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Abstract Surface effects on the persistence length of quasi-one-dimensional

nanomaterials are investigated by using the theory of surface elasticity and the

core–shell model of nanobeams. A simple and unified expression is provided

to determine the persistence length of nanowires and nanotubes with any regular

polygonal cross-sections. It is demonstrated that surface effects have a distinct in-

fluence on the persistence length when the characteristic sizes of materials shrink

to nanometers. This work is helpful not only for understanding the size-dependent

behavior of nanomaterials but also for the design of devices based on nanotubes

or nanowires.

c© 2014 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1405109]

Keywords surface effect, persistence length, nanotube, nanowire

Quasi-one-dimensional nanomaterials such as nanowires and nanotubes hold great promise

for many technologically important applications in, for instance, sensors, atomistic dust detec-

tors, actuators, and oscillators in nanoelectromechanical systems and biotechnology.1–3 The per-

sistence length of a quasi-one-dimensional material is an important characteristic parameter quan-

tifying the combined effect of flexural rigidity and thermal fluctuations of its conformation.4,5 The

persistence length of quasi-one-dimensional nanomaterials can be predicted by continuum mod-

els or atomistic simulations. Gittes et al.6 estimated the persistence length by using the classical

Euler–Bernoulli beam model, which ignores the shear and rotary effects and is appropriate for

slender beams. When the length-to-thickness ratio is relatively small, the shear and rotary inertia

effects should be taken into account. In this case, the Timoshenko beam model can be used to

calculate the persistence length.4 Recently, a nonlocal Timoshenko beam model7 and a modified

couple stress theory8 were suggested to examine the size effect of the persistence length.

The material near the surfaces of a solid exhibits properties different from its interior. For

macroscopic solids, the surface-to-bulk ratio is rather small and the surface effects can be ignored.

When the characteristic sizes of materials shrink to nanometers, however, surface effects often

play a significant role in the mechanical behaviour due to the large surface-to-bulk ratio. Both

experimental measurements and atomistic simulations have evidenced that the physical, chemical,

and mechanical properties of nanostructures are size-dependent.9 To incorporate the effects of
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surfaces or interfaces, Gurtin and Murdoch10 established a continuum model of surface elasticity,

wherein the surface of a solid is treated as a layer of zero thickness adhering to the interior bulk

without slipping.11,12 As an extension of this theory, a core–shell model has been proposed, in

which the surface has a finite thickness.13,14 The models based on the concept of surface elasticity

have been used to investigate the mechanical properties of various nanomaterials and nanodevices,

e.g., nanoparticles, nanowires, nanobeams, and materials with nanosized voids or inclusions.15

The results agree well with atomistic simulations and experiments.16–18 In this letter, we will

investigate the surface effects on the persistence length of quasi-one-dimensional nanomaterials

such as nanowires and nanotubes. Based on the theory of surface elasticity and the core–shell

model, an explicit expression will be given to predict the persistence length.

According to the classical Euler–Bernoulli beam model, the governing equation for a nanobeam

reads

κ d4w/dx4 = q(x), (1)

where w is the transverse displacement of the nanobeam, q(x) denotes the lateral loading, and

κ = EI is the flexural rigidity. Here, E is the Young’s modulus of the bulk material and I denotes

the second moment of area of the cross-section.

Furthermore, the thermodynamic behavior of one-dimensional nanostructures may be de-

scribed by the worm-like chain model. Suppose that a worm-like chain has the same length,

lateral loading, and boundary conditions as the nanobeam. Subjected to the lateral load q(x), a

chain with persistence length p and contour length L satisfies the following Langevin equation7

pkBT d4w̄/dx4 = q(x), (2)

where w̄ is the transverse displacement of the worm-like chain, kB is the Boltzmann’s constant,

and T is the absolute temperature. The persistence length can be determined by equating the

deflections between the worm-like chain model and the beam model. Thus from Eqs. (1) and (2),

the persistence length p without surface effects can be calculated by6–8

p = κ/(kBT ). (3)

In the absence of surface effects, however, the measured persistence length of a nanosized

beam can be pronouncedly different from the value predicted by Eq. (3). This discrepancy is

often attributed to the neglect of the size-dependent elastic properties of nanosized materials.

