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Abstract

The present paper deals with the combination of plasticity and damage applied to modeling of concrete failure. First,
the local uniqueness conditions of two types of combinations of stress-based plasticity and strain-driven scalar damage are
studied. Then a triaxial damage-plastic model for the failure of concrete is presented. The plasticity part is based on the
effective stress and the damage model is driven by the plastic strain. The implementation of the model in the form of a fully
implicit integration scheme is discussed and the corresponding algorithmic stiffness matrix is derived. The constitutive
response is compared to a wide range of experimental results. Finally, the model is applied to the structural analysis of
reinforced concrete columns. A regularized version of this model with weighted spatial averaging of the damage-driving
variable is published in a separate paper.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Typical failure modes of concrete are cracking in tension and crushing in compression. The failure process
is characterized by irreversible deformations and degradation of the material stiffness, which leads in tension
and unconfined or low-confined compression to strain softening, i.e. decreasing stress under increasing strain.
In low-confined compression, softening is accompanied by extensive inelastic volumetric expansion. In highly
confined compression, on the other hand, the stiffness degradation and the inelastic volume expansion are sig-
nificantly reduced.

One group of constitutive models suitable for the description of these complex phenomena is based on a
combination of the flow theory of plasticity with damage mechanics. Plasticity models alone, for instance
those proposed by Chen and Chen (1975), Dragon and Mróz (1979), Lin et al. (1987), Pramono and Willam
(1989), Etse and Willam (1994), Pekau and Zhang (1994), Lade and Kim (1995), Menétrey and Willam (1995),
Feenstra and de Borst (1996), Kang (1997), or Grassl et al. (2002), are unable to capture the stiffness
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degradation observed in experiments. Damage models, on the other hand, are not suitable for description of
irreversible deformations and of inelastic volumetric expansion in compression; see for instance Mazars
(1984).

Combinations of plasticity and damage usually consider plasticity with isotropic hardening and enrich it by
either isotropic or anisotropic damage. Anisotropic damage models for brittle materials, such as concrete, are
often complex and a combination with plasticity and application to structural analysis is not straightforward;
see Carol et al. (2001) and Hansen et al. (2001). Isotropic damage, on the other hand, is widely used (Gatuingt
and Pijaudier-Cabot, 2002; Bourgeois et al., 2003; Krätzig and Polling, 2004; Salari et al., 2004; Jason et al., in
press) and different types of combinations with plasticity models have been proposed in the literature. One
group of models relies on stress-based plasticity formulated in the effective stress space; see for instance Ju
(1989), Lee and Fenves (1998) and Jason et al. (2004). Another group of models is based on plasticity formu-
lated in the nominal stress space; see for instance Lubliner et al. (1989), Imran and Pantazopoulou (2001) and
Ananiev and Ožbolt (2004). Here, effective stress is meant as the average micro-level stress acting in the
undamaged material between defects, defined as force divided by the undamaged part of the area, while nom-
inal stress is meant as the macro-level stress and is defined as force divided by the total area.

In the present paper we study the local uniqueness conditions for the two different groups of models, i.e., we
determine whether any prescribed strain history generates a unique response in terms of stress and internal
variables. Models that violate the uniqueness conditions do not possess a unique solution for certain histories
and are therefore unsuitable for structural analysis. This type of local uniqueness study is well known from
multi-surface plasticity; see for instance Chapter 20 in Jirásek and Bažant (2002). For combinations of damage
and plasticity, however, the issue of local uniqueness has not received much attention in the literature, even
though the conditions sometimes turn out to be more restrictive than for multi-surface plasticity.

Furthermore, we present a new damage-plastic approach to modeling concrete failure under general triaxial
stress covering tension, shear and multiaxial compression with different levels of confinement. We discuss the
implementation of the model and compare the model response to experimental results in the literature.

Of course, a local constitutive model with nonassociated flow and softening cannot provide an objective
description of localized failure modes and needs to be adjusted or regularized. As a first remedy, we use a
simple engineering approach with adjustment of the damage law (which controls softening) according to
the size of the finite element, in the spirit of the traditional crack-band theory (Bažant and Oh, 1983). How-
ever, such an approach is not fully reliable in situations when localized failure patterns coexist with diffuse
ones. A more sophisticated remedy is provided by a regularized formulation based on weighted spatial aver-
aging of the damage-driving variable, which is presented in detail in a separate publication (Grassl and Jirásek,
2006).
2. Combinations of plasticity and damage

This section compares and evaluates two types of models combining stress-based plasticity with strain-
based scalar damage. The analysis is focused on local uniqueness, i.e., on the question whether the response
in terms of stress and internal variables is unique for any prescribed strain history.

The two groups, namely models with the plastic part written in terms of the effective stress (i.e., in the
undamaged space) and those with the plasticity part written in terms of the nominal stress (in the damaged
space), are studied separately. The former includes mainly formulations with focus on the combination of irre-
versible strains and stiffness degradation, whereas the latter comprises approaches for which the response in
different domains of the stress space is described separately by the different components, for instance tensile
failure by the damage part and compressive failure by the plastic part.

The stress–strain relation for all such models is
r ¼ ð1� xÞ�r ¼ ð1� xÞDe : ðe� epÞ ð1Þ
where x is a scalar describing the amount of isotropic damage, De is the elastic stiffness, e is the total strain, ep

is the plastic strain, �r is the effective stress and r is the nominal stress. The evolution equations for internal
variables such as x and ep depend on the specific formulation; they are discussed in the subsequent sections.
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2.1. Plasticity model based on effective stress

The first group of models combines plasticity based on the effective stress �r with damage driven by the total
strain or by the plastic strain. The plasticity model is described by the yield function, the flow rule, the evo-
lution law for the hardening variable and the loading–unloading conditions:
fpð�r; jpÞ ¼ ~rð�rÞ � rYðjpÞ ð2Þ

_ep ¼ _k
ogp

o�r
ð�r; jpÞ ð3Þ

_jp ¼ _kkpð�r; jpÞ ð4Þ
fp 6 0; _k P 0; _kfp ¼ 0 ð5Þ
Here, fp is the yield function, jp is the plastic hardening variable, ~r is the equivalent stress, rY is the yield
stress, k is the plastic multiplier, gp is the plastic potential, and kp is a function relating the rate of the hard-
ening variable to the rate of the plastic multiplier. Superimposed dot denotes derivative with respect to time,
but the models considered here are rate-independent and the rates can also be interpreted as infinitesimal
increments.

The damage model is described by the damage loading function, the evolution law for the damage variable,
and the loading–unloading conditions:
fdðe; ep; jdÞ ¼ ~eðe; epÞ � jd ð6Þ
x ¼ gdðjdÞ ð7Þ
fd 6 0; _jd P 0; _jdfd ¼ 0 ð8Þ
Here, fd is the damage loading function, ~e is the equivalent strain, jd is the damage-driving variable and gd is
the damage function.

Let us first elucidate the notion of local uniqueness. To keep the presentation simple, we look only at the
plastic part of the model. If the current value of the yield function fp is negative, plastic flow cannot occur
because the third condition in (5) implies that _k ¼ 0. On the other hand, if fp = 0, the material can either exhi-
bit plastic flow characterized by _k > 0, or unload elastically with _k ¼ 0. In the former case, the yield function
remains equal to zero and so its rate vanishes (this is the so-called consistency condition), while in the latter
case the yield function must not increase and its rate is thus nonpositive. This means that if the current state is
plastic, the rates of the yield function and of the plastic multiplier must satisfy conditions
_f p 6 0; _k P 0; _k _f p ¼ 0 ð9Þ

that are formally similar to (5) but the value of the yield function is replaced by its rate. Differentiating (2) with
respect to time and exploiting the rate form of the effective stress–strain law, _�r ¼ De : ð_e� _epÞ, and the evolu-
tion equations (3) and (4), we can express
_f p ¼
ofp

o�r
: _�rþ ofp

ojp

_jp ¼
ofp

o�r
: De : _e� _k

ofp

o�r
: De :

ogp

o�r
þ Hpkp

� �
ð10Þ
where
H p ¼ �
ofp

ojp

¼ drY

djp

ð11Þ
is the plastic modulus, positive for hardening and negative for softening. Substituting (10) into (9), we obtain
the so-called linear complementarity problem (LCP) for the unknown rate of the plastic multiplier, _k. It is easy
to show that if the expression in parentheses in (10) is positive, the LCP has a unique solution for any given
strain rate _e. On the other hand, if that expression is negative, no solution exists for those strain rates that
render the expression

ofp

o�r
: De : _e positive, and two solutions exist for strain rates that render this expression

negative. A nonunique situation arises also when the expression in parentheses in (10) is zero. This means that
the condition of local uniqueness reads
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ofp

o�r
: De :

ogp

o�r
þ H pkp > 0 ð12Þ
This condition should be satisfied for all possible states of the material. If this is not the case, there exist certain
strain histories for which the corresponding stress history is not uniquely determined by the model equations,
and at some stage of analysis the stress-return algorithm (evaluation of the stress increment corresponding to
the given strain increment) may diverge.

