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Oscillation and comparison theorems for a linear homogeneous second-order 
difference equation are proved by employing various equivalent non-linear 
equations obtained by means of transformations analogous to the Riccati transfor- 
mation for ordinary differential equations. 

In several recent papers, [4,6, 7,9-l 11, oscillation and non-oscillation of 
solutions of linear difference equations have been investigated. In this paper, 
we study oscillation and non-oscillation of solutions of the second-order 
linear difference equation 

C,X,+ I +cn-Ix,-, =b,,x,,, n = 1, 2,..., (1) 

with c, > 0, IZ = 0, 1, 2 ,... . This is accomplished by means of transformations 
analogous to the well-known Riccati transformation, which is often useful in 
the study of ordinary differential equations. In a paper by Gautschi 
13, p. 301, the substitution rn =x,+,/x, is presented, whereby (1) is 
transformed into a first-order non-linear difference equation. This is used by 
Gautschi in connection with the expression of solutions of (1) in terms of 
continued fractions. It is this transformation, along with some variants, 
which we employ. Before proceeding, we make some general observations. 
(We first remark that the letters m, n, M, N, i, and j below always denote 
non-negative integer variables.) 

Equation (1) is equivalent to the self-adjoint equation 

-d(c,-,dx,-,)+anx,=O, n = 1, 2,..., (2) 

where a,, = 6, - c, - c, _, and the forward difference operator A is defined 
by Ax,=x,+,-xXn. 
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Equations (1) and (2) are also equivalent to the difference equation 

U,X,+ 1 fPnXn + ynx,-, =o. a, > 0, Y, > 0, (2’) 

since (2’) can be transformed to the form (1) by defining the coefficients c,, 
inductively as c,, = 1, c, = c,-,u,,Iy,. n > 1, with b, = -cJI,/a,, n > 1. A 
non-trivial solution of (1) is called oscillatory if for every N there exists 
n 2 N such that X,X n + , < 0. If one non-trivial solution of (1) is oscillatory 
then all non-trivial solutions are oscillatory (see [2, p. 153]), so Eq. (1) may 
be classified as being oscillatory or non-oscillatory. 

Furthermore, if (x,) is a solution of (1) then {-x,} is also a solution, so it 
is clear that non-oscillation of (1) is equivalent to the existence of a solution 
which is positive for all sufficiently large n. For these and additional 
properties of Eq. (1) and difference equations in general we refer the reader 
to the books of Atkinson [ 1 ] and Fort 121. 

Elementary consideration of signs in (1) immediately gives the following 
result (see [9, Lemma 31 or [ 13, Thm. 1 I): 

THEOREM 1. If bnk < 0 for a sequence nk + 00, then (1) is oscillatory. 

Because of this fact, in addition to our assumption that c, > 0 for all 
n > 0, we assume the following condition throughout the remainder of this 
paper. 

ASSUMPTION. In Eq. (l), b, > 0 for n > 0. 

(It would suffice to assume 6, > 0 for all sufficiently large n, but we 
assume the condition for all n, for simplicity of proof in the theorems below.) 

Suppose that (x,}, n > 0, is a solution of (1) such that x, # 0 for n > N 
for some N. The substitution r,, = x,, ,/xn, n ) N, leads to the non-linear 
difference equation 

c,,r,,+c,-Jr,-,=b,, n > N. (3) 

Similarly, if we let z, = c,x, + ,/x,, n > N, then z, satisfies 

z, + c;-,/z,-, = b,, n > N. (4) 

If we let s, = (b,+,x,+l )/(c,x,), n > N, then s, satisfies 

qnsn + l/s,-, = 1, n > N, (5) 

where q,, = ci/b, b, + , . 
The transformation z, = c,x, + ,/ x, which leads to (4) above is perhaps the 

nearest analogue for difference equations to the classical Riccati transfor- 
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mation z(t) = c(r)~~‘(t)/y(t) which transforms the self-adjoint differential 
equation (c)r’)’ t py = 0, c(t) f 0, into the Riccati equation 
z’ t (l/c)z* + p = 0. It is well known that this self-adjoint differential 
equation has a non-vanishing solution on a given interval I if and only if the 
related Riccati equation has a solution on I (see, for example, [12, 
Theorem 2.11). It is the discrete analogue of this result which we use 
repeatedly in this paper to obtain oscillation and non-oscillation criteria for 
(1). Equation (4) may be written in the alternate form 

AZ n-, +(1/b,)z,z,-~-z,+c~-,/b,=0, n > N. (4’ 1 

Since this is a first-order equation with a z,,z,-, term, we will call this and 
any of the related equations (3), (4), (5) difference equations of Riccati type. 