Therefore, we here present a continuum model based on the theory of surface elasticity to reveal

the surface effects on the persistence length of these nanostructures.

A one-dimensional nanostructure with length much larger than its thickness can be well mod-

elled as a refined Euler–Bernoulli nanobeam with surface effects.13 A core–shell model is used

to consider the influence of surface elasticity. The hollow n-regular polygonal cross-section of a

nanobeam is shown in Fig. 1, where R and r denote the external and internal radii of the circum-

circles of the polygon, respectively. The thicknesses of the internal and external surface shells

are assumed to be δi and δe, respectively. Their elastic constants may be different from the core,
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which has the same elastic constants as the bulk material. Suppose that both the surface layers

and the bulk of the nanostructure are isotropic, homogenous, and linearly elastic. By varying the

number of sides, n, this core–shell model can well approximate the shapes of many nanowires and

nanotubes observed in experiments and used in practical application.

For all values of n, the polar moment of inertia of a hollow n-regular polygon with respect to

the origin o can be written as Ip = n
(
R4 − r4

)
sin2θ (2+ cos2θ)/12, where θ = π/n. Consider

the symmetry of the n-regular polygon, the second moments of area of the cross-section, Ix and

Iy, with respect to the x and y axes are given by Ix = Iy = I = Ip/2 = C
(
R4 − r4

)
, where C =

nsin2θ (2+ cos2θ)/24.

In the core–shell model in Fig. 1, the effective flexural rigidity κ∗ of the nanobeam with

surface effects is expressed as19

κ∗ = EIb +EeIe +EiIi, (4)

where Ee and Ei denote the elastic moduli of the external and internal surface layers, respectively.

It should be noted that Ee and Ei can either be larger or smaller than E. Ib, Ie, and Ii are the area

moments of inertia of the bulk, the external, and internal surface layers, respectively. They are

given by

Ib =C[(R−δe secθ)4 − (r+δi secθ)4], (5)

Ie =C[R4 − (R−δe secθ)4], (6)

Ii = I − Ib − Ie =C[(r+δi secθ)4 − r4]. (7)

In the presence of surface effects, the governing equation of an Euler–Bernoulli nanobeam

under bending becomes

κ∗ d4w/dx4 = q(x). (8)

Then from Eq. (2) and Eqs. (4)–(8), the persistence length with surface effects is derived as

p = κ∗/(kBT ) = [C/(kBT )]{E[(R−δe secθ)4 − (r+δi secθ)4]+Ee[R4 − (R−δe secθ)4]+

Ei[(r+δi secθ)4 − r4]}. (9)

If the thicknesses of the surface layers are much smaller than R, the core–shell model reduces

to the surface elasticity model proposed by Gurtin and Murdoch,10 wherein the surface is modelled

as a layer of zero thickness. The persistence length becomes

p = κ∗/(kBT ) = [C/(kBT )][E(R4 − r4)+4Es(R3 + r3)secθ ], (10)

where Es = Eeδe = Eiδi is the effective surface Young’s modulus. For solid cross-sections, one

can determine the persistence length by setting r = δi = 0. The persistence length without surface

effects can be obtained by letting Ee = Ei = E in Eq. (9) or Es = 0 in Eq. (10).

As an example, we first consider the persistence length of silver nanowires with solid cross-

sections of square (n = 4), regular hexagonal (n = 6), and circular (n → ∞) shapes. The material
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constants are taken as E = 76 GPa, Es = 1.22 N/m,20 kB = 1.381 × 10−23, and T = 290 K.7

Assume that the surface layer has a thickness of the single atom diameter of silver, which is

D0 = 0.35 nm.21 The persistence length can be predicted by Eq. (9) and the results are shown in

Fig. 2. Herein, R/D0 varies from 4 to 10. It is seen that for a given side number n, the effective

flexural rigidity κ∗ increases as the radius R increases, and thus the persistence length increases

with the increase in R. For a specified R, the persistence length increases as the side number n
increases.
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Fig. 1. The n-regular polygonal cross-
section of a nanobeam.
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Fig. 2. Persistence length of nanowires with surface
effects.