We will now extend the analysis of local uniqueness to the combined damage-plastic model, considering a
state satisfying both conditions fp = 0 and fd = 0. The subsequent evolution may involve plastic yielding, or
damage growth, or both of these dissipative mechanisms, or neither of them. The rate problem analogous
to (9) can be written in matrix form as
_f 6 0; _k P 0; _kT _f ¼ 0 ð13Þ

where
_f ¼
_f p

_f d

( )
ð14Þ
and
_k ¼
_k

_jd

( )
ð15Þ
The rate of the yield function is expressed according to (10), and the rate of the damage loading function is
expressed as
_f d ¼
ofd

oe
: _eþ ofd

oep

: _ep þ
ofd

ojd

_jd ¼
ofd

oe
: _eþ _k

ofd

oep

:
ogp

o�r
þ ofd

ojd

_jd ð16Þ
and so we can write
_f ¼ b� A _k ð17Þ

with
A ¼

ofp

o�r
: De :

ogp

o�r
þ H pkp 0

� ofd

oep

:
ogp

o�r
� ofd

ojd

0
BB@

1
CCA ð18Þ
and
b ¼

ofp

o�r
: De : _e

ofd

oe
: _e

8><
>:

9>=
>; ð19Þ
Substituting (17) into (13) we obtain the LCP
A _k� b P 0; _k P 0; _kTðA _k� bÞ ¼ 0 ð20Þ

Note that if the current state and the strain rate are given, then A and b are known and the unknowns to be
determined are the components of _k. It is known from optimization theory that an LCP in the form (20) has
exactly one solution _k for any vector b if and only if all the principal minors of matrix A are positive; see for
instance Cottle et al. (1992). This results in the following conditions for the components of matrix A:
A11 > 0; A22 > 0; A11A22 � A21A12 > 0 ð21Þ

Since in our particular case A12 = 0, the third condition follows from the first two, and it is sufficient to verify
that
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ofp

o�r
: De :

ogp

o�r
þ H pkp > 0 ð22Þ

� ofd

ojd

> 0 ð23Þ
The first condition (22) is independent of the damage part and has exactly the same form (12) as for the plas-
ticity model alone. If the damage loading function has the assumed form (6), the second condition (23) is auto-
matically satisfied because ofd

ojd
¼ �1.

In conclusion, the present type of combination does not imply any further restrictions on the specific form
of the plastic and damage parts of the model. The damage part can depend on both the total strain and the
plastic strain. Furthermore, both parts can exhibit softening, but the softening plastic modulus must not drop
below a critical value, which is the same as for the pure plastic model.

2.2. Plasticity model based on nominal stress

The second group of models comprises combinations of plasticity based on the nominal stress with damage
driven by the total or the plastic strain, or both. The damage part is the same as defined in (6)–(8). The
plastic part, however, is different since now it is based on the nominal stress r, i.e., the basic equations are
written as
fpðr; jpÞ ¼ ~rðrÞ � rYðjpÞ ð24Þ

_ep ¼ _k
ogp

or
ð25Þ

_jp ¼ _kkpðr; jpÞ ð26Þ

The loading–unloading conditions keep the same format (5) as before.

Repeating the steps from the preceding section, we express the rate of the yield function by differentiating
(24) with respect to time and exploiting the rate form of the stress–strain law (1) and the evolution equations
(25) and (26):
_f p ¼
ofp

or
: _rþ ofp

ojp

_jp ¼ ð1� xÞ ofp

or
: De : _e� _k ð1� xÞ ofp

or
: De :

ogp

or
þ Hpkp

� �
� _jd

dgd

djd

ofp

or
: �r ð27Þ
The rate of the damage loading function is given by (16) with ogp=o�r replaced by ogp/or. The resulting LCP
has the general form (20) but matrix A is now given by
A ¼
ð1� xÞ ofp

or
: De :

ogp

or
þ Hpkp

dgd

djd

ofp

or
: �r

� ofd

oep

:
ogp

or
1

0
BBB@

1
CCCA ð28Þ
Note that we have considered the damage loading function in the form (6), and so ofd

ojd
¼ �1. The three con-

ditions of uniqueness (21) are now written as
ð1� xÞ ofp

or
: De :

ogp

or
þ H pkp > 0 ð29Þ

1 > 0 ð30Þ

ð1� xÞ ofp

or
: De :

ogp

or
þ H pkp > �

ofd

oep

:
ogp

or

dgd

djd

ofp

or
: �r

� �
ð31Þ
The first condition (29) is in the undamaged state (x = 0) identical to (22). However, as damage grows,
the first term is reduced and finally disappears. For the fully damaged state (x = 1) the condition is fulfilled
only if
H pkp > 0 ð32Þ



P. Grassl, M. Jirásek / International Journal of Solids and Structures 43 (2006) 7166–7196 7171
Since the scaling factor kp is positive, condition (32) means that the plastic modulus must be positive as well,
i.e., plastic softening is excluded. The second condition (30) is always satisfied for damage loading functions in
the form (6). The third condition (31) can become even more restrictive than the first one, as will be illustrated
by an example.

Consider combination of Drucker–Prager plasticity with isotropic damage using a Rankine-type loading
function. The yield function and the plastic potential of the Drucker–Prager plasticity model are defined as
fpðr; jpÞ ¼ c/I1ðrÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
J 2ðrÞ

p
� rYðjpÞ ð33Þ

gpðrÞ ¼ cwI1ðrÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
J 2ðrÞ

p
ð34Þ
where I1 = r :d is the trace of the stress tensor, d is the Kronecker delta, J2 = s : s/2 is the second invariant of
the deviatoric stress s = r � dI1/3, c/ is the friction coefficient, cw is the dilation coefficient and rY is the yield
stress in shear.

The loading function of the Rankine damage model has the form (6) with the equivalent strain ~e given by
~eðe; epÞ ¼
1

E
max
I¼1;2;3

h�rIðe; epÞi ð35Þ
where E is Young’s modulus, hÆi are the McAuley brackets (positive-part operator), and �rI is the Ith principal
value of the effective stress tensor �r ¼ De : ðe� epÞ. Damage is linked to variable jd through (7) with
gdðjdÞ ¼
0 if jd 6 e0

1� e0

jd

exp � jd � e0

ef � e0

� �
if jd P e0

8<
: ð36Þ
where e0 is the strain at peak stress under uniaxial tension and ef is a parameter that controls the slope of the
exponential softening curve.

The equivalent strain in (35) depends on the elastic strain ee = e � ep, so that (16) is reformulated as
_fd ¼
ofd

oee

: _ee þ
ofd

ojd

_jd ¼
o~e
oee

: _e� _k
ogp

or

� �
� _jd ð37Þ
Thus, condition (31) reads
ð1� xÞ ofp

or
: De :

ogp

or
þ Hpkp >

o~e
oee

:
ogp

or

dgd

djd

ofp

or
: �r

� �
ð38Þ
Substituting the derivatives of the Drucker–Prager yield function (33), of plastic potential (34), of expression
(35) for the equivalent strain and of the damage law (36) into (38) gives, after some algebraic manipulations,
the uniqueness condition
ð1� xÞE 3c/cw

1� 2m
þ 1

2ð1þ mÞ

� �
þ H pkp >

1

jd

þ 1

ef � e0

� �
cw

ð1� 2mÞ þ
s1

2ð1þ mÞ
ffiffiffiffiffi
J 2

p
� �

rYðjpÞ ð39Þ
where m is Poisson’s ratio and s1 is the maximum principal deviatoric stress.
To gain more insight, we select specific values of the model parameters. The friction coefficient is chosen as

c/ = 0.07, which corresponds to the ratio between biaxial and uniaxial compressive strengths �f b=�f c ¼ 1:16;
the corresponding initial value of rY is r0 ¼ ð

ffiffiffi
3
p

=3� c/Þ�f c ¼ 0:50735�f c. The dilation coefficient is set to
cw = 0.05, which results in a realistic prediction of volumetric expansion under uniaxial compression. The ratio
between the compressive and tensile strengths is taken as �f c=�f t ¼ 10, and the elastic limit strain is e0 ¼ �f t=E.

Consider the stress state at the intersection of the damage and plastic surfaces under plane stress; cf. Fig. 1. The
positive principal stress is r1 ¼ �f t, the out-of-plane principal stress is r3 = 0, and the negative principal stress
r2 ¼ �0:925�f c ¼ �9:25�f t can be computed from the yield condition. From principal stresses we can evaluate
the stress invariants I1 ¼ �0:825�f c and J 2 ¼ 0:3194�f 2

c . At the elastic limit, the initial values of damage, damage
hardening variables and yield stress are x = 0, jd ¼ e0 ¼ �f t=E and rYð0Þ ¼ r0 ¼ 0:50735�f c ¼ 5:0735�f t. Substi-
tuting all this into (39), we obtain the following restriction on the generalized plastic hardening modulus:



Fig. 1. Schematic drawing of the yield surface of the plasticity model and the loading function of the damage in the principal stress space
at the onset of damage (x = 0).

Fig. 2
compr
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H pkp >
1:8257

1� e0=ef

� 0:4342

� �
E > 1:3915E ð40Þ
Parameter ef controlling the slope of the tensile softening diagram depends on the fracture energy and on the
size of finite elements, but even in the most favorable case of very large value of ef (corresponding to very small
elements), the generalized plastic hardening modulus must be larger than Young’s modulus, otherwise the
uniqueness condition is violated. Hence the local uniqueness is guaranteed only with a strong amount of hard-
ening in the plasticity model. This is not acceptable for modeling concrete in uniaxial and weakly confined
compression.

