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Consider the partial linear model Yi=X {
i ;+ g(Ti)+=i , i=1, ..., n, where ; is a

p_1 unknown parameter vector, g is an unknown function, Xi 's are p_1 observ-
able covariates, Ti 's are other observable covariates in [0, 1], and Y i 's are the
response variables. In this paper, we shall consider the problem of estimating ; and
g and study their properties when the response variables Yi are subject to random
censoring. First, the least square estimators for ; and kernel regression estimator
for g are proposed and their asymptotic properties are investigated. Second, we
shall apply the empirical likelihood method to the censored partial linear model. In
particular, an empirical log-likelihood ratio for ; is proposed and shown to have
a limiting distribution of a weighted sum of independent chi-square distributions,
which can be used to construct an approximate confidence region for ;. Some
simulation studies are conducted to compare the empirical likelihood and normal
approximation-based method. � 2001 Academic Press

AMS 1991 subject classifications: 62E15; 62E20.
Key words and phrases: censored partial linear model; asymptotic normality;

empirical likelihood.

1. INTRODUCTION

Consider the partial linear model

Yi=X {
i ;+ g(Ti)+=i , i=1, ..., n, (1.1)

where ; is a p_1 unknown parameter vector, g is an unknown function,
Xi 's are p_1 observable covariates, Ti 's are another observable covariates
in [0, 1], Yi 's are the response variables, and the residuals =i 's are i.i.d.
r.v.'s with zero mean and finite variance _2 and independent of (X {

i , Ti)'s.
Following Speckman [31], we may further assume that (X {

i , Ti)'s are i.i.d.
random vectors satisfying

Xi =+(Ti)+ui , i=1, ..., n, (1.2)
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where +( } ) is an unknown measurable function on [0, 1], the residuals ui 's
are i.i.d. random vectors with zero mean and positive definite variance-
covariance matrix 7u and independent of Ti 's. The partial linear model, as
a semiparametric model, was introduced by Engle et al. [11] to allow the
study of the effect of weather on electricity demand and further studied by
Heckman [16], Speckman [31], Chen [3], Chen and Shiau [4, 5], Hong
and Cheng [17, 18], Hamilton and Truong [15] and Mammen and Van
de Geer [24] amongst others. Various estimators for ; and g( } ) were given
by using different methods such as the kernel method, the penalized spline
method, the piecewise constant smooth method, the smoothing splines, and
the trigonometric series approach.

In this paper, we shall study the above partial linear model when the
response variable Yi may be censored from the right. So instead of observing
(Yi , X {

i , Ti ), we now have observations (Z i , $i , X {
i , Ti), i=1, ..., n, where

Zi=min(Yi , Ci), $i=I(Yi�Ci),

with Ci 's being i.i.d. censoring r.v.'s that are independent of Yi 's and the
censoring distribution G (i.e. the distribution of Ci 's) being unknown.
Under the censored partial linear model, our interest lies in the estimation
of unknown parameter vector ; and the unknown nonlinear function g( } ).
Recently, the censored partial linear model in which the censoring distribu-
tion G is assumed to be known is studied by Qin [28] and a central limit
theorem for the estimator of ; was proved by a method different from the
method used in the present paper. In Section 2 of this paper, we shall
consider estimating ; by the least squares estimates and estimating g by the
kernel regression method, respectively. Asymptotic normality of the LSE
and consistency of the kernel regression estimate will be established. In
Section 3, we shall investigate the application of the empirical likelihood
method of Owen [25] to the censored partial linear model. An empirical
log-likelihood ratio for ; is defined and shown to have a limiting distribu-
tion of a weighted sum of independent chi-square r.v.'s with 1 degree of
freedom. In order to use this to construct confidence region for ;, one has
to estimate the weights in the limiting distributions, which depend on the
underlying distributions. Despite this, the estimated empirical likelihood in
the censored partial linear regression problem still retains some of the good
properties of the usual empirical likelihood of Owen [25], such as the
range-preserving property. Theoretically, both the empirical likelihood and
the normal approximation approach provide asymptotically correct coverage
probability for ;. So a small-scale simulation study is conducted in Section 4
to compare both methods.

In the standard survival analysis setting, the censored partial linear
model is a special case of partial linear transformation models. The later is
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again a special case of generalized Cox proportional hazard model and
arises frequently in regression diagnostics (see Dabrowska [10]). Special
cases of the censored partial linear model have been considered by many
researchers. For instance, if g(t)=0 in (1.1), the censored partial linear
model reduces to usual censored linear model, which have been studied by
Buckley and James [2], Koul et al. [21], Zheng [33, 34], Leurgans [23],
and Lai et al. [22] among others. On the other hand, the case of non-
parametric regression model with censored data is considered by Fan and
Gijbels [12] by using local linear approximations. Finally, we note that the
empirical likelihood method has been successfully applied in many areas,
e.g., in linear regression models (Owen [27] and Chen [7, 8]) generalized
linear models (Kolaczyk [20]), quantile (Chen and Hall [9]), general
estimating equation (Qin and Lawless [29]), semiparametric model (Qin
and Wong [30]), dependent processes (Kitamura [19]), and survival
analysis (Adimari [1]).

2. LEAST SQUARES ESTIMATION AND ITS ASYMPTOTIC
PROPERTIES

2.1. The Methodology

Let F and G be the distribution functions of Yi and Ci , respectively. That
is, F(x)=P(Yi�x) and G(x)=P(Ci�x). Denote {F=inf[t: F(t)=1] and
{G=inf[t: G(t)=1]. Throughout this paper, we assume that {G�{F .

