3. The proofs of 20, 21, 28; Theorem 2 contain calculations of the
Poincare series based on a choice of an integer s � 2 such that´

R Ž Žn. .Tor� � , k � 0 for all n � s; hence Theorem 7.2 yields

P R tŽ .n kR � �P t �Ž .k 2 R R
n1 
 t Hilb 
t P tŽ . Ž .� k

� Ž .4for each n � max 1, pol reg R .

Ž . Ž .The next proposition follows by combining 5.4 3 and 6.5 1 with 7.2.
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Ž .7.4. PROPOSITION. Let R, � be a local ring which is not a field. If R is
a hypersurface or a Golod Artinian ring, then

A R � G R � L R � max 1, pol reg R .� 4Ž . Ž . Ž . Ž .
Ž .We characterize the rings that satisfy L R � 1. A similar result for

� �graded algebras is mentioned by Roos 28, Remark 3.4 .

Ž .7.5. PROPOSITION. A local ring R is Koszul if and only if L R � 1. If R
� Ž .is Koszul, then Ext k, k is generated by its elements of degree 1.R

Ž . � Ž .4Proof. If R is Koszul, then 3.2 gives L R � max 1, reg R � 1.R
Ž . Ž .Conversely, assume that L R � 1. We denote by X, � a minimal free

Ž .resolution of k over R and set U � E X ; this is the associated graded
complex of X with respect to the natural filtration, as defined in 2.1. The

Ž . Ž n . Ž n
1 .fact that L R � 1 means that the natural map H� � X � H� � X
is zero for all n � 1. To prove that R is Koszul, we show that the complex

Ž .U is acyclic. For all integers i and n the module H U is the homologyi i
n
of the complex

� n
1X �� nX � � nX �� n
1X � � n
1X �� n
2 X .i
1 i
1 i i i
1 i
1

nŽ .Let x be an element in Z U for some i � 1; that is, x � � X andi i
n i
Ž . n
2 Ž n
2 . Ž n
1 .� x � � X . Since the map H� � X � H� � X is zero, iti
1

Ž . Ž . n
1follows that � x � � a for some a � � X . Thus x 
 a is a cycle ofi
Ž .X of positive degree; hence x 
 a � � b for some b � X . Sincei
1

Ž . n Ž n . Ž n
1 .� b � � X and the map H� � X � H� � X is zero, it follows
n
1Ž . Ž . Ž .that � b � � c for some c � � X . We conclude that x � � c ini
1
Ž .U; hence U is acyclic and thus reg k � 0 by 2.3.R

The last assertion follows by 5.3.

For graded k-algebras, the converse of the last assertion of the proposi-
� �tion holds by 22, Theorem 1.2 . However, the converse does not hold for

local rings, as can be seen from the following example:

Ž .7.6. Let Q, � , k be a 2-dimensional regular local ring and let u, � be
Ž 2 3 .a system of parameters. We set � � u 
 � , u� and R � Q�� �

� � Ž 2 3 .k u, � � u 
 � , u� . This is a local complete intersection such that
� Ž . � � Ž .Ext k, k is generated in degree 1, cf. 36, Theorem 5 . Still, gr R �R

� � Ž 2 4. grŽR. Ž .k u, � � u , u� , � and � � 0; hence gr R and thus R is not Koszul.2, 4

8. REDUCTION BY A REGULAR SEQUENCE

In this section we study the behavior of the Levin index under factoriza-
tion of a regular sequence, in connection with a question of Roos. In
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� �28, 29 he introduces the graded vector spaces
�1 Žn. �1 n
1

nS � Im Ext � , k 	 Ext R�� , k ,Ž . Ž .Ž .� R R

where � Žn.: R�� n
1 � R�� n is the canonical map, and considers the
following properties of the ring R:

Ž . nMM S � 0 for all n � s.s �

Ž . n n
1LL R satisfies MM and the induced homomorphisms S � Ss s � �

are bijective for n � 1, . . . , s 
 3.

� �As pointed out in 28, Remark 3.4 , a graded k-algebra R is Koszul if and
only if it satisfies MM . In general, these properties measure how far the2
algebra is from being Koszul.