As mentioned before, if the damage loading function is independent of the plastic strain, then component
A21 in (28) vanishes and condition (31) is equivalent to (29). Damage driven exclusively by the total strain,
however, is not appropriate for combined damage-plastic models for concrete. If the material is loaded in
compression and considerable negative plastic strains develop, upon subsequent load reversal (removal of
the compressive stress followed by tensile loading) damage must start already when the total strain is still neg-
ative but the stress (proportional to the elastic strain) exceeds the tensile strength (Fig. 2). Thus, damage load-
ing functions dependent of the total strain only would produce spurious effects upon load reversal.
. Typical stress–strain response in uniaxial tension of a damage model driven by the total strain without and with preceding
essive loading.
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2.3. Choice of suitable framework

In the preceding sections, the local uniqueness conditions for two different combinations of stress-based
plasticity and strain-driven damage were studied. For the first group of models, the plastic part is based on
the effective stress, while for the second group it is based on the nominal stress. The damage evolution may
depend on the total strain as well as on the plastic strain. For the first group, the combination of plasticity
and damage does not result in further restriction on the model parameters. For the second group, the plastic
part must exhibit strong hardening to fulfill the local uniqueness conditions. This is a severe restriction, since
for this combination the response in compression would be modeled by hardening plasticity alone, whereas
experimental results show softening for uniaxial and low-confined compression. Consequently, in the pro-
posed damage-plastic model for concrete, to be presented in the next section, the plastic part is based on
the effective stress.
3. Damage-plastic model for concrete failure

In the present section a triaxial damage-plastic model for concrete failure is developed. The plastic part of
the model is based on the effective stress and is defined by the yield function, the flow rule, the evolution law
for the hardening variable, and the loading–unloading conditions as stated in (2)–(5). The damage model is
based on the plastic strain and consists of the damage loading function, the damage law, and the loading–
unloading conditions as stated in (6)–(8). In the following sections, the basic components of the plastic and
damage parts of the model are specified in detail.

3.1. Components of the plasticity model

The plasticity model is formulated in a three-dimensional framework with a pressure-sensitive yield surface,
hardening and nonassociated flow. The main components are the yield condition, the hardening law, the evo-
lution law for the hardening variable and the flow rule.

3.1.1. Yield surface

The yield surface is described in terms of the cylindrical coordinates in the principal effective stress space
(Haigh–Westergaard coordinates), which are the volumetric effective stress
�rV ¼
I1

3
ð41Þ
the norm of the deviatoric effective stress
�q ¼
ffiffiffiffiffiffiffi
2J 2

p
ð42Þ
and the Lode angle
�h ¼ 1

3
arccos

3
ffiffiffi
3
p

2

J 3

J 3=2
2

 !
ð43Þ
The foregoing definitions use the first invariant
I1 ¼ �r : d ¼ �rijdij ð44Þ
of the effective stress tensor �r, and the second and third invariants
J 2 ¼ 1
2
�s : �s ¼ 1

2
�s2 : d ¼ 1

2
�sij�sij ð45Þ

J 3 ¼ 1
3
�s3 : d ¼ 1

3
�sij�sjk�ski ð46Þ
of the deviatoric effective stress tensor �s ¼ �r� dI1=3.
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The yield function
fpð�rV; �q; �h; jpÞ ¼ ½1� qhðjpÞ�
�qffiffiffi
6
p

�f c

þ �rV

�f c

� �2

þ
ffiffiffi
3

2

r
�q
�f c

( )2

þ m0q2
hðjpÞ

�qffiffiffi
6
p

�f c

rðcos �hÞ þ �rV

�f c

� �
� q2

hðjpÞ

ð47Þ

depends on the effective stress (which enters in the form of cylindrical coordinates) and on the hardening var-
iable jp (which enters through a dimensionless variable qh). Parameter �f c is the uniaxial compressive strength.
Note that, under uniaxial compression characterized by axial stress �r < 0, we have �rV ¼ �r=3, �q ¼ �

ffiffiffiffiffiffiffiffi
2=3

p
�r

and �h ¼ 60�. The yield function then reduces to fp ¼ ð�r=�f cÞ2 � q2
h. This means that function qh describes

the evolution of the uniaxial compressive yield stress normalized by its maximum value, �f c.
The meridians of the yield surface fp = 0 are parabolic, and the deviatoric sections change from triangular

shapes at low confinement to almost circular shapes at high confinement. The shape of the deviatoric section is
controlled by the function
rðcos �hÞ ¼ 4ð1� e2Þ cos2 �hþ ð2e� 1Þ2

2ð1� e2Þ cos �hþ ð2e� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1� e2Þ cos2 �hþ 5e2 � 4e

q ð48Þ
proposed by Willam and Warnke (1974) and later exploited by many authors, including Etse and Willam
(1994), Menétrey and Willam (1995), Kang (1997) and Kang and Willam (1999). The eccentricity parameter
e and the friction parameter m0 are calibrated from the values of uniaxial and equibiaxial compressive
strengths and uniaxial tensile strength; see Appendix A.2.

The shape of the meridians of the yield surface is controlled by the hardening variable qh and the friction
parameter m0. The evolution of the yield surface during hardening is presented in Figs. 3 and 4. The maximum
size of the elastic domain is attained when the variable qh is equal to one (which is its maximum value, as
follows from the hardening law, to be specified in (53)). The yield surface then turns into the failure surface
proposed by Menétrey and Willam (1995) and described by the equation
fpð�rV; �q; �h; 1Þ � 3

2

�q2

�f 2
c

þ m0

�qffiffiffi
6
p

�f c

rðcos �hÞ þ �rV

�f c

� �
� 1 ¼ 0 ð49Þ
The yield function proposed in the present article and defined in (47) is an adapted version of the modified
Leon model (Etse and Willam, 1994). The difference is that in the present formulation the function r enters
only the linear part of the yield function. In this way a constant eccentricity parameter e can be used, but
the shape of the deviatoric section still changes with increasing confinement.
-4
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-2

-1

0

1
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3.1.2. Flow rule

In the present model, the flow rule
_ep ¼ _k
ogp

o�r
¼ _km ð50Þ
is nonassociated, which means that the yield function fp and the plastic potential gp do not coincide and, there-
fore, the direction of the plastic flow m � ogp=o�r is not normal to the yield surface. This is important for real-
istic modeling of the volumetric expansion under compression for frictional materials such as concrete. An
associated flow rule for this type of yield surface gives an unrealistically high volumetric expansion in compres-
sion, which leads in the case of passive confinement to an overestimated strength (peak stress); see Grassl
(2004).

The plastic potential is given as
gpð�rV; �q; jpÞ ¼ ½1� qhðjpÞ�
�qffiffiffi
6
p

�f c

þ �rV

�f c

� �2

þ
ffiffiffi
3

2

r
�q
�f c

( )2

þ q2
hðjpÞ

m0�qffiffiffi
6
p

�f c

þ mgð�rVÞ
�f c

� �
ð51Þ
Parameter m0 is constant and equal to the friction parameter in the yield function (47). The ratio of the vol-
umetric and the deviatoric parts of the flow direction is controlled by function mg, which depends on the vol-
umetric stress and is defined as
mgð�rVÞ ¼ AgBg
�f c exp

�rV � �f t=3

Bg
�f c

ð52Þ
where Ag and Bg are model parameters that are determined from assumptions on the plastic flow in uniaxial
tension and compression; see Appendix A.

The plastic potential does not depend on the third Haigh–Westergaard coordinate (Lode angle �h). This
increases the efficiency of the implementation (see Section 3.4) and the robustness of the model. However,
it also limits the capability of this flow rule to describe the response of concrete in multiaxial compression.

3.1.3. Hardening law

The dimensionless variable qh that appears in the yield function (47) is a function of the hardening variable
jp. It controls the size and shape of the yield surface and, thereby, of the elastic domain.

The hardening law is given by
qhðjpÞ ¼
qh0
þ ð1� qh0

Þjpðj2
p � 3jp þ 3Þ if jp < 1

1 if jp P 1

(
ð53Þ
The initial inclination of the hardening curve (at jp = 0) is positive and finite, and the inclination at peak (i.e.,
at jp = 1) is zero, as depicted in Fig. 5a.



0

1

1
 q

h
κp

0

0.02

0.04

0.06

0 0.5 1 1.5 2

x h

Rh

Fig. 5. (a) The hardening law. (b) The ductility measure for stress states on the compressive meridian. With increasing confinement the
evolution of the hardening variable is slowed down.
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3.1.4. Hardening variable

The evolution law for the hardening variable,
_jp ¼
k _epk

xhð�rVÞ
cos2 �h ¼

_kkmk
xhð�rVÞ

cos2 �h ð54Þ
sets the rate of the hardening variable equal to the norm of the plastic strain rate scaled by a hardening duc-
tility measure
xhð�rVÞ ¼
Ah � ðAh � BhÞ expð�Rhð�rVÞ=ChÞ if Rhð�rVÞP 0

Eh expðRhð�rVÞ=F hÞ þ Dh if Rhð�rVÞ < 0

�
ð55Þ
depicted in Fig. 5b. The dependence of the scaling factor xh on the volumetric stress �rV is constructed such
that the model response is more ductile under compression. The variable
Rhð�rVÞ ¼ �
�rV

�f c

� 1

3
ð56Þ
is a linear function of the volumetric effective stress. Model parameters Ah, Bh, Ch and Dh are calibrated from
the values of strain at peak stress under uniaxial tension, uniaxial compression and triaxial compression,
whereas the parameters Eh and Fh are determined from the conditions of a smooth transition between the
two parts of Eq. (55) at Rh = 0:
Eh ¼ Bh � Dh ð57Þ