Because of the censoring, the usual methods for estimating ; and g( } )
can not be applied directly here. The problem is due to the fact that the
censored observation Zi and the true but unobservable r.v. Yi have different
expectations. To overcome this difficulty, assuming first that G is known,
we define the transformed data

YiG=
$i Zi

1&G(Zi)
, i=1, ..., n.

Note that E(YiG | Xi , Ti)=E(Yi | Xi , T i)=X {
i ;+ g(Ti). Usually, however,

the censoring d.f. G is unknown, in which case one can replace it by its
Kaplan�Meier estimator Gn , resulting in

YiGn
=

$iZi

1&Gn(Zi)
.

This approach was first introduced by Koul et al. [21] and subse-
quently extended by Zheng [33] and Leurgans [23] in the context of
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censored linear regression model. For simplicity, we shall use the YiGn

defined above.
Denote x} 2=xx{ for x # R p. Also define

X� i=Xi& :
n

j=1

Wnj (Ti) Xj , Y� iGn
=YiGn

& :
n

j=1

Wnj (Ti) YjGn
,

and

Wnj (t)=K \
t&Tj

h +< :
n

k=1

K \t&Tk

h + ,

where K( } ) is a known nonnegative function, h#h(n)>0 is a sequence of
bandwidths. Then the LSE of ;, ;� n , and kernel regression estimator of g,
ĝn(t), are given by

;� n=arg min
;

:
n

i=1

(Y� iGn
&X� {

i ;)2=\ :
n

i=1

X� } 2
i +

&1

:
n

i=1

X� iY� iGn
,

(2.1)

ĝn(t)= :
n

j=1

Wnj (t)(YjGn
&X {

j ;� n).

2.2. Main Results

Before stating the main results, we list the following conditions. For
simplicity, we denote K� (x)=1&K(x) for any distribution function K( } ).
Also, we shall use & }& to denote the Euclidean norm.

(A1) The functions g(t), +(t) and g1(t)#E[Y1 |T1=t] satisfy Lipschitz
condition of order 1.

(A2) supt E[Y 2
1G� &1(Y1) | T1=t]<� and supt E[|Y1 | G� &1(Y1) |

T1=t]<�.

(A3) T has density function r(t) and 0<inf0�t�1 r(t)�sup0�t�1 r(t)
<�.

(A4) E &X1&4<� and E=4
1<�.

(A5) Let 11(t)=E(u1I(Y1>t)). The d.f.'s F and G satisfy

|
{F

&�

\|t> y
t dF� (t)+

2

G� 2( y) F� ( y)
dG( y)<� and |

{F

&�

"|t> y
t d11(t)"

2

G� 2( y) F� ( y)
dG( y)<�.
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(A6) For every =>0 there exists y(=)<{F such that

|
u # R p |

{F

y= y(=)

&u& | y| dF(u, y)
G� ( y) F� 1�2( y)

<= and |
{F

y= y(=)

| y| dF( y)
G� ( y) F� 1�2( y)

<=

where F(u, y)=P(u1<u, Y1< y).

(A7) There exists absolute constants M1 , M2 and \>0 such that

M1I[ |t|�\]�K(t)�M2 I[ |t|�\],

and K( } ) is uniformly continuous and of bounded variation on [&\, \].

(A8) lim inf nh2�log4 n>0 and nh4 � 0.

(A9) E(&X1 &2 Y 2
1G� &1(Y1))<�.

(A10) G is continuous, limt � {F
F� &1(t)(�{F

t F� (dG)1& p<� for some
0<p<1�2.

(A11) G is continuous, G� :(s)=O(F� (s&)) as s A {G for some 0�:<1.

We shall now elaborate more on the above conditions. Conditions
(A1)�(A4) and (A7)�(A8) are the usual conditions in the study of partial
linear model, see Hong and Cheng [18], for example. Conditions (A5) and
(A6) are similar to conditions (C2) and (C3) in Lai et al. [22] in the study
of censored linear regression model. In the absence of censoring (i.e., G(t)=0
for all t<{F), conditions (A2) and (A9) reduce to supt E[Y 2

1 | T1=t]<�
and E(&X1&2 Y 2

1)<�, respectively. Conditions (A10) and (A11) will be
only used for obtaining the convergence rate of ĝn(t), later in the proof of
the theorem, and they will ensure the desired convergence rate of KM
estimate Gn for G. Conditions (A10) is also a sufficient and necessary
condition for the convergence of Gn&G in the case {G>{F (see Chen and
Lo [6]). With Conditions (A11), Gu and Lai [14] proved the law of the
iterated logarithm of Gn in the case of {G={F , we do not know any other
results on the rate of convergence of Gn for this case. Among these condi-
tions, (A2), (A4), (A5) and (A9) are the moment conditions needed to
derive the central limit theorem of ;� n , (A6), (A10) and (A11) are the
conditions being used to control the behaviors near the endpoint {F of
lifetime distribution F and censoring distribution G.

Define V=7&V1 , where

7=E(u} 2
1 [Y1G&E(Y1G | X1 , T1)]2),

V1=|
{F

&� \|t> y
t d11(t)+

} 2 dG( y)
G� ( y) F� ( y&) G� ( y&)

.
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An estimate of V is given by V� =7� &V� 1 , where

7� =n&1 :
n

i=1

X� } 2
i (Y� iGn

&X� {
i ;� n)2

V� 1=n&1 :
n

j=1
\

�n
i=1(Xi&+̂n(Ti)) Yiĝn

I(Zi>Zj)

Yn(Zj)&2Nn(Zj) +
�2

\ :
n

i=1

I(Zi>Z j)+
_

2Nn(Zj)
Yn(Zj)

with Yn(s)=�n
i=1 I[Zi�s], Nn(s)=�n

i=1 I[Zi�s, $i=0] and +̂n(t)=
�n

j=1 Wnj (t) Xj .