� Ž .�8.1. Roos 28, 7 iv asks the following question: Let R be a
Ž .Cohen�Macaulay ring and R � R� an R-sequence . Is any of the condi-

tions LL and�or MM true for R if and only if it is true for R? Although ins s
� �28 the ring R is graded, the question makes sense for local rings as well.

Ž R Ž . . �1Ž .The isomorphism of functors Hom Tor 
, k , k � Ext 
, kk �1 R
Ž . Ž .shows that MM is equivalent to L R � s. Thus, the question of Roos cans

be partly reformulated as whether the Levin index is invariant under
factorization of a regular sequence. We show next that the answer is
negative, unless certain assumptions are made on the regular sequence.

Ž . Ž .8.2. Let R, � be a regular local ring with dim R � 0. If x is an
n n
1 Ž .element in � � � for some integer n � 1, then L R � 1 and

Ž Ž ..L R� x � n 
 1 by 7.4 and 1.9.

A sequence x � x , . . . , x of elements in R is called strictly regular if1 m
the initial forms x� , . . . , x� form a regular sequence. It is known and easy1 m
to see that a strictly regular sequence is an R-sequence.

We give next a partial answer to Roos’s question.

Ž .8.3. THEOREM. If R, � is a local ring and x � x , . . . , x is a strictly1 m
regular sequence in � � � 2, then the following hold:

Ž . Ž . Ž Ž ..1 L R � L R� x .
Ž . Ž .2 R satisfies MM if and only if R� x satisfies MM .s s

Ž . Ž .3 R satisfies LL if and only if R� x satisfies LL .s s

The proof of the theorem follows from Proposition 8.7 below. Here are
some preliminaries:

Ž� �. Ž .8.4 6, 3.1 . Let X be a minimal Tate resolution of k over R see 5.5
2 Ž .and x a regular element in � � � . If T � X satisfies � T � x, then1

Ž . Ž .X� x, T X is a minimal free resolution of k over R� x .
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Ž .8.5. LEMMA. Let R, � , k be a local ring, let x be an element of R, and
Ž . Ž n
1 . n Ž .let T be an element of X with � T � x. If � : x 	 � and � Tc �1

� n
1X for some integer n and some c � X, then Tc � � nX.

Ž . Ž .Proof. The Leibnitz rule gives � Tc � xc 
 T� c . Multiplying by T ,
Ž . Ž . Ž . Ž . n
1we obtain T� Tc � T xc � x Tc . This implies that x Tc � � X. We

Ž .set b � Tc � X where s is the homological degree . Since X is a frees s
R-module, we consider b , . . . , b to be the components of b in a basis.1 r
Then b x � � n
1 for any i. The assumption on x implies b � � n; hencei i

nTc � � X.

8.6. If k is infinite, then each superficial element x which is regular
Ž n
1 . n �satisfies the condition � : x 	 � for all large integers n; cf. 30,

� � � 2Remarks, I-9 . Such elements exist by 30, 3.2, I-8 . Also, if x � � � � is
Ž n
1 . nstrictly regular, then � : x 	 � for all n � 0.

Ž .8.7. PROPOSITION. Let R, � , k be a graded Noetherian ring, let x be a
2 Ž . Ž .regular element not contained in � , and set R � R� x and � � �� x .
Ž n
1 . nFor any positi�e integer n such that � : x 	 � the following hold:

Ž . n n1 The induced homomorphism S � S is surjecti�e.� �

Ž . n
 1 n
12 The induced homomorphism S � S is injecti�e.� �

Proof. We first reformulate the statement in terms of homology. For
Ž R Ž Ž s. .. R Ž s .seach s we denote by U the image of Tor � , k in Tor R�� , k .� �1 �1
Ž R Ž . . �1Ž .In view of the isomorphisms Hom Tor 
, k , k � Ext 
, k , wek �1 R

conclude that U s is canonically isomorphic to the vector-space dual of�
Ž .s n nS . Thus, for 1 we have to prove that the induced map U � U is� � �

