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Massive gravity in the presence of doubly coupled matter field via en effective composite metric yields 
an accelerated expansion of the universe. It has been recently shown that the model admits stable de 
Sitter attractor solutions and could be used as a dark energy model. In this work, we perform a first 
analysis of the constraints imposed by the SNIa, BAO and CMB data on the massive gravity model with 
the effective composite metric and show that all the background observations are mutually compatible 
at the one sigma level with the model.
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1. Introduction

Last year was the centenary of Einstein’s General Theory of Rel-
ativity. This remarkable theory survived hundred years with great 
successes and is still the fundamental theory that describes the 
underlying gravitational physics for a vast range of scales. Albeit a 
great deal of inquiry, it outlived against most competitors of alter-
native theories. One of the first predictions of the theory was the 
right amount of gravitational deflection of light, which was con-
firmed by Arthur Eddington very soon after its inception. Nowa-
days, the direct application of this in form of gravitational lensing 
is one of the indispensable tools in astrophysics and cosmology. 
Another powerful prediction of General Relativity is the presence 
of gravitational waves. These constitute the ripples of space–time 
itself, that travel outward from a massive object in form of waves. 
Its discovery was a breathtaking event [1].

Granting all this, there remains unsolved problems. Attempts to 
describe the gravitational interactions by the principles of quan-
tum mechanics failed tenaciously. The absence of meaningful ap-
plication of renormalisability techniques diminishes the predictive 
power of the theory at large energy scales. This problem has mo-
tivated to investigate ultraviolet modification of General Relativity 
with the aim to successfully implement the quantum behaviour 
of gravity. Furthermore, the presence of black hole and cosmolog-
ical singularities are unwanted pathologies of the theory. It could 
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be that new physics of quantum gravity automatically takes care of 
these singularities regularising curvature divergences. Alternatively, 
one could also consider classical modifications in which curvature 
scalars are regular not due to quantum effects but rather due to 
different behaviour of gravitational force at high energies imple-
mented in the modifications. This can also have important conse-
quences for the early universe allowing alternatives to the standard 
inflationary scenario [2,3].

Another challenge was faced by the discovery of the accelerated 
expansion of the universe, which is still one of the most intrigu-
ing problems in modern cosmology. This detection has been now 
confirmed with high precision by many different observations like 
Type Ia supernovae (SNIa), Baryon Acoustic Oscillations (BAO) and 
Cosmic Microwave Background (CMB) temperature power spec-
trum. Taking General Relativity as granted, the expectation for the 
evolution of the universe would rather be a deceleration. There-
fore one is forced to inject some sort of unknown non-ordinary 
energy into the theory. The inclusion of a cosmological constant 
indeed accounts for most of the observations with very good pre-
cision requiring the value of the cosmological constant to be of the 
order of 10−47 GeV4. The fact that it corresponds to this very tiny 
value is an unresolved problem, if one assumes that it corresponds 
to the energy density of the vacuum of space, which is of the 
order of ∼ 10120 larger. This constitutes the worst problem of fine-
tuning and is known as the cosmological constant problem [4]. 
Even if one fine-tunes the value of the cosmological constant to 
be very small at the classical level, this value is not radiatively sta-
ble. Considering quantum corrections in terms of matter loops will 
renormalise the value of the cosmological constant proportional to 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the mass of the matter field and hence one has to fine-tune the 
value at each loop order. This renders the theory unnatural. Simi-
larly to the ultraviolet modifications to cure the pathologies at high 
energies, one can consider infrared modifications that could either 
tackle the old cosmological constant problem or provide a mecha-
nism that accounts for the right dark energy phenomenology.

In order to fit observations there is also the need for cold dark 
matter. Its origin is still a mystery as well and has not been de-
tected yet despite many efforts. Together with the cosmological 
constant, it builds the standard model of cosmology, the �-CDM 
model. It prevails against all the alternative models and explains 
for example perfectly well the observed fluctuations of the CMB 
and the structures on large scales. Despite the great agreement 
with the observations, some reported anomalies call for attention, 
even though they are statistically not very significant yet. More-
over, the model might have problems to account for the right ob-
servations of dark matter at galactic scales and below, for example 
it fails to describe the tight correlations between dark and lumi-
nous matter in galaxy halos [5,6]. This might be due to the lack 
of a complete understanding of the astrophysical phenomenology. 
However, in this respect modifications in form of modified Newto-
nian dynamics have been pursued [7], even though its successful 
extrapolation to cosmological scales is problematic and calls for a 
better implementation of the theory into a some sort of hybrid 
model [8–11].