Theorem 1. Assume the conditions (A1)�(A8) hold.

(i) We have

- n (;� n&;) w�L N(0, 7&1
u V7&1

u ).

(ii) If in addition (A9) holds, then the limiting covariance matrix
7&1

u V7&1
u in (i) can be consistently estimated by 7� &1

u V� 7� &1
u , where 7� u=

n&1 �n
i=1 X� } 2

i .

(iii) In the case of {F<{G , if in addition (A10) holds, then

ĝn(t)& g(t)=O(h)+Op((nh)&1�2)+Op(n&p),

which achieves the optimal rate Op(n&1�3) when h=O(n&1�3) and p=1�3.

In the case of {F={G , if in addition (A11) holds, then

ĝn(t)& g(t)=O(h)+Op((nh)&1�2),

which achieves the optimal rate Op(n&1�3) when h=O(n&1�3).

Using Theorem 1, we can construct a large-sample (1&:)-level confidence
region for ; as

I1:(;)=[; : n(;� n&;){ 7� uV� &17� u(;� n&;)�/2
p, :], (2.2)

where /2
p, : is the (1&:)th quantile of the chi-square distribution with p

degree of freedom.
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3. EMPIRICAL LIKELIHOOD METHOD

Let us define

Ui=(Xi&E[Xi | Ti])(YiG&E[YiG | Ti]&(Xi&E[Xi | Ti]){ ;),

i=1, ..., n.

It is easy to see that EUi=0, i=1, ..., n, when ; is the true parameter.
Hence, the problem of testing whether ; is the true parameter is equivalent
to testing whether EUi=0, for i=1, ..., n. By Owen [27], this may be done
using empirical likelihood. Let p1 , ..., pn be nonnegative numbers summing
to unity. Then, the empirical log-likelihood ratio, evaluated at true param-
eter value ;, is defined by

l(;)=&2 min
� piUi=0

: log(np i). (3.1)

Note that Ui in (3.1) depends on unknown functions G, +(t) and g1(t)=
E[Y1 | T1=t], so l(;) can not be used directly to make inference on ;. To
solve the problem, a natural way is to replace G by its KM estimator Gn ,
and replace +(t) and g1(t) in l(;) by their estimators +̂n(t) and ĝ1n(t)
defined respectively by

+̂n(t)= :
n

j=1

Wnj (t) Xj , ĝ1n(t)= :
n

j=1

Wnj (t) YjGn
.

Then, the estimated empirical log-likelihood can be defined as

l� (;)=&2 min
� piU� i=0

:
n

i=1

log(npi). (3.2)

where U� i=X� i (Y� iGn
&X� {

i ;). Using Lagrange multipliers, the optimal value
for pi satisfying (3.2) may be shown to be

pi=
1
n

(1+*� {U� i)
&1,

where *� =(*� 1 , *� 2 , ..., *� n){ is the solution of the equation

1
n

:
n

i=1

U� i

1+*{U� i

=0. (3.3)

43CENSORED PARTIAL LINEAR MODEL



The corresponding empirical log-likelihood ratio is then

l� (;)=2 :
n

i=1

log[1+*� {U� i]. (3.4)

The following theorem indicates that the limiting distribution of empiri-
cal log-likelihood ratio for ; is a weighted sum of independent chi-square
distributions.

Theorem 2. Under the above conditions (A1)�(A9), if ;0 is the true
value of ;, then

l� (;0) w�L l1/2
1, 1+l2/2

2, 1+ } } } +lp/2
p, 1 ,

where /2
i, 1 's are p independent chi-squared distributions with one degree of

freedom and the weights li 's, i=1, 2, ..., p, are the eigenvalues of 7&1V and
can be consistently estimated by the corresponding eigenvalues l� i 's of 7� &1V� .

Corollary 3. When p=1, let l� (;)= r̂l� (;), where r̂=V� &1�27� . Then
l� (;0) has an asymptotic chi-square distribution with 1 degree of freedom, that
is,

l� (;0) w�L /2
1 .

Remark. When 11(t)=0, V reduces to 7. It is easily seen that a sufficient
condition for this is that the residuals ui 's are independent of Yi 's. Another
case of V reducing to 7 is that there is no censoring in observations. In these
two cases, we have l� (;0) w�L /2

p .

Clearly, Theorem 2 can be used not only to test the hypothesis H0 : ;=;0 ,
but also to construct confidence region for ;. Let

I2:(;)=[;: l� (;)�c:] (3.5)

where c: is the (1&:)th quantile of the weighted chi-square distribution
l� 1/2

1, 1+ } } } +l� p/2
p, 1 . In practice, one can get c: through Monte Carlo

simulation. Then, by Theorem 2, I2:(;) gives an approximate confidence
region for ; with asymptotically correct coverage probability 1&:, i.e.,

P(;0 # I2:(;))=1&:+o(1).
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4. A SIMULATION STUDY

We shall now conduct some simulation studies to compare the perfor-
mance in terms of coverage probabilities between the empirical likelihood
method and the normal approximation method based on ;� n . To do that,
we first generate (Yi , X {

i , Ti), i=1, ..., n, from the models (1.1) and (1.2),
where we have taken ;{=(5, 10), g(t)=t2, +(t){=(2t, t), X {

i =(X1i , X2i)
and u{

i =(u1i , u2i). Furthermore, Ti 's are drawn from the uniform distribution
U[0, 1], u1i and u2i are generated from the standard normal distribution
N(0, 1), respectively. Two models are considered in this simulation study. In
model A, the error =i 's are generated from the standard normal distribution
N(0, 1). In model B, the error =i 's are generated from the centered chi-square
distribution with degree of freedom 20, i.e., =i 's are iid. /2

20&20. On the other
hand, the censoring times Ci 's are generated from the exponential distribution
with rate 0.02 (the censoring proportion is about 200). Finally, simulated
observations from the censored partial linear model are (Zi , $i , X {

i , Ti) for
i=1, ..., n, where

Zi=min(Yi , Ci), $i=I[Yi�Ci].