It follows readily from the above transformations that Eq. (1) is non- 
oscillatory if and only if Eqs. (3), (4), and (5) have positive solutions. (By a 
“positive solution” of (3) we mean a sequence (r,}, n > N for some N > 0, 
such that r, satisfies (3) for all n > N and rn > 0 for all n > N.) Specifically, 
we have the following theorem as a discrete analogue of the ordinary 
differential equation result mentioned above: 

THEOREM 2. The following conditions are equivalent: 

(i) Equation (1) is non-oscillatory. 

(ii) Equation (3) has a positive solution (r,,}, n > N, for some M > 0. 

(iii) Equation (4) has a positive solution {z,}, n > N, for some N > 0. 

(iv) Equation (5) has a positive solution {s,}, n > N, for some N > 0. 

ProoJ If Eq. (1) is non-oscillatory and {xn}. n > 0, is any solution of 
(1 ), there exists N > 0 such that x,x, + , > 0 for all n > N. The necessity of 
conditions (ii), (iii), and (iv) then follows immediately from the transfor- 
mations which lead to Eqs. (3), (4), and (5). 

Conversely, if {r,}, n 2 N, is a positive solution of (3), we may let xN = 1, 
.Y n+1= r,x, for all n > N. This defines a positive solution of (1) for 11 > N. 
Given x,~ and x,~+, , the terms x,.-, , x,~~* ,..., x, may then be constructed 
directly from (1) to give a non-oscillatory solution of (1) for n > 0. Similar 
arguments hold for Eqs. (4) and (5), which complete the proof. 

We now use the Riccati difference equations of conditions (ii)- in 
Theorem 2 to develop various conditions for oscillation and non-oscillation 
in terms of the coefficients of (1). 

THEOREM 3. If b, < c,-, for all suflciently large n, and if 
lim sup c,/c,- , > l/2, then (1) is oscillatory. 
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Proof. Assume that (1) is non-oscillatory. Then (3) has a positive 
solution (r,,}, n > N, for some N > 0. Then from our hypotheses, for some 
M>N we have 

Cnr,/C,-I + l/r,-, = b,/c,-, < 1, n>M. (6) 

Since lim sup c,/c,-, > l/2, for some a > l/2 there is a sequence nk -+ 03 
with c,,/c,,-, > o for all k > 1. Then (6) implies 

urnA + l/rnIm, < 1 

for all sufficiently large k. Since all terms in (6) are positive, we have 
c,r,/c,-, < 1 and l/r, _, < 1 for all sufficiently large n, hence rn > 1 and 
l/r, > c,/c,-, for all sufficiently large n. In particular, l/rnk > c,Jc,kP, > a, 
and rnk > 1 so ar,k > u for all sufficiently large k. It follows that each term 
on the left in (7) is greater than a for all sufficiently large k, so a < l/2, a 
contradiction, from which the theorem follows. 

It is to be noted that the condition b, < c, _ , of the above theorem is not 
in itself sufficient to imply that (1) is oscillatory, as the following example 
shows: 

EXAMPLE 1. Let c, = l/4”, n>O, and b,=c+,, na 1, so Eq.(l) 
becomes (l/4”) x, + , + (l/4”-‘) x,-, = (l/4”-‘) x,. It is readily verified that 
x, = 2”, n > 0, defines a non-oscillatory solution of this equation. 

As a generalization of Theorem 3, we have the following result; the proof 
is omitted, since it is similar to that of Theorem 3. 