Figure 3 shows the variations of the absolute value of the fractional change in the persistence

length as a function of R/D0 for different cross-sections. η is defined as |pw–po|/po, where pw

and po pertain to the persistence lengths with and without surface effects, respectively. For a

given value of R/δe, among the square, regular hexagonal, and circular cross-sections, the surface

effects on the persistence length are minimal for the circular nanowire and maximal for the square

nanowire. This is due to the fact that the ratio of perimeter to area of the cross-section decreases

with the increase of the side number n. As R increases, the surface effects become weaker and

η decreases. Figure 4 shows the influence of surface layer thickness on the persistence length of

a circular nanowire. The four curves correspond to four different values of δe, from the top to

the bottom, δe = 0, D0, 2D0, and 3D0, respectively. As can be seen from Fig. 4, the influence of

surface elasticity increases as the surface layer thickness increases.

Figure 5 shows the influence of the elastic modulus in the surface layer on the persistence

length of a circular nanowire with δe = D0. The ratio Ee/E changes from 0.2 to 5, and R is

specified as 6D0, 8D0, and 10D0, respectively. It is seen that the persistence length decreases as

the elastic modulus of the surface layer decreases. For a thinner nanowire, this effect is more

prominent.

Nanotubes with hollow cross-sections are typical quasi-one-dimensional materials as well.

Recently, the surface effects on the vibrational frequency and wave dispersion characteristics of

nanotubes have been investigated.22–24 We here address the persistence length of nanotubes with

different cross-sectional shapes. Equation (10) is employed to approximately predict the persis-

tence length of nanotubes. Figure 6 shows the variations of η as a function of R/Δ for different

cross-sections, where Δ denotes the thickness of the nanotubes and is taken as Δ = 0.5 nm. Here,
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Fig. 3. Variations of η as a function of R/D0 for
nanowires with different cross-sections.
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Fig. 4. Influence of surface layer thickness on
the persistence length of circular nanowires.
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Fig. 5. Influence of the elastic modulus in the
surface layer on the persistence length of circular
nanowires.
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Fig. 6. Variations of η as a function of R/Δ for
nanotubes with different cross-sections.

we take Es/E = 0.0741 nm. Apparently, the surface effects on the persistence length of nanotubes

follow traits similar to those for nanowires.

On the other hand, one can estimate the effective surface Young’s modulus from Eq. (10),

as long as the persistence length is measured. For example, the microtubules in living cells

are self-assembled linear polymers which are hollow thin-walled cylindrical structures. The re-

ported external and internal radii of microtubules are 12.5 nm and 7.5 nm, respectively, the bend-

ing rigidity κ∗ = 5× 10−24 N·m2, the Young’s modulus E = 2 GPa, and the persistence length

p = 1.248 mm.7 It is easy to verify that the reported bending rigidity κ∗ is much lower than that

estimated by the classic expression EI. Substituting these parameters into Eq. (10), one obtains

the effective surface Young’s modulus of microtubules as −3.8036 N/m.

In summary, a core–shell model based on the theory of surface elasticity has been presented

to determine the persistence length of quasi-one-dimensional nanomaterials. Nanowires and

nanotubes with any n-regular polygonal cross-sections are modelled as solid or hollow Euler–

Bernoulli nanobeams with surface effects. The results demonstrate that surface effects should be

taken into account in the prediction of the persistence length of nanomaterials. This model is also



051009-6 H. Liu, et al. Theor. Appl. Mech. Lett. 4, 051009 (2014)

applied in the determination of the effective surface Young’s modulus of microtubules. It can be

extended to nanowires with helical or other morphologies.25 The work is helpful for interpreting

the scale-dependent phenomena of nanostructures and the design of devices based on nanotubes

or nanowires.
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