F h ¼
ðBh � DhÞCh

Bh � Ah

ð58Þ
To simplify notation, we introduce the function
kpð�r; jpÞ ¼
kmð�r; jpÞk
xhð�r : d=3Þ cos2 �h ð59Þ
and rewrite (54) as
_jp ¼ _kkpð�r; jpÞ ð60Þ
3.2. Components of the damage model

The damage model is formulated in the framework of isotropic scalar damage. The main components are
the loading function with the definition of the equivalent strain and the damage evolution law. In contrast to
pure damage models with damage driven by the total strain, here the damage is linked to the evolution of plas-
tic strain. The individual components are presented in the next paragraphs.
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3.2.1. The loading function and the definition of the equivalent strain
The damage loading function has the form (6) but the equivalent strain ~e is not an explicit function of the

strain or plastic strain. It is defined incrementally by the rate equation
_~e ¼
0 if jp < 1

_epV=xsð�rVÞ if jp P 1

�
ð61Þ
Here, _epV ¼ _ep : d is the volumetric plastic strain rate and xs is a softening ductility measure (Fig. 6a) defined as
xsð�rVÞ ¼
1þ AsR2

s ð�rVÞ if Rsð�rVÞ < 1

1� 3As þ 4As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rsð�rVÞ

p
if Rsð�rVÞP 1

(
ð62Þ
As is a model parameter determined from the softening response in uniaxial compression. The dimensionless
variable Rs ¼ _e�pV=_epV is defined as the ratio between the ‘‘negative’’ volumetric plastic strain rate
_e�pV ¼
X3

I¼1

h�_epIi ð63Þ
and the total volumetric plastic strain rate _epV. Since this ratio depends only on the flow direction ogp=o�r, Rs

can be considered as a function of the effective stress. In (63), _epI are the principal components of the rate of
plastic strains and hÆi denotes the McAuley brackets (positive-part operator). For uniaxial tension, for in-
stance, all three principal plastic strain rates are nonnegative, and so _e�pV ¼ 0, Rs = 0 and xs = 1. This means
that under uniaxial tensile loading we have jd = jp � 1. On the other hand, under compressive stress states the
negative principal plastic strain rates lead to a ductility measure xs greater than one and the evolution of dam-
age is slowed down. It should be emphasized that the flow rule for this specific model is constructed such that
the volumetric part of plastic strain rate at the ultimate yield surface cannot be negative.

3.2.2. Evolution law

The evolution law gd, which relates the damage variable x to the internal variable jd, is assumed to have the
exponential form
x ¼ gdðjdÞ ¼ 1� expð�jd=efÞ ð64Þ

where ef is a parameter that controls the slope of the softening curve; see Fig. 6b.

3.3. Thermodynamic aspects

The constitutive equations have been constructed without any reference to a thermodynamic framework.
The reason is that a realistic description of dilatancy in concrete requires a nonassociated flow rule, and there-
fore the present model does not belong to the class of generalized standard materials. Therefore, the results of
Contrafatto and Cuomo (2002) are not applicable. For nonstandard materials, the evolution laws for internal
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variables are not derived from a dissipation potential but are simply postulated. Still, it is useful to check
whether the resulting model satisfies the dissipation inequality. The condition of nonnegative dissipation
may lead to certain constraints on the model parameters, which should be respected to make sure that the
model remains thermodynamically admissible.

First of all, we need to specify the expression for the free energy. For the present type of damage-plastic
model, the most natural choice for specific free energy (per unit volume) is
qwðe; ep;xÞ ¼ 1
2
ð1� xÞðe� epÞ : De : ðe� epÞ ð65Þ
Here, q is the density (specific mass), w is the Helmholtz free energy per unit mass, and we consider isothermal
processes, so that the temperature remains constant and is not explicitly listed among the state variables. The
rate of dissipation per unit volume is then evaluated as
D ¼ r : _e� q _w ¼ r� q
ow
oe

� �
: _e� q

ow
oep

: _ep � q
ow
ox

_x ð66Þ
Using standard arguments we obtain the stress–strain equation
r ¼ q
ow
oe
¼ ð1� xÞDe : ðe� epÞ ð67Þ
and the dissipation inequality
D ¼ �q
ow
oep

: _ep � q
ow
ox

_x ¼ ð1� xÞðe� epÞ : De : _ep þ
1

2
ðe� epÞ : De : ðe� epÞ _x ¼ r : _ep þ Y _x P 0

ð68Þ

where the dissipative thermodynamic force conjugate to the plastic strain is �q ow

oep
: _ep ¼ ð1� xÞDe : ðe� epÞ,

which turns out to be equal to the (nominal) stress r, and the dissipative force conjugate to the damage var-
iable is the damage energy release rate
Y ¼ �q
ow
ox
¼ 1

2
ðe� epÞ : De : ðe� epÞ ð69Þ
which is equal to the specific free energy of the undamaged material under the same elastic strain. The terms
r : _e and Y _x can be interpreted as the plastic dissipation and damage dissipation, respectively. In principle,
only the total dissipation must be nonnegative, and since the damage growth is in the present model not com-
pletely independent of the plastic flow, the individual parts of dissipation do not necessarily need to be non-
negative. However, we will require that each of them be nonnegative, which is a sufficient but not necessary
condition for thermodynamic admissibility.

The damage part of dissipation Y _x is always nonnegative, because Y P 0 and the damage variable x can-
not decrease, i.e. _x P 0 (in fact, this is the constraint on the evolution law, but it is automatically satisfied).
Therefore, we focus on the plastic dissipation
Dp ¼ r : _ep ¼ _kr :
ogp

o�r
¼ _kð1� xÞ�r :

ogp

o�r
ð70Þ
Since _k and 1 � x are both nonnegative, it remains to verify that the scalar product of the effective stress and
the plastic flow direction is nonnegative.

It is easy to see that the plastic potential defined in (51) is a convex function of the stress invariants �rV and �q
(with the hardening variable jp taken as a constant parameter). Moreover, with some mild assumptions
regarding the model parameters, it is possible to prove that for all states that satisfy the yield condition
fpð�rV; �q; �h; jpÞ ¼ 0 the value of the plastic potential gpð�rV; �q; jpÞ is larger than gp(0,0;jp); for a rigorous proof
see Appendix C. According to the theory of convex functions, these two properties guarantee that the scalar
product of vector ð�rV; �qÞ with the gradient of gp evaluated at ð�rV; �qÞ is nonnegative, which is exactly what we
need in order to prove that Dp P 0. The mild conditions on the parameters do not represent any practical
restriction. The proposed model is therefore fully thermodynamically consistent and there is no danger that
e.g. cyclic loading would lead to spurious generation of energy instead of energy dissipation.
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3.4. Implementation

The present constitutive model has been implemented within the framework of the nonlinear finite element
method, with the continuous loading process is replaced by incremental time steps. In each step the boundary
value problem (global level) and the integration of the constitutive laws (local level) are solved.

For the boundary value problem on the global level, the usual incremental-iterative solution strategy is
used, either in the form of the standard Newton–Raphson iteration with the algorithmic tangent stiffness,
or in a modified form with the tangent stiffness replaced by the secant stiffness
Ds ¼ ð1� xÞDe ð71Þ

In the former case, the convergence rate is quadratic but divergence may occur in steps during which locali-
zation of the inelastic deformation occurs. In the latter case, the convergence rate is only linear, but the meth-
od is more robust. Derivation of the algorithmic (‘‘consistent’’) tangent stiffness is given in Appendix B.

For the local problem, the updated values (Æ)(n+1) of the stress and the internal variables at the end of the
step are obtained by a fully implicit (backward Euler) integration of the rate form of the constitutive equa-
tions, starting from their known values (Æ)(n) at the beginning of the step and applying the given strain incre-
ment De = e(n+1) � e(n). The integration scheme is divided into two sequential steps, corresponding to the
plastic and damage parts of the model. In the plastic part, the plastic strain ep and the effective stress �r at
the end of the step are determined. In the damage part, the damage variable x and the nominal stress r at
the end of the step are obtained. To simplify the notation, superscripts (n + 1) denoting the state at the
end of the step are dropped from the subsequent derivations.