THEOREM 4. If for some K > 0, b, <Kc,-, for all sufJiciently large n, 
and if lim supndoo c,/c, _, > (1/2)K’, then (1) is oscillatory. 

The next two theorems provide a pair of related conditions, one for 
oscillation and one for non-oscillation. In preparation for these, we have the 
following comparison lemma: 

LEMMA 1. Let q,, > p, > 0, n > 0, and let (un}, n > 0. be a solution of 

(InUn + l/u,-, = 1, (8) 

with u, > 0 for all n > 0. Then the equation 

P”U, + l/L’,-, = 1 (9) 

has a solution (u,,t satisfying v, > u, > 1, for all n > 0. 
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ProoJ We note first that any positive solution (u,} of (8) is readily seen 
to satisfy u,, > 1 for all n. This follows because (8) implies l/u,, _, < 1 for all 
n, hence u,- , > 1. Given such a solution of (8), define v,,, n > 0, inductively, 
by choosing u0 > U, and letting u, satisfy (9) for n > 0. In order to be 
assured that z’,~, rz > 0, is well defined by (9) we need to know that v,, # 0. 
n > 0. But if u, ~, < c, _, and (9) holds, then (8) and (9) together imply 

1 
pnL’,r= I --= 4,u,++-+ 29nUn, 

L’n- I n - I n-1 

so 

since q, > p, > 0 by hypothesis. Therefore the sequence (un} is well defined 
and is a solution of (9) by definition. Thus, for all n > 0, L’, satisfies (9) and 
the inequality c, > u,. which completes the proof. 

THEOREM 5. If b,b,+,, < (4 - E)C~ for some E > 0 for all sufJiciently 
large n. then ( 1) is oscillatory. 

ProoJ If the hypothesis holds for some E > 4, this theorem follows 
trivially from Theorem 1. Thus we assume that 0 < E < 4. Suppose (1) is 
non-oscillatory. Then (5) has a positive solution (s,}, n > N, for some N > 0, 
i.e., s, satisfies qnsn + I/s, ~, = 1 for IZ > IV, where q, = ci/b,b,+ , . Since 
q, > (4 - E))’ by hypothesis, the preceding lemma implies that the equation 

(4 -&)-‘V, + l/L’,-, = 1 (10) 

has a solution ( LJ,}, n > N, which satisfies t’,, > s, > 1 for all n > N. We now 
define a positive sequence Ix,}, n > N, inductively, by letting xN = 1, x,,+ , = 
(4 - E))‘%,x, for n > N. Then c, = (4 - e)‘!‘x,+ ,/x,, and substituting this 
into Eq. (10) we find that {?c,t is a positive solution of the equation 

x n+, $X,-L = (4 -E)‘/*X,, n > N. (11) 

But this is impossible because Eq. (11) is oscillatory, since it has the 
solutions (cos net and {sin net, n > 1, where 19 = tan-‘(s/4 - e)“‘. (In fact, 
(11) is essentially the equation which determines the possible shapes of a 
weighted vibrating string with equally spaced weights and fixed endpoints 
[2, pp. 168-1701.) Thus we have a contradiction, and the theorem follows. 

The following example shows that the inequality condition in Theorem 5 
cannot in general be replaced by the weaker condition b,b,+ , < (4 - E,)c~, 
where E, > 0 and E, + 0 as n + co. 

409/82:2 I I 
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EXAMPLE 2. Consider the equation 

X n+, +-r,~~, =b,,xn, n = 1, 2,..., 

where 

b = (n + l)“? + (n - 1)“2 
n ),I”‘2 

This equation is of the form (1) and is non-oscillatory, since it obviously ha 
the solution x, = n”‘, n = 1, 2 ,... . It is readily ve$ed that b, < 2 and b, --) 1 
as n+co, hence b,b,,,<4 and e,,=4-b,b,+I-+0 as n-too. Thus w 
have b,b,+, = 4 - E,, but the difference equation is non-oscillatory. It i 
interesting to note that in self-adjoint form this equation become 
A2x,-, - a,x, = 0, where a,, = n -“‘A’((n - l)‘j2). This may be thought o 
as a discrete analogue of the well-known example of a non-oscillator 
dtperential equation y” + (1/4t*)y = 0; this has tli’ and tV2 log t a 
solutions, and the coeflcient of y is 1/4t2 = -t- ‘12(t1’2)‘r. 