Ž . n
 1 n
1injective and for 2 we have to prove that the induced map U � U� �

is surjective.
Let X be a minimal Tate resolution of k over R. By 8.4 the complex
Ž . Ž .X� x, T X is a minimal free resolution of k over R� x , where T � X1

Ž . R Ž i .satisfies � T � x. For all integers i we identify Tor R�� , k with�1
i R i iŽ . Ž . Ž Ž . .H X�� X and Tor R�� , k with H X� � , x, T X . Overbars�1 �1 �1

denote residue classes, as appropriate to the context.

n
1Ž . Ž . Ž .1 Let cls y be an element of H X�� X whose image in�1
nU is zero.�

Ž . n
1Thus � y � � X and

y � � a 
 b 
 xc 
 Tg with b � � nX and a, c, g � X .Ž .
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Ž . Ž .The Leibnitz rule gives xc � � Tc 
 T� c and we obtain

y � � a 
 b 
 � Tc 
 T� c 
 Tg � � a
 
 b 
 Tg 
Ž . Ž . Ž . Ž .
with a
, g 
 � X .

Ž . Ž . Ž . Ž . n
1Differentiating, we get � Tg 
 � � y 
 � b . Since � y � � X and
n Ž . n
1 nb � � X, we obtain � Tg 
 � � X. By Lemma 8.5 we have Tg 
 � � X

n Ž .and thus y is a boundary in X�� X. We thus have cls y � 0 in
nŽ . n nH X�� X ; hence the map U � U is injective.�1 � �

nŽ . Ž . Ž Ž . .2 For cls y � H X� � , x, T X we have�1

� y � a 
 xb 
 Tc with a � � nX and b , c � X .Ž .

Ž . Ž .The Leibnitz rule gives xb � � Tb 
 T� b and thus

� y 
 Tb � a 
 Tc
 with c
 � X .Ž .

Ž . Ž . nDifferentiating, we obtain � Tc
 � 
� a ; since a � � X, we have
Ž . n
1 n Ž . n� a � � X. Lemma 8.5 yields Tc
 � � X ; hence � y 
 Tb � � X.

n Ž .We conclude that y 
 Tb is a cycle in X�� X and thus cls y is the
nŽ . Ž .image of cls y 
 Tb � H X�� X . Thus, the induced map� 1

Ž n . Ž Ž n . .H X�� X � H X� � , x, T X is surjective. This implies the sur-�1 �1
n
 1 n
1jectivity of the map U � U .� �

9. GRADED RINGS

In this section we consider graded Noetherian rings. Let k be a field.
Ž .Adapting the notation of a local ring, we denote by R, � , k a graded

� � �Noetherian ring R � � R satisfying R � R R , with maximal irrele-i 0 1i�0
vant ideal � � �� R and R � k. We use the notation k also for thei 0i�1
residue field R��. All R-homomorphisms are assumed to be homoge-
neous. The notions and results used so far have analogous graded versions.
We only mention that the notion corresponding to a minimal Cohen

� �presentation is a presentation of the form R � k u , . . . , u �� , with a1 r
2 Ž .homogeneous ideal � 	 � , where � � u , . . . , u and that the Koszul1 r

R R Ž .complexes K are understood as K � K g, R for a chosen basis g of
R . Also, Tate resolutions become graded resolutions in a natural way.1

� �9.1. Let R � k u , . . . , u �� be a minimal presentation as above. We1 r
Ž . � i
2 4noted in Remark 5.10 that the number s R � inf i � 1 � � � � 	 ��

does not depend on the choice of the presentation. It is easy to see that
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Ž . Ž .s R is equal to 1 if � � 0 and is one less the maximum of the degrees of
a minimal system of generators of � , otherwise.

All the results of this paper have analogous versions for graded rings.
There are also some improvements of the statements, which are collected
in the next theorem.

9.2. THEOREM. Let R be a graded ring as abo�e, which is not a field.

Ž . Ž .1 The ring R is Koszul if and only if A R � 1, if and only if
Ž . Ž .G R � 1, and if and only if L R � 1.