3.4.1. Plasticity part

The plastic part of the stress evaluation algorithm is based on the standard split into an elastic predictor
and a plastic corrector using the backward Euler scheme. The state at the beginning of the step is assumed
to be given, same as the strain increment. The unknowns to be determined are the stress �r, plastic strain ep

and plastic hardening variable jp at the end of the step, and the increment of the plastic multiplier, Dk. They
must satisfy the stress–strain equation
�r ¼ De : ðe� epÞ ð72Þ
the incremental loading–unloading conditions
fpð�r; jpÞ 6 0; Dk P 0; Dkfpð�r; jpÞ ¼ 0 ð73Þ
and the discretized form of the evolution laws
ep ¼ eðnÞp þ Dkmð�r; jpÞ ð74Þ
jp ¼ jðnÞp þ Dkkpð�r; jpÞ ð75Þ
The plastic strain ep is eliminated from the problem by substituting (74) into (72). The resulting equation can
be written as
�r ¼ De : ½e� eðnÞp � Dkmð�r; jpÞ� ¼ �rtr � DkDe : mð�r; jpÞ ð76Þ
where �rtr ¼ De : ðe� eðnÞp Þ ¼ �rðnÞ þDe : De is the trial stress, easily evaluated from the given strain increment. If
the trial stress is not outside the yield surface, i.e., if fpð�rtr; jðnÞp Þ 6 0, the step is elastic and we set Dk = 0,
�r ¼ �rtr, ep ¼ eðnÞp and jp ¼ jðnÞp . If the trial stress is outside the yield surface, the unknowns �r, jp and Dk are
determined from the set of nonlinear equations consisting of (75) and (76) and the yield condition
fpð�r; jpÞ ¼ 0 ð77Þ

For the particular type of plastic potential considered here, the number of unknowns and equations can be

further reduced. First, since the plastic potential gp is an isotropic function of stress, its gradient m has the
same principal directions as the stress tensor �r for which it is evaluated. The elastic stiffness is also considered
to be isotropic, and so it follows from (76) that the principal directions of the stress �r at the step end coincide
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with the principal directions of the trial stress �rtr. These directions can be determined in advance, and the stress
is then fully characterized by three principal values instead of six general components. The tensorial equation
(76) is replaced by three scalar equations written for the principal stresses. Second, since the plastic potential
gp defined in (51) depends only on stress invariants �rV and �q but not on the Lode angle �h, it can be shown that
the trial stress �rtr, actual stress at the step end �r and the gradient m of the plastic potential all have the same
Lode angle �h ¼ htr, which can be evaluated directly from the trial state. So Eq. (76) is finally replaced by two
scalar equations for the stress invariants
�rV ¼ �rtr
V � K DkmVð�r; jpÞ ð78Þ

�q ¼ �qtr � 2GDkmDð�r;jpÞ ð79Þ
where mV = m :d and mD = km � mVd/3k are invariants of the flow direction m, K = E/3(1 � 2m) is the elastic
bulk modulus, and G = E/2(1 + m) is the elastic shear modulus.

The set of four nonlinear equations (75) and (77)–(79) with unknowns �rV, �q, Dk and jp is solved by the
Newton–Raphson method, starting from the initial guess �rV ¼ �rtr

V, �q ¼ �qtr, Dk = 0 and jp ¼ jðnÞp . Once
the stress invariants �rV and �q are computed, the principal stresses �rI ; I ¼ 1; 2; 3, can be evaluated as
follows:
�r1

�r2

�r3

8><
>:

9>=
>; ¼ �rV

1

1

1

8><
>:

9>=
>;þ

ffiffiffi
2

3

r
�q

cos htr

cosðhtr � 2p=3Þ
cosðhtr þ 2p=3Þ

8><
>:

9>=
>; ð80Þ
Finally, substituting the principal stresses into the spectral decomposition
�r ¼
X3

I¼1

�rInI � nI ð81Þ
where nI, I = 1,2,3, are unit eigenvectors of the trial stress tensor and � denotes direct product, we construct
the stress tensor at the end of the step. Of course, this is the effective stress, which should later be multiplied by
the term 1 � x to obtain the nominal stress.

The yield surface corresponding to the yield function (47) has vertices at the intersections of the meridians
with the hydrostatic axis. The vertices need special treatment, since the flow direction at these points is not
unique. First, it is checked whether the stress state lies in a region that might require a vertex return. If the
stress state is in such a region, then the vertex return is performed under the assumption that the final stress
state lies on the hydrostatic axis ð�q ¼ 0Þ. In that case, the yield condition is written in terms of the volumetric
effective stress alone, and the volumetric effective stress that satisfies the yield condition is determined by the
bisection method. Once the volumetric effective stress is known, it is checked whether the plastic strain incre-
ment is inside the cone bounded by the directions that correspond to the regular return according to Eq. (50)
(for points in the immediate neighborhood of the vertex). If the plastic strain increment calculated under the
assumption of vertex return is outside the cone, the assumption is abandoned and regular return is performed.

3.4.2. Damage part

Numerical treatment of the damage part of the constitutive model is very efficient since the rate form of the
equivalent strain evolution in (61) is defined in terms of the plastic strain rate. The plastic strain is determined
by the plasticity algorithm described in the previous section. The equivalent strain
~e ¼ ~eðnÞ þ DkmVð�r; jpÞ
xsð�rVÞ

ð82Þ
is then evaluated from the incremental form of the evolution equation (61). Since ~e cannot decrease, we have
jd ¼ ~e and x ¼ gdð~eÞ. Finally, the nominal stress is computed as
r ¼ ð1� xÞ�r ð83Þ
using the damage variable x and the effective stress �r.
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4. Comparison with experimental results

4.1. Proportional loading

In the present section, the response of the constitutive model is compared to results of experiments in uni-
axial, biaxial and triaxial compression and uniaxial tension for different types of concrete. The model param-
eters are summarized in Appendix A. In the following comparison only the parameters E, m, �f c, �f t and ef are
varied for the different sets of experimental results, according to the material properties extracted from the
experiments. In all the cases, parameter As is set to 15. All other parameters are set to their default values men-
tioned in Appendix A.

Firstly, the model response is compared to uniaxial and biaxial compression tests (Kupfer et al., 1969), cf.
Fig. 7. The model parameters are set to E = 32 GPa, m = 0.18, �f c ¼ 32:8 MPa, �f t ¼ 3:3 MPa and
ef = 165 · 10�6.

Next, the model response is compared to triaxial compression tests with lateral confinement varying from 0
to 43 MPa, reported by Imran and Pantazopoulou (1996), cf. Fig. 8. The model parameters are set to
E = 30 GPa, m = 0.15, �f c ¼ 47:4 MPa, �f t ¼ 4:74 MPa and ef = 210 · 10�6.
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Additionally, experiments with high lateral confinement and with hydrostatic compression reported by
Caner and Bažant (2000) are modeled; cf. Figs. 9 and 10. For this type of concrete, the model parameters
are set to E = 25 GPa, m = 0.2, �f c ¼ 45:7 MPa, �f t ¼ 4:57 MPa and ef = 210 · 10�6. The constitutive response
is also compared to experimental results of concrete subjected to uniaxial tension with unloading and reload-
ing (Fig. 11) reported by Gopalaratnam and Shah (1985). The model parameters are set to E = 28 GPa,
m = 0.2, �f c ¼ 40 MPa, �f t ¼ 3:5 MPa and ef = 130 · 10�6. Finally, the response of concrete subjected to uni-
axial compression with unloading and reloading, reported by Karsan and Jirsa (1969), is modeled; see
Fig. 12b. Here, the model parameters are set to E = 30 GPa, m = 0.2, �f c ¼ 28 MPa, �f t ¼ 2:8 MPa and
ef = 110 · 10�6.

The overall agreement of the constitutive response with the wide range of experimental results, from cyclic
tension to hydrostatic compression, is good. The lateral expansion in uniaxial compression is very well cap-
tured by the proposed nonassociated flow rule. Certain discrepancies are found in the comparison with the
biaxial compression tests in Fig. 7, where the lateral positive strains in biaxial compression are overestimated.
These results could be improved by including the Lode angle in the formulation of the plastic potential. How-
ever, the simplified version of the plastic potential is preferred because it increases robustness and efficiency of
the numerical scheme.

The analyses of triaxial compression tests with low to medium confinement show a good agreement with
the experimental results in strength and axial strain; see Fig. 8. The lateral strain under low confinement is
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somewhat underestimated by the model, which is also a consequence of the circular deviatoric section of the
plastic potential. Very good agreement is obtained for the highly confined tests in Fig. 9, since the plasticity
model predicts plastic flow close to the hydrostatic axis.

For hydrostatic compression, the behavior is also in qualitative agreement with the experimental results; see
Fig. 10. Moreover, the model is able to describe the behavior in cyclic tension; see Fig. 11. The strength reduc-
tion in the initial part of the softening curve is underestimated, but the unloading stiffness at different levels of
softening is captured very well. For cyclic compression, the agreement of the softening envelope and the initial
unloading stiffness is good.

4.2. Nonproportional loading

In addition to monotonic and cyclic tests with proportional loading, the response of the proposed model
was studied for a specific type of nonproportional loading, which can reveal important differences in the
behavior of various constitutive models. In particular, loading by uniaxial compression followed by shear
was considered. This type of loading path is related to the experiments reported by Caner et al. (2002),
who tested plain concrete cylinders that were first compressed along their axis and then twisted at constant
axial strain. The change of loading from compression to torsion occurred either at the peak of the uniaxial
compressive stress–strain curve (at axial strain 2 · 10�3), or at a state far in the postpeak range (at mean axial
strain 4.5 · 10�3). The tests revealed a strong reduction of the initial torsional stiffness as compared to the elas-
tic stiffness. This phenomenon cannot be captured by a simple plasticity theory with a smooth yield surface
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corresponding to an isotropic yield function. The reason is that at the point in the stress space corresponding
to uniaxial compression, the shear stress increment is tangential to the yield surface (no matter which isotropic
yield criterion is used). The initial response after the change of loading direction thus corresponds to neutral
loading and activates the elastic stiffness. To obtain an immediate plastic yielding with reduced tangent stiff-
ness, one would need to admit that the yield surface is not smooth but has a vertex; this is why the experimen-
tally observed phenomenon is sometimes called the vertex effect. It is well known in the literature on metals
(Bleich, 1952; Gerard and Becker, 1957) but for concrete it has been explored only recently.