We can repeat the above process B times to generate B sets of data, where
B is chosen to be 2000 here. Then the approximate coverage probabilities
for the empirical likelihood and normal approximation methods based on
these 2000 simulated data sets are simply the proportions of these data sets
which satisfy the inequalities (3.5) and (2.2), respectively.

From the expression of estimator V� for variance-covariance matrix V, we
can see that the denominator Yn(Z(i))&2Nn(Z(i)) in the definition of V� can
be zero when i=n, so we add 0.5 to Yn(Z(n))&2Nn(Z(n)) whenever the
term becomes zero in our simulation study, these modifications of the
variance-covariance estimation will not change our large sample results.
We should mention that in our simulation study we have chosen the kernel
function K(t) to be the biweight kernel

K(x)= 15
16 (1&x2)2, |x|�1.

Two different bandwidths of h are selected to be 5n&1�3 and 15n&1�3. The
sample size n has been chosen to be 60 and 100, respectively. The nominal
confidence level : has been taken to be 0.90, 0.95 and 0.99, respectively.
The results of the simulation are presented in Tables I and II.

We make the following observations from these tables.

(1) For the empirical likelihood method, the coverage accuracies for
; in both models increase as the sample size n increases. For the normal
approximation method, the coverage accuracies for ; in model B increase
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TABLE I

Coverage Probability Comparisons for ; by Empirical Likelihood and Normal
Approximation under Model A, Where =tN(0, 1)

h=5n&1�3 h=15n&1�3

Nominal Normal Empirical Normal Empirical
levels n approximation likelihood approximation likelihood

0.90 60 0.865 0.853 0.859 0.854
100 0.843 0.890 0.830 0.895

0.95 60 0.900 0.911 0.894 0.911
100 0.883 0.938 0.864 0.942

0.99 60 0.941 0.973 0.938 0.971
100 0.929 0.980 0.911 0.979

as the sample size n increases, but the coverage accuracies for ; in model
A start to decrease as n gets large, part of reason could be that the variance
estimator is not very stable. However, a more detailed study seems worthwhile.

(2) Generally, the empirical likelihood method performs better than
the normal approximation method for moderate sample size (n=60, 100),
particularly when the error distribution is not symmetric (see Table II).

(3) The empirical likelihood method and the normal approximation
based method have very similar performances for the two chosen different
bandwidths.

TABLE II

Coverage Probability Comparisons for ; by Empirical Likelihood and Normal
Approximation under Model B, Where =t/2

20&20

h=5n&1�3 h=15n&1�3

Nominal Normal Empirical Normal Empirical
levels n approximation likelihood approximation likelihood

0.90 60 0.809 0.845 0.813 0.841
100 0.823 0.873 0.810 0.875

0.95 60 0.867 0.917 0.862 0.903
100 0.877 0.930 0.861 0.932

0.99 60 0.926 0.973 0.918 0.969
100 0.929 0.981 0.925 0.982

46 QIN AND JING



We also investigate the performances of empirical likelihood method and
the normal approximation based method in fixed sample size (n=100) but
with different censoring proportions being controlled by choosing different
censoring times (Here the censoring times are generated from the exponential
distributions with different rates). The result is reported in Tables III�IV.

Tables III and IV indicate that:

(1) The empirical likelihood outperforms the normal approximation
methods in both models. Particularly, the empirical likelihood performs
much better than the normal approximation method under higher censoring
proportions.

(2) At each nominal level and for both the empirical likelihood and
normal approximation methods, the coverage accuracies for ; in both
models decrease as the censoring proportions increase. However, the
coverage accuracies for the empirical likelihood are acceptable even under
higher censoring proportions.

TABLE III

Coverage Probability Comparisons under Different Censoring Proportions for Models A
and B, Where n=100 and h=5n&1�3

Nominal Censoring Normal Empirical
levels Models proportion approximation likelihood

100 0.922 0.893
A 200 0.843 0.890

300 0.766 0.848
0.90

100 0.841 0.876
B 200 0.823 0.873

300 0.765 0.839

100 0.935 0.940
A 200 0.883 0.938

300 0.817 0.903
0.95

100 0.879 0.938
B 200 0.877 0.930

300 0.835 0.893

100 0.957 0.985
A 200 0.929 0.980

300 0.888 0.962
0.99

100 0.930 0.982
B 200 0.929 0.981

300 0.917 0.962
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TABLE IV

Coverage Probability Comparisons under Different Censoring Proportions for Models A
and B, Where n=100 and h=15n&1�3

Nominal Censoring Normal Empirical
levels Models proportion approximation likelihood

100 0.899 0.899
A 200 0.830 0.895

300 0.756 0.855
0.90

100 0.828 0.880
B 200 0.810 0.875

300 0.753 0.833

100 0.927 0.943
A 200 0.864 0.942

300 0.806 0.912
0.95

100 0.865 0.937
B 200 0.861 0.932

300 0.820 0.894

100 0.952 0.980
A 200 0.911 0.979

300 0.873 0.960
0.99

100 0.928 0.984
B 200 0.925 0.982

300 0.911 0.963

5. PROOF OF THEOREMS

Before proving the main theorems, we give a series of lemmas.