Ž . Ž . Ž . Ž . � Ž .42 s R � A R � L R � max 1, pol reg R .
Ž . Ž . Ž .3 If R is a complete intersection, then A R � s R .
Ž . Ž . Ž Ž ..4 If a linear form y is a non-zero di�isor, then L R � L R� y .
Ž . Ž . Ž . Ž . � Ž .45 If R is Golod, then A R � G R � L R � max 1, pol reg R .

Ž . Ž .The proofs of 1 � 4 are mainly contained in the previous sections. The
Ž .only part that needs a proof is 5 .

Ž R.9.3. We denote by MH K the set of all matric Massey products of
Ž R. � � Ž R.H K , as defined in 23, Sect. 1 . It is a submodule of H K ,�1 �1

Ž �. R Scontaining the usual products. The map H K : K � K induced by a
Ž �.Ž Ž R..homomorphism of local rings � : R � S satisfies H K MH K 	

Ž S . Ž � �. � �MH K see 23, 3.10 . By 3, 4.6 , if � is small then the induced
homomorphism

� : H K R �MH K R � H K S �MH K SŽ . Ž . Ž . Ž .˜ �1 �1

� �is injective. Also, Golod 12 shows that the ring R is Golod if and only if
Ž R. � Ž .�MH K � 0; cf. 5, 2.3 . For our purposes, we will use the graded

version of these results.

Ž . Ž . nProof of Proposition 9.2 5 . Set n � A R 
 1 and S � R�� . In par-
ticular, the map � Žn.: R � S is small. Note that n � 2 by 5.3. Since R is a

Ž R.Golod ring, we have MH K � 0 by 9.3 and then the induced map
Ž R. Ž S . Ž .H K � H K is injective by 9.3. Set s � pol reg R . There exists�1 �1

Ž R. Ž S .then an integer i such that H K � 0; hence H K � 0. Sincei i
s i i
s
S R n R Ž S .K � K �� K by 3.5, we observe that H K � 0 for all j � n 
 i.i j

Ž .We conclude that i 
 s � n 
 i; that is, n � s, and hence A R � s. From
Ž . Ž . � 4Theorem 9.2 2 we also know that L R � max 1, s , so the inequalities

between the indices give the desired equalities.

Ž .Comments. By 6.5 and 9.2 5 all Golod rings R which are either
Ž .hypersurfaces, or local and Artinian, or graded satisfy the equality A R �
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Ž .G R . I do not know whether Golod local rings of positive dimension
satisfy this equality.

9.4. If R is a complete intersection on quadrics, then R is a Koszul
Ž . Ž . Ž . Ž . Ž .algebra. Thus s R � A R � G R � L R � 1, while pol reg R �

codim R 
 1. We note that all Koszul algebras which are not regular rings
Ž . Ž .satisfy s R � A R � 1; thus, the equality between these two invariants is

not specific to complete intersections.

� � Ž 3 2 . Ž .9.5. Consider the ring R � k u, � � u , u� . Since codim R � 1, this
� Ž .�ring is Golod by a result of Shamash 34, Sect. 5, Corollary 2 . Note that

Ž . Ž . Ž . Ž . Ž .s R � 2 and pol reg R � 3. By Theorem 9.2 5 we have A R � G R �
Ž . Ž . Ž .L R � 3. Thus, we have A R � s R in this case.

� � Ž 3 3. Ž .9.6. Consider the ring R � k u, � � u , � . Since edim R � 2, we
Ž . Ž . Ž . Ž .know that 2 � s R � A R � G R by 6.5. Also, pol reg R � 4 and we
Ž . � �can see that L R � 4. Indeed, by Tate 37, Theorem 4 a minimal free

resolution of k over R has the form

² 2 2 :X � R S, Y , U, V � � U � u , � V � � , � S � u U, � T � � V .Ž . Ž . Ž . Ž .

R Ž 4 . Ž 4 . R Ž 3 .Express Tor R�� , k as H X�� X and Tor R�� , k as�1 �1 �1
Ž 3 . 2H X�� X . For degree reasons, the image of u UT is a cycle in�1

X�� 4 X, which is not a boundary in X�� 3X ; hence the map
R Ž 4 . R Ž 3 .Tor R�� , k � Tor R�� , k is not zero.�1 �1
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