Caner et al. (2002) performed also numerical analysis of their tests, using a fracture-plastic material model
(Červenka et al., 1998) and version M4 of the micro-plane model (Bažant et al., 2000; Caner and Bažant,
2000). They simulated the entire specimen by finite elements using both models, and they also ran a simplified
one-dimensional analysis using the micro-plane model. The conclusion was that the fracture-plastic model
does not capture the vertex effect at all while the micro-plane model can reproduce it very well. On the other
hand, the predictions of the ultimate value of torque were better with the former model while the latter over-
predicted it by 40–50%.

In the present paper, the emphasis is not on exact fitting of the experimental results, but an illustration of
the main features of the damage-plastic model. Therefore, instead of full three-dimensional analysis of the
specimen, we construct the stress–strain curves for nonproportional loading that consists of compression in
the x-direction followed by shear in the xy-plane. During both stages, it is assumed that the normal stress com-
ponents ry and rz vanish. This is realistic for the first stage, but for the second stage it is just a simplification.
Nevertheless, from the obtained shear stress–strain curve we can construct the torque–rotation relation using
the formula
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T ðuÞ ¼ 2p
Z R

0

r2s
ur
L

� 	
dr ð84Þ
in which T is the torque, u is the relative rotation measured on gauge length L = 114.3 mm, R = 50.8 mm is
the radius of the cylindrical specimen, s(c) is the shear stress evaluated at shear strain c = ur/L, and r is the
integration variable corresponding to distance from the cylinder axis and changing from 0 to R. The analysis
has been run with the default values of the model parameters, only the elastic properties E = 36.9 GPa and
m = 0.18 and compressive strength �f c ¼ 40 MPa have been set to values reported by Caner et al. (2002) and
parameter ef = 0.25 · 10�3 controlling the fracture energy has been adjusted so as to obtain a realistic post-
peak slope of the uniaxial compressive curve.

The results are summarized in Fig. 13. For change of loading direction at the peak of the compressive curve,
the initial torsional stiffness 1431 kN m/rad is equal to the elastic one, but for the change at postpeak it is
reduced to 1038 kN m/rad. This reduction is due to damage and is less dramatic than the experimentally
observed one, but it could be increased by modifying the assumption of perfectly plastic postpeak response
of the plastic part of the model. The predicted ultimate torque is Tmax,1 = 1605 N m for change of loading direc-
tion at peak and Tmax,2 = 1154 N m for change at postpeak. The mean values measured in experiments were
2124 N m and 1078 N m, respectively. So the ultimate torque for change at peak is underpredicted but the rel-
ative errors are not larger than for the micro-plane model, which gave 2700 N m and 1460 N m, respectively.
However, it must be admitted that the present model predicts a much more brittle response than the experiments
(while the micro-plane model is more ductile). To obtain better agreement, modifications of the model param-
eters or even of certain model equations would be needed. This will be the subject of further investigations.

5. Structural example

The present damage-plastic model has been used in an analysis of reinforced concrete columns tested by
Nemecek et al. (2005). The columns are subjected to a compressive force with a small eccentricity equal to
1/10 of the cross-sectional depth. In the experimental study the amount of lateral reinforcement and the con-
crete strength were varied. Here, only specimens of normal-strength concrete are analyzed. The geometry of
the specimens and the loading setup are presented in Fig. 14a. The longitudinal spacing of the stirrups in the
middle part of the specimen ranges between 50 and 150 mm. The corresponding tests are denoted as N50,
N100 and N150.

The three-dimensional finite element model consists of linear hexahedral finite elements for concrete and
three-dimensional beam elements with material and geometrical nonlinearities for the reinforcement. The
finite element mesh is depicted in Fig. 14b. The number of elements ranges from 10,024 to 10,280 depending
on the spacing of the stirrups. The outer ends of the columns are modeled by isotropic elasticity. For the mid-
dle part, where failure takes place, the proposed damage-plastic model is used. The material parameters are
. 14. Geometry, loading setup and finite element mesh of the reinforced concrete columns subjected to eccentric compression.
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determined from the average stress–strain curve in uniaxial compression and the mean compressive strength
�f c ¼ 30 MPa. According to CEB (1991), other material parameters are estimated as tensile strength
ft = 2.4 MPa, Young’s modulus E = 31 GPa and fracture energy Gf = 54 N/m.

The fracture energy is used to determine the control parameter of the softening curve in uniaxial tension
ef = 0.00525, assuming that the longitudinal reinforcement leads to a localized strain profile distributed over
several elements. A similar approach is adopted for the softening curve in compression. The average stress–
strain curve available from the experimental study has been obtained on a 300 mm high concrete cylinder sub-
jected to centric compression. Following the approach of Markeset and Hilleborg (1995), albeit not rigidly, a
part of the vertical inelastic displacement in the postpeak regime is assumed to be localized and the remaining
part is distributed equally over the height of the specimen. Therefore, the inelastic postpeak deformation is
extracted from the average stress–strain curve and transformed into a strain over half of the specimen height;
cf. Fig. 15. This stress–strain curve is used to determine the parameter As in the ductility measure of the dam-
age model, which controls the relation between the softening curves in uniaxial tension and uniaxial compres-
sion. The use of a local stress–strain relation with softening leads in many cases to a mesh size-dependent
solution, since the zone of localized strains depends on the element size. However, in an earlier study by Grassl
and Lundgren (2003) it was observed that for this type of analysis the zone of localized strains is diffuse and
does not depend on the element size. The parameter controlling the axial plastic strain at peak in uniaxial com-
pression was set to Bh = 0.0033. The other parameters were set to their default values as listed in Appendix A.

The load–displacement curves for the analyses of the three specimens with different amount of lateral rein-
forcement are compared to the experimental results in Fig. 16. The load capacity and the deformations at peak
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are captured well. In the postpeak range, the model predicts qualitatively the correct trend – decreasing duc-
tility for larger spacing of stirrups – but this effect is quantitatively underestimated.
6. Conclusions

The present study on the combination of stress-based plasticity and isotropic damage for modeling concrete
failure has led to the following conclusions:

• For damage-plastic models with the plastic part based on the effective stress, local uniqueness is always
guaranteed (provided that it is guaranteed for the plastic part only). This is not always the case for models
with the plastic part based on the nominal stress.

• The combination of plasticity based on the effective stress and isotropic damage driven by the plastic strain
has been shown to be suitable for predicting the failure of concrete in a wide range of loading cases from
uniaxial tension to triaxial compression.

• The damage-plastic model can partially capture the reduction of shear stiffness due to previous compressive
loading.

• The model is thermodynamically consistent and the algorithmic stiffness matrix is available.
• The model is suitable for three-dimensional structural applications and seems to predict reasonably well the

response of reinforced concrete columns under eccentric compression.
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Appendix A. Model parameters

A.1. Material properties

The damage-plastic model proposed in this paper has a large number of parameters, but not all of them are
independent. Certain parameters are introduced just to simplify the notation and are directly linked to the
other parameters by explicit expressions. Certain other parameters can be conveniently determined from suit-
able assumptions, or taken by their recommended default values. So the calibration procedure requires as
input only a limited number of material properties, summarized in Table 1.

If no experimental results are available, it is sufficient to know the uniaxial compressive strength and deter-
mine the other properties from empirical formulas or take them by default values. For instance, according to
the CEB-FIP Model Code (CEB, 1991), the uniaxial tensile strength can be estimated from the uniaxial com-
pressive strength using the empirical relation
Table 1
Material properties needed for calibration

E Young’s modulus
m Poisson’s ratio
�f t Uniaxial tensile strength
�f c Uniaxial compressive strength
�f b Equibiaxial strength
Gf Fracture energy
epeak

p Plastic strain at peak under uniaxial compression
�f c0

Elastic limit stress under uniaxial compression
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�f t ¼
�f c � 8 MPa

10 MPa

� �2=3

� 1:40 MPa ðA:1Þ
The equibiaxial compressive strength can be estimated as �f b ¼ 1:16�f c according to the experimental results
reported by Kupfer et al. (1969).

Calibration of the present damage-plastic model consists in the determination of 15 parameters. These
parameters are divided into four groups corresponding to the elastic properties, hardening, state at peak stress,
and softening:

• The elastic properties are Young’s modulus E and Poisson’s ratio m.
• The hardening regime is defined by the initial value of the hardening variable qh0

and the parameters of the
hardening ductility measure Ah, Bh, Ch and Dh.

• The strength envelope in effective stress space is characterized by the values of uniaxial tensile strength �f t,
uniaxial compressive strength �f c, and the eccentricity parameter e.

• The softening regime is defined by the control parameter ef of the damage law and the parameter As of the
softening ductility measure.

Furthermore, both hardening and softening are affected by the parameters of the flow rule Ag and Bg.

A.2. Parameters of the strength envelope

The strength envelope (Menétrey–Willam failure surface) is defined by parameters �f c, e and m0. The com-
pressive strength �f c is a material property and the eccentricity parameter e and friction parameter m0 can be
easily determined from the given strength values �f c, �f t and �f b.