Lemma 1. Assume that (A4), (A7), and (A8) hold. Then

(i) max
1�i�n " :

n

j=1

Wnj (Ti) uj"=o((log n)&1), a.s.

(ii) max
1� j�n " :

n

i=1

Wnj(T i) ui"=o((log n)&1), a.s.

(iii) max
1� j�n

:
n

i=1

Wnj (Ti)=O(1), a.s.

(iv) EW 2
ni(t)=O((n2h)&1).
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Proof. Proofs of (iii) and (iv) can be found in Hong and Cheng [18]
and Qin [28] respectively. The proofs of (i) and (ii) are similar to that of
Lemma 2 in Hong and Cheng [18] and hence are omitted here.

Lemma 2. If f (t) satisfies Lipschitz condition of order 1 and (A7) holds,
then

sup
0�t�1

& f� (t)&# sup
0�t�1 " f (t)& :

n

j=1

Wnj (t) f (Tj)"=O(h).

Proof. For each t # [0, 1], let Dt=[ j : |Tj&t|�\h, j=1, ..., n]. By (A7),

& f� (t)&=" :
n

j=1

Wnj (t)( f (t)& f (Tj))"=" :
j # Dt

Wnj (t)( f (t)& f (Tj))"
� :

j # Dt

Wnj (t) & f (t)& f (Tj)&�Ch :
j # Dt

Wnj (t)�Ch.

Since Ch does not depend on t, we get sup0�t�1 & f� (t)&=O(h).

Lemma 3. Let U� (n)=maxi &U� i &. Assume that (A1)�(A4) and (A7)�(A9)
hold. Then U� (n)=op(n1�2).

Proof. Let

Y� iG=YiG& :
n

j=1

Wnj (T i) YjG ,

Y� i =Yi& :
n

j=1

Wnj (Ti) Yj , Ui0=X� i (Y� i&X� {
i ;).

Since

U� i =X� i (Y� iGn
&X� {

i ;)

=X� i (Y� iGn
&Y� iG)+X� i (Y� iG&Y� i)+Ui0 ,

we have

U� (n)�max
i

&U i0&+max
i

&X� i& |Y� iGn
&Y� iG |+max

i
&X� i & |Y� i&Y� i |. (5.1)
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For the first term in the right side of (5.1), from Yi=Xi;+ g(Ti)+=i and
the definitions of X� i and Y� i , it follows that

max
i

&Ui0&�max
i "Xi&:

j

Wnj (Ti) X j" max
i } g(Ti)&:

j

Wnj (Ti) g(Tj)}
+max

i
&Xi =i &+max

i
&Xi& max

i }:j

Wnj (Ti) = j }
+max

i
|=i | max

i }:j

Wnj (Ti) =j }
+max

i \":
j1

Wnj1
(Ti) Xj1"+ max

i }:j2 Wnj2
(Ti) = j2 } . (5.2)

By Lemma 3 of Owen [26] and (A4), we have

max
i

&Xi &=o(n1�2), max
i

&Xi=i&=o(n1�2), max
i

|=i |=o(n1�2).

(5.3)

Similar to the proof of Lemma 1(i), we can show that

max
i } :

n

j=1

Wnj (T i) = j }=o((log n)&1), a.s.

By (A1), we have max i &� j Wnj (T i) +(Tj)&=O(1) a.s. Combining this and
Lemma 1(i), we get

max
i ":

j

Wnj (Ti) Xj"=O(1), a.s. (5.4)

Therefore,

max
i

&Ui0&=op(n1�2). (5.5)

Noting that (A2) and (A9) imply E |Y1G | 2<� and E &X1Y1G&2<�, thus
by Lemma 3 of Owen [26], we have

&X1Y1G&=o(n1�2), |Y1G |=o(n1�2).

Applying (5.4) and the result due to Srinivasan and Zhou [32],

sup
t�maxi Zi

}Gn(t)&G(t)
1&Gn(t) }=Op(1), (5.6)
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we get

max
i

&X� i & |Y� iGn
&Y� iG | (5.7)

�max
i

&X� i & \ |YiGn
&YiG |+ } :

n

j=1

Wnj (Ti)(YjGn
&YjG)}+

�2 max
i

&X� i & |YiGn
&YiG |

�2 max
i

&Xi & |YiGn
&YiG |+2 max

i \" :
n

j=1

Wnj (Ti) Xj" |YiGn
&YiG |+

�2 max
i

&Xi & |YiGn
&Y iG |+2 max

i
|Y iGn

&YiG | \max
i " :

n

j=1

Wnj (Ti) Xj"+
�2 sup

t�maxi Zi
}Gn(t)&G(t)

1&Gn(t) } (max
i

&Xi YiG&+max
i

|YiG | } O(1))

=o(n1�2). (5.8)

Similarly, for the third term in the right side of (5.1), we have

max
i

&X� i & |Y� iG&Y� i |

�2 max
i

&X� i& |YiG&Yi |

�2 max
i

&Xi& |YiG&Yi |+2 max
i \" :

n

j=1

Wnj (Ti) Xj" |YiG&Yi |+
�2(max

i
&XiYiG&+max

i
&XiYi&+O(1) } (max

i
|YiG |+max

i
|Yi | ))

=o(n1�2). (5.9)

Then, Lemma 3 follows from (5.1), (5.5)�(5.9).

Lemma 4. Assume (A1)�(A8) hold.

(i) We have n&1 �n
i=1 X� } 2

i � 7u a.s.

(ii) Let U� i0=X� i (Y� iG&X� {
i ;) and =̂ i=YiG&E(YiG | Xi , Ti), then we

have

n&1�2 :
n

i=1

U� i0=n&1�2 :
n

i=1

ui =̂i+Op((nh2)&1�2)+Op(n1�2h2).
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(iii) n&1�2 �n
i=1 U� i w�L N(0, V).