To address the above mentioned challenges one can consider 
modifications of gravity in form of scalar–tensor [12–18], vector–
tensor [19–26] or tensor–tensor theories [27,28]. As a concrete 
infrared modification of General Relativity, the framework of mas-
sive gravity has witnessed promising developments [27,29], that 
could either be used for dark energy [16] or for the cosmological 
constant problem [30]. The theory requires the mass of the gravi-
ton to be small but this small value is technically natural in the 
sense that it is stable under quantum corrections [31–33]. Within 
possible scenarios the formulation of the model in the presence 
of doubly coupled matter field via an effective composite metric 
yields interesting cosmological solutions with stable perturbations 
[34,35].

From a theoretical point of view, it is an interesting question to 
investigate whether the graviton is massless or could have a small 
but non-zero mass. The formulation at the linear level without 
any ghost degrees of freedom uniquely leads to Fierz–Pauli action 
[36]. If one applies this linear theory to solar system tests, then 
one does not recover the corresponding results of General Relativ-
ity in the mass going to zero limit. This is known as the vDVZ-
discontinuity [37,38]. Soon, it was realised that the observational 
discrepancy in the massless limit was just an artefact of the linear 
approximation and that one needs to restore non-linear interac-
tions [39]. However, the non-linear extension usually introduced 
the unwanted ghostly degree of freedom into the theory, known 
as the Boulware–Deser ghost [40]. This seemingly no-go result 
was recently disproved by a set of specific non-linear interactions 
introduced in [27,29,41]. Within this formulation, massive gravi-
ton could either be used as a condensate, whose energy density 
sources self-acceleration or as a condensate, whose energy density 
compensates the cosmological constant [30]. The former is a direct 
application to dark energy. The protagonist of both approaches is 
the helicity-0 mode of massive graviton, which has the same inter-
actions in the decoupling limit as the Galileon scalar field [13]. The 
mixed interactions between the helicity-0 and helicity-2 modes 
have similarities with Horndeski interactions [16]. Unfortunately, 
the direct application of massive gravity for dark energy with the 
standard coupling to matter fields suffers from pathologies and 
therefore extensions in form of doubly coupled matter fields were 
pursued [34,35].
In a previous work we have shown the presence of stable de 
Sitter attractor solutions within the framework of doubly coupled 
massive gravity [42]. The presence of de Sitter attractor does not 
guarantee a good fit to observations. We would like to test the 
model using background observations like SNIa and distance pri-
ors. We first introduce the framework that we are considering here 
in section 2 and state the background equations of motion. For 
our analysis, the important modification is encoded in the Hubble 
function which we compute in section 3 by expressing the equa-
tions of motion in terms of redshift before integrating them. After 
this preliminary analysis, we first compare the modified Hubble 
function with the supernova data in section 4 and put constraints 
on the model parameters. We further include the constraints com-
ing from the BAO data in section 5 and from the CMB data in 
section 6. Finally, we compare the combined constraints of the 
model parameters in section 7 and show that all these background 
observations are mutually compatible at the one sigma level with 
our model.

2. Massive gravity with effective composite metric

The model that we would like to compare with background ob-
servations is the doubly coupled massive gravity model proposed 
in [34], where a matter field of the dark sector is coupled to an 
effective composite metric built out of the dynamical and fiducial 
metric, whereas the standard matter fields couple only to the dy-
namical metric. The cosmological consequences of this model were
already discussed in [34,35,43]. In a previous work, we have fur-
ther showed the presence of stable de Sitter attractor solutions, 
making the model viable for dark energy studies. The action of the 
model reads

S =
∫

d4x
[ M2

P

2

√−g

(
R[g] − m2

2

4∑
n=2

αnU[K]
)

+Leff
matter(geff, ρ̃, P̃ , c̃2

s ) +Lmatter(g,ρ, P , c2
s )

]
, (1)

with R[g] being the Ricci scalar of the dynamical metric g , m the 
mass of graviton, αn being free parameters, the energy density ρ , 
pressure P and sound speed c2

s of the standard matter field that 
lives in the dynamical metric and similarly ρ̃ , P̃ , c̃2

s encoding the 
energy density, pressure and sound speed of the doubly coupled 
matter field that lives in the effective metric. The allowed ghost-
free potential interactions between the two metrics g and f are 
encoded in U [K] as [27,41]

U2[K] = 2
(
[K]2 − [K2]