The eccentricity parameter e that controls the shape of the deviatoric section can be evaluated using the
formula given in Jirásek and Bažant (2002, p. 365):
e ¼ 1þ �
2� � ; where � ¼

�f t

�f b

�f 2
b � �f 2

c

�f 2
c � �f 2

t

ðA:2Þ
The friction parameter m0 that controls the shape of the meridians can be determined as
m0 ¼ 3
�f 2

c � �f 2
t

�f c
�f t

e
eþ 1

ðA:3Þ
A.3. Parameters of the flow rule

Parameters Ag and Bg of the flow rule are calibrated using certain assumptions on the plastic flow in uni-
axial tension and uniaxial compression. The flow rule (50) is split into a volumetric and a deviatoric part, i.e.,
the gradient of the plastic potential is decomposed as
m ¼ og
o�r
¼ og

o�rV

o�rV

o�r
þ og

o�q
o�q
o�r

ðA:4Þ
Taking into account that o�rV=o�r ¼ d=3 and o�q=o�r ¼ �s=�q, restricting attention to the postpeak regime (in
which qh = 1) and differentiating the plastic potential (51), we rewrite Eq. (A.4) as
m ¼ dmg

d�rV

d

3�f c

þ 3
�f c

þ m0ffiffiffi
6
p

�q

� �
�s
�f c

ðA:5Þ
Experimental results for concrete loaded in uniaxial tension indicate that the strains perpendicular to the
loading direction are elastic in the softening regime. Thus, the plastic strain rate in these directions should
be equal to zero (m2 = m3 = 0). Under uniaxial tension, the effective stress state at the end of hardening is
characterized by �r1 ¼ �f t, �r2 ¼ �r3 ¼ 0, �rV ¼ �f t=3, �s1 ¼ 2�f t=3, �s2 ¼ �s3 ¼ ��f t=3 and �q ¼

ffiffiffiffiffiffiffiffi
2=3

p
�f t. Substituting

this into (A.5) and enforcing the condition m2 = m3 = 0, we obtain an equation from which
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dmg

d�rV






�rV¼�f t=3

¼ 3�f t

�f c

þ m0

2
ðA:6Þ
In uniaxial compressive experiments, a volumetric expansion is observed in the softening regime. Thus, the
inelastic lateral strains are positive while the inelastic axial strain is negative. In the present approach, a con-
stant ratio Df = �m2/m1 = �m3/m1 between lateral and axial plastic strain rates in the softening regime is
assumed.

The effective stress state at the end of hardening under uniaxial compression is characterized by �r1 ¼ ��f c,
�r2 ¼ �r3 ¼ 0, �rV ¼ ��f c=3, �s1 ¼ �2�f c=3, �s2 ¼ �s3 ¼ �f c=3 and �q ¼

ffiffiffiffiffiffiffiffi
2=3

p
�f c. Substituting this into (A.5) and

enforcing the condition m2 = m3 = �Dfm1, we get an equation from which
dmg

d�rV






�rV¼��f c=3

¼ 2Df � 1

Df þ 1
3þ m0

2

� 	
ðA:7Þ
Substituting the specific expression for dmg=d�rV constructed by differentiation of (52) into (A.6) and (A.7), we
obtain two equations from which parameters
Ag ¼
3�f t

�f c

þ m0

2
ðA:8Þ

Bg ¼
1
3
ð1þ �f t=�f cÞ

ln Ag � lnð2Df � 1Þ � lnð3þ m0=2Þ þ lnðDf þ 1Þ ðA:9Þ
can be computed.
The dependence of the gradient of the dilation parameter on the volumetric stress is shown in Fig. 17. The

gradient of the dilation parameter, and therewith also the volumetric expansion, decreases with increasing
confinement. The limit �rV ! �1 corresponds to purely deviatoric flow. Good agreement with experimental
results in uniaxial compression was found for Df = 0.85. This recommended value can be adjusted if the cor-
responding experimental results are available.

A.4. Hardening parameters

Parameter qh0
is simply the dimensionless ratio qh0

¼ �f c0
=�f c.

Determination of parameters Ah, Bh, Ch and Dh that influence the hardening ductility measure is difficult.
The effective stress varies within the hardening regime, even for monotonic loading, so that the ratio of axial
and lateral plastic strain rate is not constant. Thus, an exact relation of all four model parameters to measur-
able material properties cannot be constructed. Comparison with experimental results (Section 4.1) has shown
that a reasonable response is obtained with parameters Ah = 0.08, Bh = 0.003, Ch = 2 and Dh = 1 · 10�6.
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However, the inelastic axial strain at peak may depend on the type of concrete and a modification of the values
of these parameters is sometimes needed. The approach is based on the axial inelastic strain under uniaxial
compression. Parameters Ah, Ch and Dh are set to their default values and only parameter Bh is varied. Fur-
thermore, it is assumed that the calibration of the parameters of the flow rule has been done with Df = 0.85.
The relation between parameter Bh and the axial plastic strain at peak under uniaxial compression, epeak

p , is
almost linear (see Fig. 18) and can be approximated by the linear expression
Fig. 1
Bh ¼ �2:29epeak
p þ 0:00046 ðA:10Þ
The influence of parameter Bh on the axial plastic strain at peak under uniaxial tension and under confined
compression with a lateral confinement of 10 MPa is shown in Fig. 19. With increasing Bh, the plastic strain
at peak in all three stress states increases. The influence in the uniaxial tension case is strongly nonlinear. Nev-
ertheless, these plastic strains are still very small compared to the elastic strains at peak in uniaxial tension.

The dilation parameter Df has a strong influence on the axial plastic strain at peak and, therewith, on the
parameters of the ductility measure.

A.5. Summary of the calibration procedure

The eccentricity parameter e is determined from (A.2).
Parameters Ah = 0.08, Ch = 2 and Dh = 1 · 10�6 are taken by their default values, parameter Bh is evalu-

ated from (A.10) or taken as Bh = 0.003.
Parameter m0 is determined from (A.3) and used in evaluation of Ag and Bg according to (A.8) and (A.9).
Parameters ef and As are determined from the fracture energy Gf and from the softening part of the stress–

strain curve under uniaxial compression. For localized failure modes, this curve should be adjusted according
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to the element size. The recommended value of parameter As in the absence of sufficient experimental data is
As = 15. For uniaxial tension, the hardening parameter is the axial plastic strain, since xs from Eq. (62) is 1.
Thus, (64) leads to an exponential curve of uniaxial tensile stress versus axial plastic strain.

It should be emphasized that the default values of various parameters should not be seen as universal con-
stants, but only as first estimates when the available experimental results do not suffice to determine them.

Appendix B. Algorithmic stiffness

The algorithmic stiffness can be obtained by consistent differentiation of the stress-return algorithm with
respect to the strain increment. We consider an incremental step from initial strain e(n) to final strain
e = e(n) + De, for which the stress-return algorithm provides the final effective stress �r. If the strain increment
is changed by de, the step from e(n) to e(n) + De + de leads to final stress �rþ d�r. Our goal is to find the depen-
dence of d�r on de, provided that de is infinitesimal but De is finite.

Since �r is the result of the stress-return algorithm, it is given by (81) with principal effective stresses �rI com-
puted from (80), in which htr is the Lode angle corresponding to the trial stress state and �rV and �q are obtained
by solving Eqs. (75) and (77)–(79). All these relations must be consistently linearized. If the stress-return algo-
rithm is run for the strain increment De + de instead of De, already the trial state will be different and in general
the principal directions of the trial stress will change. Therefore, differentiation of (81) leads to
d�r ¼
X3

I¼1

d�rI nI � nI þ
X3

I¼1

�rIðdnI � nI þ nI � dnIÞ ðB:1Þ
where d�rI are the (infinitesimal) changes of principal effective stresses and dnI are the (infinitesimal) changes of
principal directions of the trial effective stress.

Due to elastic isotropy, principal directions of the trial effective stress dnI coincide with the principal direc-
tions of the trial elastic strain, i.e., of etr

e ¼ eðnÞ � eðnÞp þ De. Their changes caused by an infinitesimal change of
De denoted as de can be evaluated using general formulae for the dependence of normalized eigenvectors of a
3 · 3 matrix on the matrix itself, linearized about the current state. The procedure is formally the same as in
Appendix I of Jirásek and Zimmermann (1998), and the resulting expression for the change of the first eigen-
vector reads
dn1 ¼
de12

etr
e1 � etr

e2

n2 þ
de13

etr
e1 � etr

e3

n3 ðB:2Þ
where etr
eI are the eigenvalues of etr

e , and deIJ = nI Æ de Æ nJ are the components of de with respect to the coordi-
nate system determined by unit vectors nI, I = 1,2,3. Similar expressions for changes of the second and third
eigenvector follow from cyclic permutation of the subscripts. Combining (B.1) and (B.2), we can obtain con-
venient expressions for the changes of final stress components with respect to the coordinate system deter-
mined by fixed base vectors nI:
d�r11 ¼ n1 � �r � n1 ¼ d�r1 ðB:3Þ

d�r12 ¼ n1 � �r � n2 ¼
�r1 � �r2

etr
e1 � etr

e2

de12 ðB:4Þ
All the other components of d�r follow again from cyclic permutation of subscripts. The change of the normal
stress component d�r11 is equal to the change of the principal stress d�r1, which still needs to be analyzed. Before
doing that, let us look at the change of the shear stress component d�r12, which is proportional to the change of
the shear strain component de12. The proportionality factor
2G12 ¼
�r1 � �r2

etr
e1 � etr

e2

ðB:5Þ
seems to be undefined if the first two principal values of the trial elastic strain coincide, which happens e.g.
under uniaxial compression. Fortunately, the expression for the shear stiffness G12 can be converted to a for-
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mula that is applicable even in the case of multiple eigenvalues. Note that the principal effective stresses are
given by (80) and their difference is
�r1 � �r2 ¼
ffiffiffi
2

3

r
�q½cos htr � cosðhtr � 2p=3Þ� ðB:6Þ
The principal values etr
eI can be expressed in a form similar to (80), with �rV, �q and htr replaced by the corre-

sponding invariants of etr
e . The important point is that the Lode angle htr remains the same, and so we can

write
etr
e1 � etr

e2 ¼
ffiffiffi
2

3

r
qtr

e ½cos htr � cosðhtr � 2p=3Þ� ðB:7Þ
where qtr
e ¼ ketr

e k is the norm of the deviatoric part of etr
e . Substituting (B.6) and (B.7) into (B.5), we get

2G12 ¼ �q=qtr
e . So the shear stiffness is well defined even if two principal stresses coincide. Only if all three prin-

cipal stresses are equal, we need to make special provisions, because then �q ¼ 0 and qtr
e ¼ 0. This is not sur-

prising, since this case corresponds to a hydrostatic state (more specifically hydrostatic tension) and the stress
returns to the vertex of the yield surface.