(iv) If in addition (A9) holds, then n&1 �n
i=1 U� } 2

i =n&1 �n
i=1(ui =̂i)

} 2

+op(1).

Proof. Part (i) is the conclusion of Lemma 4 in Hong and Cheng [18].
Similar to the proof of Theorem 2.1 in Qin [28], we can get (ii). For (iii),
we have the decomposition

n&1�2 :
n

i=1

U� i=n&1�2 :
n

i=1

U� i0+I

=n&1�2 :
n

i=1

ui =̂i+n&1�2 :
n

i=1
|

{F

&�
A( y) dMi ( y)+Rn ,

(5.10)

where

I=n&1�2 :
n

i=1

X� i (Y� iGn
&Y� iG),

A( y)=&|
t> y

t d11(t)�(G� ( y) F� ( y&)),

4(s)=|
s

&�
(1&G(t&))&1 dG(t),

Mi (s)=I(Zi�s, $i=0)&|
s

&�
I(Ci�s, Yi>s) d4(s),

Rn=I&n&1�2 :
n

i=1
|

{F

&�
A( y) dMi ( y)+Op((nh2)&1�2)+Op(n1�2h2).

Note that the first term in the right side of (5.10), which is a sum of i.i.d.
r.v.'s, has a limiting normal distribution with zero mean and variance�
covariance matrix E(u1 =̂1)} 2, and the second term, which is a martingale,
has a limiting normal distribution with zero mean and variance V1 by
Rebolledo's martingale central limit theorem. If Rn=op(1), then (iii)
follows by a similar argument to the proof of Theorem 2 in Lai et al. [22].
So we only need to prove Rn=op(1). Write

U� i=ui& :
n

j=1

Wnj (Ti) uj , +~ i=+(Ti)& :
n

j=1

Wnj (Ti) +(Tj).
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Then we have

I=n&1�2 :
n

j=1
\U� j& :

n

i=1

Wnj (Ti) u~ i+ (YjGn
&YjG)

+n&1�2 :
n

j=1 \+~ j& :
n

i=1

Wnj(Ti ) +~ i+ (YjGn
&YjG)

=n&1�2 :
n

j=1

uj (YjGn
&Y jG)+n&1�2 :

n

j=1
\+~ j& :

n

i=1

Wnj (Ti) +~ i+ (YjGn
&YjG)

+n&1�2 :
n

j=1
_ :

n

i=1

Wni (Tj) ui+ :
n

i=1

Wnj (Ti ) ui

+ :
n

i=1
\Wnj (Ti) :

n

k=1

Wnk(Ti) uk+& (YjGn
&YjG)

#I1+I2+I3 . (5.11)

First we investigate I1 . Applying the following martingale representation
(Gill [13])

Gn(t)&G(t)
1&G(t)

=|
t

&�

1&Gn(t&)
1&G(t)

dM(t)
Yn(t)

=|
t

&�
Dn(t) Y &1

n (t) dM(t),

(5.12)

where Dn(s)=(1&Gn(s&))�(1&G(s)) and M(s)=�n
i=1 Mi (s), we have

I1=n&1�2 :
n

j=1

uj$ jZj

1&Gn(t&) |
Zj

&�
Dn(t) Y &1

n (t) dM(t).

Similar to the proofs of (2.28) and (2.29) in Lai et al. [22], we can show
that

I1=n&1�2 :
n

i=1
|

{F

&�
A( y) dMi ( y)+op(1). (5.13)

Now let us look at I2 and I3 . Note that

|YjGn
&YjG |= }YjG \\1&

Gn(Zj)&G(Z j)
1&G(Zj) +

&1

&1+}
= } YjG

1&G(Zj) \(Gn(Zj)&G(Zj))+
(Gn(Zj)&G(Zj))2

1&Gn(Zj) +}
�\1+ sup

t�maxi Zi

|Gn(t)&G(t)|
|1&Gn(t)| + }

Gn(Zj)&G(Zj)

1&G(Zj) } |YjG |.

(5.14)
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By Lemmas 1 and 2, (5.6), (5.2), and (5.14), we get

|I2 |�n&1�2 sup
t # [0, 1] "+(t)& :

n

j=1

Wnj (t) +(Tj)"
_ :

n

j=1
\1+ :

n

i=1

Wnj (Ti)+ |YjGn
&YjG |

�Cn&1�2h :
n

j=1

|YjGn
&YjG |

�Chn&1�2 :
n

j=1

|YjG | }|
Zj

&�
Dn(t) Y &1

n (t) dM(t)} .

|I3 |�Cn&1�2(log&1 n) :
n

j=1

|YjGn
&YjG |

�C(log&1 n) n&1�2 :
n

j=1

|Y jG | } |
Zj

&�
Dn(t) Y &1

n (t) dM(t)} .