We now turn to a non-oscillation criterion which is a companion to th 
oscillation condition of Theorem 5. Theorem 5 and Theorem 6 together shot 
that the constant 4 in each of the theorems is the best possible. 

THEOREM 6. Zf b,b,+,, > 4ci for all sufficiently large n, then (1) is non 
oscillatory. 

Proof. Assume b, b, + , , > 4~: for all n > N. Then qn < l/4, where q,, i 
defined as in Eq. (5). Construct a solution (s,} of (5) inductively by definin, 
s, = 2 and 

~~=$(l-$-), n>N. (12 

We note that if s,,-, > 2 for any n > N, then qnsn = 1 - (l/s,,-i) > l/2. s 
s, > (1/2)q; ’ 2 4 . l/2 = 2. Therefore the sequence { sn}, n > N is we1 
defined by (12), and it is readily verified that s, satisfies (5). We thus have 
positive solution of (5), so (1) is non-oscillatory by Theorem 2. 

COROLLARY 1. If b, > max(c,- ,, 4c,) for all suflciently large n. the, 
(I) is non-oscillatory,. 

Proof If b, > max(c,_ , ,4c,) for all sufficiently large n, then 6, + , > c 
andb,>4c,,sob,b,,,, > 4~: for all sufficiently large n, hence the corollar: 
follows from Theorem 6. 
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We note that the inequality conditions of Theorem 5 and 6 may be 
restated to apply directly to Eq. (2’) as /?,p, + , < (4 - E) a,,~~+, , /?,/I,+, > 
%lY,fl~ respectively. In this light, we see that these conditions are 
generalizations of discriminant conditions for the constant coeffkient case. 
That is, x, = rn is a solution of ax,+, +px,+yx,-,=Oifandonlyifrisa 
root of the characteristic equation ar’ +pr + y = 0, so this difference 
equation is non-oscillatory if and only if p’ > 4ay, [2, pp. 125-1261, an 
analogue of an elementary non-oscillation condition for constant coefficient 
linear second order ordinary differential equations. 

We note also that in case c, = 1, the non-oscillation condition in 
Theorem 6 becomes b n n+, > 4. In this case, the self-adjoint form (2) is b 

A*x,-, - (b, - 2)x,, = 0, 

and we see that in this sense Theorem 6 may be thought of as a 
generalization of the discrete analogue of the simple condition for ordinary 
differential equations that x” - p(t)x = 0 is non-oscillatory if p(t) > 0. 

THEOREM 7. If ci, > b,,b,,+ , for a sequence nk -+ co, then (1) is 
oscillatory. 

Proof. If (1) is non-oscillatory then Eq. (5) has a positive solution (s,}, 
n~NforsomeN.From(5),q,s,<lands,>lforalln>N,soq,<:lfor 
n > N, i.e., ci < b,b,+, for n > N. Thus if ci > b, b, + , for arbitrarily large 
values of n, (1) must be oscillatory, which completes the proof. 

From this theorem one readily obtains several sufficient conditions for (1) 
to be oscillatory. In Corollaries 2, 3, and 4 we define qn as in Eq. (5) i.e., 

C:, 
“= b,b,+,’ 

n > 0. 

COROLLARY 2. Iflim SUP”+~ q, > 1, then (1) is oscillatory. 

ProoJ: Follows immediately from Theorem 7. 

COROLLARY 3. Iflim sup,,,( l/n) z=, qj > 1, then (1) is oscillatory. 

ProoJ If (1) is non-oscillatory, then ci < b, b, + i for all sufficiently large 
n, say n > N, by Theorem 7. For all n > N, we then have qn = 
c~l@,b,+,) < 1, so zEA,qj < n -N + 1. It follows that 
(l/n) z=, qj < 1 + K/n for some constant K. This leads to a contradiction 
of our hypothesis, so the corollary follows. 