)
,

U3[K] = [K]3 − 3[K][K2] + 2[K3],
U4[K] = [K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3] − 6[K4] , (2)

with Kμ
ν [g, f ] = δ

μ
ν −

(√
g−1 f

)μ

ν
and [..] denoting the trace. Fur-

thermore, we have put the contributions of U1 and U0 to zero. The 
effective composite metric is defined as [34]

geff
μν ≡ α2 gμν + 2α β gαμ

(√
g−1 f

)α

ν

+ β2 fμν , (3)

with the two arbitrary free parameters α and β . Actually, without 
loss of generality one can fix α = 1, since the interesting depen-
dence will be in the form of the ratio between the two parameters. 
This effective composite metric is special in the sense that its vol-
ume element corresponds to the right potential interactions

√−geff = √−g
4∑ (−β)n

n! (α + β)4−nUn[K ] . (4)

n=0
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For the matter field of the dark sector that couples minimally 
to the effective composite metric we will assume a fluid with 
energy density ρ̃ , pressure P̃ and sound speed c̃2

s encoded in 
Leff

matter(geff, ρ̃, P̃ , ̃c2
s ). Note that its pressure can be very small but 

the important requirement is that it is non-vanishing. And for the 
standard matter fields we will assume dust and radiation type of 
matter fields that live on the dynamical metric represented by 
Lmatter(g, ρ, P , c2

s ). We shall assume that the dynamical metric 
is of the form of the homogeneous and isotropic flat FLRW met-
ric ds2

g = −N2dt2 + a2δi jdxidx j and similarly the fiducial metric as 
ds2

f = fμνdxμdxν = − ḟ 2dt2 + a2
0δi jdxidx j . Hence the effective met-

ric is simply ds2
eff = −N2

effdt2 + a2
effδi jdxidx j , with Neff ≡ α N + β ḟ

and aeff ≡ α a + β a0 being the effective lapse and scale factor 
respectively. The modified Friedmann equation in this model cor-
responds to

3
H2

N2
= m2ρA + ρ

M2
P

+ α a3
eff

M2
P a3

ρ̃ , (5)

with the energy density of the standard matter field ρ , the en-
ergy density of the matter field that lives on the effective com-
posite metric ρ̃ and the dimensionless effective energy density 
from the mass term being ρA ≡ U (A) − A

4 ∂A U where U (A) ≡
6 

∑4
n=2 αn(1 − A)n and A stands for the ratio of the scale factors 

A ≡ a0/a. The acceleration equation of the system reads

2 Ḣ

N2
= 2H Ṅ

N3
+ m2 J A (r − 1) − ρ + P

M2
P

− α a3
eff

M2
Pa3

[
ρ̃ + Neff/aeff

N/a
P̃

]
, (6)

where J = 1
3 ∂Aρm and r ≡ ḟ /a0

N/a . The matter fields living on the 
dynamical and the effective composite metric have their corre-
sponding conservation equations

1

Neff

˙̃ρ + 3
Heff

Neff
(ρ̃ + P̃ ) = 0 ,

1

N
ρ̇ + 3

H

N
(ρ + P ) = 0 . (7)

Last but not least we have the Stueckelberg equation as constraint 
equation

m2 M2
P J = αβ a2

eff

a2
P̃ . (8)

For the purpose of our present work, it will be convenient to ex-
press the background equations in terms of the redshift. In the 
next section we shall bring the relevant equations in the form that 
will be most suitable for data comparison. Furthermore, we will 
assume N = 1.

3. Modified Hubble function

We will first solve the constraint equation (8) for the pressure 
of the matter field in the dark sector

P̃ = m2M2
Pa2 J

αβ(β + αa)2
, (9)

and use the Friedmann equation (5) to solve it for its energy den-
sity

ρ̃ = −a3(ρm + ρr + M2
P(−3H2 + m2ρA))

3
, (10)
α(β + αa)
where ρm and ρr are the energy density of matter and radiation 
respectively, living on the dynamical metric g . After using these 
two equations, the explicit dependence on the matter field in the 
dark sector disappears. Next, we plug in the expressions for ρ̃ and 
P̃ into the acceleration equation (6), which simplifies to

Ḣ = 1

2

(
−3H2 − Pm + Pr

M2
P

+ m2
(

(β + αa) J

βa
+ ρA

))
(11)

with Pm and Pr being the pressure of the matter fields that live 
on the dynamical metric. We replace all the time dependent vari-
ables by their corresponding expressions in redshift and their time 
differentiation by V̇ = −(1 + z)H(z) d

dzV(z), where V stands for all 
the time dependent variables like ρA(t), H(t), ρr(t) . . . etc. For the 
matter field we assume zero pressure Pm = 0 and solving the con-
tinuity equation gives for its energy density to be ρm = 	m(1 + z)3, 
with 	m being the density parameter of matter. For radiation we 
assume Pr = 1