Using (A5) and an argument similar to the proofs of (2.28) and (2.29) in
Lai et al. [22], we can show that

|I2 |�Ch } n&1�2 :
n

i=1
|

{F

&�
A1( y) dMi ( y)}+op(1)=op(1), (5.15)

|I3 |�C(log&1 n) } n&1�2 :
n

i=1
|

{F

&�
A1( y) dMi ( y)}+op(1)=op(1), (5.16)

where A1( y)=&�t> y |t| dF� (t)�(G� ( y) F� ( y&)). From (5.11), (5.13), (5.15)
and (5.16), it follows that Rn=op(1). Next we turn to prove (iv). For any
a # R p, we have the decomposition

n&1 :
n

i=1

(a{U� i )
2=n&1 :

n

i=1

(a{(U� i&U� i0))2+2n&1 :
n

i=1

(a{(U� i&U� i0))(a{U� i0)

+n&1 :
n

i=1

(a{U� i0)2

#J1+J2+J3 , (5.17)
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where

J1=n&1 :
n

i=1

(a{X� i )
2 (Y� iGn

&Y� iG)2

�&a&2 (n&1�2 max
i

&X� i (Y� iGn
&Y� iG)&) \n&1�2 :

n

i=1

&X� i (Y� iGn
&Y� iG)&+ ,

J2�2 &a&2 (n&1�2 max
i

&Ui0&) \n&1�2 :
n

i=1

&X� i (Y� iGn
&Y� iG)&+ .

Similarly to (5.11), (5.13), (5.15), and (5.16), we can show that

n&1�2 :
n

i=1

&X� i (Y� iGn
&Y� iG)&=Op(1).

Then by (5.5) and (5.8), we get

J1=op(1), J2=op(1). (5.18)

For the term J3 , writing =~ i=�n
j=1 Wnj (Ti) =̂ j , we have

J3=n&1 :
n

i=1

(a{X� i)
2 ( =̂i&=~ i+ g~ (Ti ))2

=n&1 :
n

i=1

(a{X� i)
2 =̂2

i +n&1 :
n

i=1

(a{X� i)
2 =~ 2i &2n&1 :

n

i=1

(a{X� i)
2 =̂i=~ i

+n&1 :
n

i=1

(a{X� i)
2 g~ 2(Ti)+2n&1 :

n

i=1

(a{X� i)
2 g~ (Ti)(=̂i&=~ i)

#J31+J32+J33+J34+J35 ,

where g~ (t)= g(t)&�n
j=1 Wnj (t) g(Tj). Similar to Lemma 1(i), we can prove

max
i

|=~ i |=max
i } :

n

j=1

Wnj (Ti) =̂j }=o(log&1 n), a.s. (5.19)

Using (5.19), Lemma 2, and Lemma 4(i), we can get

J32=op(log&2 n), J33=op(log&1 n), J34=Op(h2), J35=Op(h).

55CENSORED PARTIAL LINEAR MODEL



For the term J31 , writing u� i=�n
j=1 Wnj (Ti) uj , we can further decompose

it into

J31=n&1 :
n

i=1

((a{ui) =̂i)
2+n&1 :

n

i=1

(a{u� i)
2 =̂2

i &2n&1 :
n

i=1

(a{u i )(a{u� i) =̂2
i

+n&1 :
n

i=1

(a{+~ i)
2 =̂2

i +2n&1 :
n

i=1

(a{+~ i)(a{U� i ) =̂2
i

#K1+K2+K3+K4+K5 .

Applying (A2), Lemma 1(i) and Lemma 2, we can get

K2=op(log&2 n), K3=op(log&1 n), K4=Op(h2), K5=Op(h).

Therefore, J31=n&1 �n
i=1((a{ui) =̂ i )

2+op(1). Hence,

J3=n&1 :
n

i=1

((a{u i) =̂ i)
2+op(1). (5.20)

From (5.17), (5.18), and (5.20), we get

a{ \n&1 :
n

i=1

U� } 2
i &n&1 :

n

i=1

(ui =̂i )
} 2+ a=op(1).

Thus (iv) is proved and the proof of the lemma is completed.

Lemma 5. Let Z w�L N(0, Ip), where Ip is the p_p indentity matrix. Let
U be a p_p nonnegative definite matrix with eigenvalues l1 , ..., lp . Then,

Z$UZ w�L l1/2
1, 1+ } } } +lp /2

p, 1 .

where /2
i, 1 are as defined in Theorem 2.1.

Proof. By the assumption, there exists an orthonormal matrix P such
that U=P$DP, where D=diag(l1 , ..., lp) is a diagonal matrix with diagonal
elements l1 , ..., lp . Let Z� =P$Z=(Z� 1 , ..., Z� p)$. Clearly, Z� w�L N(0, Ip).
Therefore,

Z$UZ=(PZ)$ D(PZ)=l1Z� 2
1+ } } } +lp Z� 2

p ,

where Z� 2
1 , ..., Z� 2

p are i.i.d. random variables with the common limiting
chi-square distribution with one degree of freedom. This completes the
proof.
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Now we give the proofs of the main theorems.

Proof of Theorem 1. By (2.1), we have

- n (;� n&;)=\n&1 :
n

i=1

X� } 2
i +

&1

\n&1�2 :
n

i=1

X� i (Y� iGn
&X� {

i ;)+ ,

then the first part of the theorem follows from (i) and (iii) of Lemma 4.
From the proof of Lemma 4(iv), we can see that for any a # R p

n&1 :
n

i=1

(a{U� i)
2&n&1 :

n

i=1

(a{U� i0)2=op(1). (5.21)

Now we have that

n&1 :
n

i=1

(a{X� i)
2 (Y� iGn

&X� {
i ;� n)2&n&1 :

n

i=1

(a{U� i)
2

=&
2
n

:
n

i=1

(a{X� i)
2 (Y� iGn

&X� {
i ;)(X� {

i (;� n&;))

+
1
n

:
n

i=1

(a{X� i)
2 (X� {

i (;� n&;))2

#M1+M2 .

Note that (5.3) and (5.4) imply maxi &X� i&=op(n1�2), by Lemma 4(i),
Lemma 3, and ;� n&;=Op(n&1�2),

|M1 |�2 max
i

&U� i& &;� n&;& } n&1 :
n

i=1

(a{X� i)
2=op(1),

|M2 |�max
i

&X� i&2 | ;� n&;&2 } n&1 :
n

i=1

(a{X� i)
2=op(1).