COROLLARY 4. If xJE, qik < to for some k > 0, then (1) is oscillatory. 
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Proof. Let x7=, q,Tk = B, 0 < B < co, for some k > 0. For any p > 1 
choose p’ such that l/p + l/p’ = 1. Using the Holder inequality we obtain 

Then 

from which it follows that 

In particular, if we choose p = (1 + k)/k and p’ = 1 + k, the preceding 
inequality implies that 

I.‘k 
-qj)+ , - 
n j=l ( 1 

so lim n-m(‘ln) Ci”=l qj = co. Therefore (1) is oscillatory, by Corollary 3. 

COROLLARY 5. If CFz ,(b,/cn- ,)k < co for some k > 0, and c,Jc,-, > E 
for some E > 0, for all su$+Tciently large n, then (1) is oscillatory. 

Proof If c,/c, _, >, E then c, > EC,-, for all n > N for some N. We may 
also assume N is large enough so that (b,, ,/cJk < 1 for n > N, since 
x:“‘(b,/c, Jk < 00. Thus 

hence Cj”= , q,rk < co. Therefore (1) is oscillatory by Corollary 4. 

COROLLARY 6. If x.;;C= l(b,fc,,)k < 00 for some k > 0, and c, _ ,lc, 2 e for 
some E > 0, for all sufficiently large n, then (1) is oscillatory. 

Proof. Similar to the proof of Corollary 5. 

COROLLARY 7. rfCiLI(bnlc,-,)k < f 00 or some k > 0, and b, < c, for 
all suflciently large n, then (1) is oscillatory. 

ProoJ If b, < c,, then b,b, + ,/ci < b, + ,/c,, and the corollary then 
follows immediately from Corollary 4. Similarly we have: 
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COROLLARY 8. If C,“= ,(b,/c,)k < 03 for some k > 0, and b, + , < c, for 
all sufficiently large n, then (1) is oscillatory. 

Our next theorem is related to an earlier result in [9]. We will need the 
following lemma: 

LEMMA 2. Zf (1) is non-oscillatory and nl=, bJnl=, ci is bounded as 
n + 03, then all solutions of (1) are bounded. 

Proof: Let ( 1) be non-oscillatory and let {x,, }, n > 1, be a solution of ( 1) 
with x, > 0 for all n > N. Then Eq. (4) has a solution (z,,} with z,, = 
c,I,, c ,/x,, > 0 for all n > N. From (4) we have 

z,=b,-ct,-,/z,-, <b,, 

for all n > N. so ny= ,V+, zi < n;=,,+, bi, n > N, that is, 

It follows that 

.Y ” + I < -v.v + I fi bi/ fi Ci, n>N, 
i=M+ I i=S+l 

and therefore (x,} is bounded. If {x,,} is a solution of (1) which is eventually 
negative, then (-x,} is a solution which is eventually positive, hence all 
solutions of (1) are bounded, which completes the proof. 

THEOREM 8. If C,“=, c;’ = co and nl=, bJn;=, ci is bounded as 
n --t 03, then (1) is oscillatory. 

ProoJ Suppose the above conditions hold and (1) is non-oscillatory. 
Then all solutions of (1) are bounded, by Lemma 2. But by Corollary 2 of 
[9], if Cz=, cl’ = co and if all solutions of (1) are bounded, then (1) must 
be oscillatory. This contradicts our supposition, and the theorem follows. 

(Example 1 above and a similar example with b, = c, = 4” and x, = 2-” 
show that neither of these conditions alone implies oscillation.) 

Finally, we prove a comparison result similar to [8, Thm. 1 j and 
[ 10, Thm. 21. For ordinary differential equations, some comparison results of 
this type can be found in a paper by Read [ 111. Here we compare solutions 
of Eq. (1) with those of the equation 

f-tlYlZ.1 +rn-,yn-, =d,y,, n> 1, (1’) 

with r, > 0, n > 0, and c, > r, and 6, < d, for all suffkiently large n. In light 
of Theorem 1, we continue to assume b, > 0 and hence d, > 0 for large n. 
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although these conditions are not explicitly used. We assume below that (1) 
is non-oscillatory, while in [ 10, Thm. 21 it is assumed that b, > c, + c,- , 
and d, > r, + r,- , . As noted in [ 91, these inequalities imply non-oscillation 
of (1) and (l’), respectively; thus the hypotheses below are weaker than 
those of [ 10, Thm. 21. 