Now we turn attention to (B.3) and establish the link between the change of principal stress d�r1 and the
change of strain de. Differentiating the first equation from (80), we get
d�r1 ¼ d�rV þ
ffiffiffi
2

3

r
cos htrd�q�

ffiffiffi
2

3

r
�q sin htrdhtr ðB:8Þ
The change of the Lode angle dhtr can be evaluated directly from the definition of htr. The Lode angle was
defined in Eq. (43), based on the stress invariants. However, htr is the Lode angle of the trial state and can
be evaluated from the deviatoric invariants Je2 and Je3 of the trial elastic strain. Differentiation of the defini-
tion of Lode angle and of deviatoric invariants yields
dhtr ¼
ffiffiffi
3
p

2J 3
e2 sin 3htr

3

2

ffiffiffiffiffiffi
J e2

p
J e3dJ e2 � J 3=2

e2 dJ e3

� �
¼

ffiffiffi
3
p

2J 5=2
e2 sin 3htr

3

2
J e3etr

e � J e2etr
e � etr

e

� �
: de ðB:9Þ
where etr
e is the deviatoric part of the trial elastic strain, Je2 and Je3 are its invariants, and de is the deviatoric

part of the strain change.
It remains to express the changes of effective stress invariants d�rV and d�q that need to be substituted into

(B.8) along with dhtr from (B.9). Recall that the values of �rV and �q are obtained by solving the set of four
nonlinear equations (78), (79), (75) and (77). Linearization of these equations around their solution (that
has been obtained by the stress-return algorithm) leads to a linear set of equations
1þ K Dk
omV

o�rV

K Dk
omV

o�q
K Dk

omV

ojp

KmV

2GDk
omD

o�rV

1þ 2GDk
omD

o�q
2GDk

omD

ojp

2GmD

�Dk
okp

o�rV

�Dk
okp

o�q
1 �kp

ofp

o�rV

ofp

o�q
ofp

ojp

0

2
6666666666664

3
7777777777775

d�rV

d�q

djp

dk

8>>><
>>>:

9>>>=
>>>;
¼

d�rtr
V

d�qtr

0

� ofp

oh
dhtr

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ðB:10Þ
from which the infinitesimal changes d�rV, d�q, djp and dk can be calculated as linear combinations of the
changes
d�rtr
V ¼ Kd : de ðB:11Þ

d�qtr ¼ 2G
�qtr

str : de ðB:12Þ
and of dhtr, which is given by (B.9).
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The derived equations (B.3), (B.4) and (B.8)–(B.12) provide the relation between the infinitesimal changes
of the strain increment and of the resulting effective stress provided by the stress-return algorithm. This
relation is linear and can be symbolically written as d�r ¼ Dalg

ep : de, where Dalg
ep is the elastoplastic algorithmic

stiffness tensor. To get the overall algorithmic stiffness Dalg, we need to take into account the influence of
damage.

The change of nominal stress
dr ¼ ð1� xÞd�r� �rdx ðB:13Þ

follows from the linearized form of (83). If the internal variable jp is below 1, damage vanishes, the effective
stress is equal to the nominal one, and Dalg ¼ Dalg

ep . For larger values of jp, we express the change of damage by
combining the linearized forms of (64) and (82):
dx ¼ g0d d~e ¼ g0d
xs

Dk
omV

o�rV

� mVx0s
xs

� �
d�rV þ Dk

omV

o�q
d�qþ Dk

omV

ojp

djp þ mV dk

� �
ðB:14Þ
where g0d ¼ dgd=djd and x0s ¼ dxs=d�rV are the derivatives of the functions defined in (64) and (62). The changes
d�rV, d�q, djp and dk can be expressed in terms of de following the same procedure as for the plastic part of the
model, i.e., based on Eqs. (B.9)–(B.12).

Appendix C. Analysis of plastic potential

In this appendix we prove the inequality that was exploited in Section 3.3 in the proof of thermodynamic
admissibility of the present damage-plastic model. We need to show that for any stress state on the yield sur-
face the value of the plastic potential is larger than that evaluated at the origin (i.e., at zero stress state) using
the same value of the hardening variable. Mathematically speaking, we need to show that
gpð�rV; �q; jpÞ � gpð0; 0; jpÞP 0 ðC:1Þ
whenever there exists �h 2 h0; p=3i such that
fpð�rV; �q; �h; jpÞ ¼ 0 ðC:2Þ

To simplify notation, we will introduce dimensionless stress variables S ¼ �rV=�f c and R ¼ �q=

ffiffiffi
6
p

�f c and a con-
stant parameter Q ¼ AgBg expð��f t=3Bg

�f cÞ. Comparing the yield function (47) and the plastic potential (51),
we realize that the first term in curly brackets is in both expressions the same. Consequently, subtracting
the left-hand side of (C.2) from the left-hand side of (C.1) and taking into account that q2

h is always positive,
we obtain an equivalent yet simpler condition
1� m0ðr � 1ÞR� m0S þ Q exp
S
Bg

� 1

� �
P 0 ðC:3Þ
It is sufficient to show that this inequality is satisfied for all stress states inside the limit failure envelope, i.e.,
for all values of R and S for which
9R2 þ m0ðrRþ SÞ � 1 6 0 ðC:4Þ

In the above, parameter r can attain values between 1 and 1/e where e is the eccentricity parameter, typically
slightly larger than 0.5. Note that the dimensionless stress R is always nonnegative while S can have any sign
but cannot exceed 1/m0.

The proof is facilitated if we treat separately the cases of positive and negative volumetric stress. Firstly, for
S P 0 we have exp(S/Bg) P 1 and it is sufficient to show that 1 � m0(r � 1)R � m0S P 0, which easily follows
from (C.4). Secondly, for S 6 0 we can minimize the expression on the left-hand side of (C.3) with respect to
R by substituting the maximum possible value of R that satisfies (C.4), namely R ¼
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0r2 þ 36ð1� m0SÞ
p

� m0r�=18. In this way we obtain a sufficient condition in terms of S and r only,
F ðS; rÞ � 1� m0ðr � 1Þ
18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0r2 þ 36ð1� m0SÞ
q

� m0r
� �

� m0S þ Q exp
S
Bg

� 1

� �
P 0 ðC:5Þ
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Fig. 20. Combinations of strength ratios leading to thermodynamically admissible model (blank region).
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Furthermore, it is possible to show that function F defined in (C.5) is for any fixed S 6 0 a decreasing function
of r P 1 and thus attains its minimum for the maximum possible value of r, i.e., for r = 1/e. Finally, for fixed
r = 1/e, F(S, 1/e) is a convex function of S and condition (C.5) is certainly satisfied for all S 6 0 if
F ð0; 1=eÞ ¼ 1� m0ð1� eÞ
18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 36e2

q
� m0

� �
P 0 ðC:6Þ

oF ð0; 1=eÞ
oS

¼ m2
0ð1� eÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
0 þ 36e2

p � m0 þ
Q
Bg

6 0 ðC:7Þ
The first of these conditions is satisfied for all m0 > 0 and 0 < e < 1, as can be verified by simple algebraic
manipulations. The second condition can be transformed to
1� effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6e

m0

� 	2
r þ Ag

m0

exp �
�f t

3�f cBg

� �
6 1 ðC:8Þ
Whether this is true depends on the specific values of model parameters �f t, �f c, e, m0, Ag and Bg. If the param-
eters are determined using the procedure described in Appendix A, the value of the left-hand side of (C.8) de-
pends only on the dimensionless strength ratios c ¼ �f c=�f t and b ¼ �f b=�f c. For example, for c = 10 and
b = 1.16 we obtain e = 0.5229, m0 = 10.198, Ag = 5.399 and Bg = 0.6474, and the value of the left-hand side
is 0.9588, i.e., the condition is satisfied. The shaded area in Fig. 20 corresponds to the combinations of strength
ratios c and b for which condition (C.8) is violated. It is clear that the condition is satisfied for all practically
relevant cases. It is for instance sufficient if �f b P �f c and �f c P 6�f t. This concludes the proof of thermodynamic
consistency of the model.
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Ananiev, S., Ožbolt, J., 2004. Plastic-damage model for concrete in principal directions. In: Li, V., Leung, C.K.Y., Willam, K.J.,
Billington, S.L. (Eds.), Fracture Mechanics of Concrete Structures, pp. 271–278.
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Jirásek, M., Bažant, Z.P., 2002. Inelastic Analysis of Structures. John Wiley and Sons, Chichester.
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Lin, F.-B., Bažant, Z.P., Chern, J.-C., Marchertas, A.H., 1987. Concrete model with normality and sequential identification. Computers

and Structures 26, 1011–1025.
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