Hence,

n&1 :
n

i=1

(a{X� i)
2 (Y� iGn

&X� {
i ;� n)2&n&1 :

n

i=1

(a{U� i )
2 w�p 0. (5.22)

Similarly to the proof of Theorem 2.2 in Qin [28], we can get
n&1 �n

i=1 U� } 2
i0 &7=op(1), so by (5.21) and (5.22), 7� &7=op(1). From

Lai et al. [22], V� 1 consistently estimates V1 , therefore V� =V+op(1).
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Hence 7� &1
u V� 7� &1

u =7&1
u V7&1

u +op(1) and the second part of the theorem
is proved. For the third part of the theorem, we have the decomposition

ĝn(t)& g(t)=:
j

Wnj (t)(YjGn
&YjG)+:

j

Wnj (t)(YjG&X {
j ;& g(Tj))

&:
j

Wnj (t) X {
j (;� n&;)+\:

j

Wnj (t) g(Tj)& g(t)+
#J1+J2+J3+J4 . (5.23)

For the term J1 , by (5.14)

|J1 |�sup
t�{F

|Gn(t)&G(t)| \1+ sup
t�maxi Zi

|Gn(t)&G(t)|
|1&Gn(t)| +

_ :
n

j=1

Wnj (t) |YjG | G� &1(Zj ).

Using (A2), we get

E \ :
n

j=1

Wnj (t) |YjG | G� &1(Zj)+= :
n

j=1

E(Wnj (t) E( |YjG | G� &1(Z j) | Tj))<�.

So �n
j=1 Wnj (t) |YjG | G� &1(Zj)=Op(1). In the case of {F<{G , from Chen

and Lo [6] and (A10), supt�{F
|Gn(t)&G(t)|=Op(n&p). In the case of

{F={G , from Gu and Lai [14] and (A11), supt�{F
|Gn(t)&G(t)|=

Op((n log log n)&1�2). Hence from (5.6), we have, in these two cases,
J1=Op(n&p) and J1=Op((n log log n)&1�2), respectively. Using (A1), (A2),
and Lemma 1(iv), we get

EJ 2
2=:

j

E(W 2
nj (t) E((YjG&X {

j ;& g(Tj))
2 | Xj , Tj ))

�O(nE(W 2
nj (t)))=O((nh)&1).

Hence, J2=Op((nh)&1�2). By (5.4) and ;� n&;=Op(n&1�2), we get J3=
Op(n&1�2). From Lemma 2, J4=O(h). Thus we complete the proof of the
third part of the theorem.

Proof of Theorem 2. Applying Taylor's expansion to (3.4), we have

l� (;)=2 :
n

i=1

(*� {U� i&
1
2 (*� {U� i)

2)+rn (5.24)
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with |rn |�C �n
i=1(*� {U� i )

3 in probability. By Lemma 4(iv) and the same
arguments as those used in the proof of (2.14) of Owen [26], we can prove

&*� &=Op(n&1�2). (5.25)

By Lemma 3 and (5.25), and noting that

n&1 :
n

i=1

&U� i&2=Op(1), (5.26)

we have

|rn |�C &*� &3 max
i

&U� i & :
n

i=1

&U� i&2=op(1). (5.27)

Note that

:
n

i=1

U� i

1+*� {U� i

= :
n

i=1

U� i _1&*� {U� i+
(*� {U� i)

2

1+*� {U� i&
= :

n

i=1

U� i&\ :
n

i=1

U� } 2
i ) *� + :

n

i=1

U� i (*� {U� i)
2

1+*� {U� i

. (5.28)

From (3.3), (5.25), (5.26), (5.28), and Lemma 3, it follows that

*� =\ :
n

i=1

U� } 2
i +

&1

:
n

i=1

U� i+op(n&1�2). (5.29)

Again by (3.3), we get that

0= :
n

i=1

*� {U� i

1+*� {U� i

= :
n

i=1

(*� {U� i )& :
n

i=1

(*� {U� i)
2+ :

n

i=1

(*� {U� i)
3

1+*� {U� i

. (5.30)

By Lemma 3, (5.25), and (5.26), it follows that

:
n

i=1

(*� {U� i)
3

1+*� {U� i

=op(1). (5.31)

From (5.30) and (5.31), we get

:
n

i=1

*� {U� i= :
n

i=1

(*� {U� i)
2+op(1). (5.32)
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By (5.24), (5.27), (5.29), and (5.32), we get

l� (;)= :
n

i=1

*� {U� iU� {
i *� +op(1)

=\ 1

- n
:
n

i=1

U� i+
{

\1
n

:
n

i=1

U� } 2
i +

&1

\ 1

- n
:
n

i=1

U� i++op(1)

=\ 1

- n
:
n

i=1

U� i+
{

7&1 \ 1

- n
:
n

i=1

U� i++op(1)

=\V &1�2n&1�2 :
n

i=1

U� i+
{

(V 1�27&1V1�2) \V&1�2n&1�2 :
n

i=1

U� i++op(1).

(5.33)

By Lemma 4(iii), we have V&1�2(n&1�2 �n
i=1 U� i) w�L N(0, Ip). Also note

that V1�27&1V1�2 and 7&1V have the same eigenvalues. Then Theorem 2
follows from Lemma 5 straightaway.

Proof of Corollary 3. From Lemma 4(iii), (5.33), and (5.22), it follows
that

l� (;)=7� } \1
n

:
n

i=1

U� 2
i +

&1

\�n
i=1 U� i

- nV� +
2

+op(1) w�L /2
1 .

The proof of Corollary 3 is thus complete.
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