THEOREM 9. Assume c, > r,, and 6, ,< d, for all suflciently large n. 
Then if (1) is non-oscillatory, (1’) is also non-oscillatorql. Furthermore, if 
{x,, 1 is a solution of (1) with x, > 0 for all n 2 N and if { y, } is a solution of 
(1') satisfiing r.v.vN+ JY,~ 2 w,~+ ,IxN with Y, > 0, then Y,+ JY,, > x,+ ,/xn 

for all n > N. If; in addition, y, > x,~~,, then y, 2 x, for all n > N. 

Proof Assume c, > r,, and b, Q d, for all n > N. Given {x,) and { y,} as 
above, let z, = c,x, + , lx,, for all n >, N. Then (1) implies 

Z n+i =b,+, -c;lz,r n > N. (13) 

Let 151, = rn y, + Jy, f or all n > N such that y,, # 0. Then for n > N such that 
Y,, andy,,, are non-zero, w, and w, + , are defined, w, # 0, and (1’) implies 

w tl+1 =d,+,-r?w,. (14) 

For such values of n, we subtract (13) from (14), adding and subtracting 
c:/w, 9 to obtain 

2 - r2 
wn.1 -z,+l= d,,, -b,+, +- 

w II 1 

+ cn ; (wn - zn)* 
n n 

(15) 

From the hypotheses, z, > 0 for all n > N. If w, > z,, the right-hand side of 
(15) is then non-negative, hence w,, , > z,+, > 0. In particular, from the 
hypotheses, wN > zN and y, and y,, i are positive. Thus wN+, is defined, and 
( 15) implies wN+ , > zN+, > 0. Furthermore, Y,,,+~ > 0 since y,+* = 
vv+, xv+ ,/rN+ , v and hence wN + 2 is defined. Proceeding inductively, we 
conclude that w, > z, and y, > 0 for all n > N. It follows that (1’) is non- 
oscillatory and that 

yn + JY n 2 (c,lr,) x, + 4-h 2 x, + J-L (16) 

for all n > IV. Finally, if y, > xN, (16) implies that Y,~+, > ( yN/xN)xK+ , > 
xN+ , . Proceeding inductively, we obtain y,, > x, for all n > N, which 
completes the proof. 

Theorem 9 affords an immediate proof of the following result involving 
difference inequality conditions (cf. [4, Thm. 9. I I). 
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COROLLARY 9. Let (1) be non-oscillatory. Suppose there exist positive 
sequences { 24, } and (v, } satisfying 

and 

cnvn+ 1 +c,-,v,-, > bnvn, n > N. (18) 

rf L’,N, IhV > 'h'+ &W then (1) has a solution {x,} satisfying 

v, f Jv, 2 xn+ */-%I a un + Al 7 n 2 N. 

I’in addition, vN>xN>uh,, then v,>x,>u,,x>N. 

Proof. Given (u,} and (v,) as stated, we define sequences (I?,) and (D,} 
by 

cnun+, +cn-,Un-,=BnUn, n2N, 

and 

C,V,+1 +c,-,v,-, = D,,v,,r n > N. 

Then B, < 6, < D,, n > N. Let (x,) be the solution of (1) satisfying x,v = u,,,, 
and x,~,,, =uN+,. The conclusion then follows immediately from Theorem 9. 

Similarly, one may use Theorem 9 to obtain the following version of 
[2, Thm. IV, p. 2231 ( w h ere, as noted by Hartman in [4], the sense of the 
inequality should be reversed): 

COROLLARY 10. Equation (1) is non-oscillatory if and only i,f there 
exists a sequence (u,} satisfying u, > 0 and c,u,+ , + c,~, u, ~, < b,,u, for 
all sufficiently large n. 
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