3 ρr and solving its continuity equation gives this 
time ρr = 	r(1 + z)4 with the corresponding density parameter 
for radiation 	r . Hence the acceleration equation in redshift space 
becomes

12M2
Pβ(1 + z)H

dH

dz
= 3m2M2

P(β(κ1(2 − 4z)

− z(2 + z)κ2 + 2(κ2 + κ3))) + 2	r(1 + z)4β

+ 2αβ(κ1 + (1 + z)(κ2 + κ3 + zκ3) + 9M2
P

α
H2) (12)

where we have introduced the combinations of parameters κ1 =
3(α2 + α3) + α4, κ2 = −2(α2 + 2 α3 + α4) and κ3 = α3 + α4 for 
convenience. We can simply integrate the above equation and ob-
tain the evolution of the Hubble function, which results in

H2 = 1

6M2
Pβ

(2	rβ(1 + z)4 + M2
P(−m2(−3zβ(2κ1

+ (2 + z)κ2) + 2βκ3 + α(2κ1 + 3(1 + z)(κ2

+ 2(1 + z)κ3))) + 6β(1 + z)3c1) , (13)

with c1 being an integration constant. Furthermore, it will be con-
venient to introduce the normalisation 	mh2, 	rh2 . . . etc. with 
H(z = 0) = 100h km s−1 Mpc−1. Note also that the density param-
eter for radiation contains the contribution of photons as well as 
the relativistic neutrinos

	rh2 = 	γ h2(1 + 0.2271Neff) , (14)

where 	γ h2 = 2.469 ×10−5 at the CMB temperature TCMB = 2.725
K and Neff = 3.04 stands for the effective number of relativistic 
neutrino species. In the following sections we shall compare our 
model with the background observations like SNIa, BAO and CMB. 
Note that we will assume 	k = 0 throughout the paper. Further-
more, without loss of generality we shall put α = 1 but keep β
arbitrary. Also since the integration constant c1 in (13) will be 
put in relation to 	m through the Friedmann equation, we will 
be marginalising over c1.

4. Constraints from SNIa

Supernova Type Ia are used as standard candles with known 
brightness to refer physical distances. The logarithm of the lumi-
nosity of an astronomical object seen from a 10 parsecs distance 
gives its absolute magnitude, which on the other hand can be 
used to give its brightness. We shall use the distance modulus 
μ to relate the expansion history of the universe to the appar-
ent magnitude of a supernova at a given redshift. It is defined as 



134 L. Heisenberg, A. Refregier / Physics Letters B 762 (2016) 131–137
the difference between the apparent magnitude m and the abso-
lute magnitude M of the supernova and relates to the distance 
through

μ = m − M = 5 log D L − 5 log h + μ0 , (15)

with μ0 = 42.38 and dimensionless D L = H0dL . The luminosity 
distance on the other hand is given by dL = (1 + z)r(z) with r(z)
standing for the comoving distance

r(z) = 1

H0

z∫
0

H0

H(z̃)
dz̃ . (16)

Once we have the distance modulus of our model, we can directly 
compare it with the supernova data and compute the χ2 estima-
tor

χ2
SN =

N∑
i=1

(μ(zi;β,κ1, κ2, κ3,	m,	r,h, c1) − μi)
2

σ 2
i

. (17)

The relevant parameters are the eight cosmological and model 
parameters consisting of 	m, 	r, h, β, κ1, κ2, κ3 and c1. Since the 
supernova dataset is below redshift 2, we will neglect the contri-
bution coming from radiation, hence we set 	r = 0 in this section. 
Since h is degenerate with the absolute magnitude, we marginalise 
over h. We are then left with six parameters 	m, β, κ1, κ2, κ3, c1. 
Since the Friedmann equation relates the integration constant c1
directly to the density parameter of matter 	m , the value of c1
fixes 	m . This reduces the parameter space to five β, κ1, κ2, κ3, c1. 
The General Relativity results of the standard �CDM model are re-
covered for the parameter values

κ1 = 1

50

(
−108β + β2(324(1 + β) + 108β2)

(1 + β)3

)
,

κ2 = − 108β2

25(1 + β)3
,

κ3 = − 54β3

25(1 + β)3
,

c1 = 0.27. (18)

For these values, we already know that the supernova data will 
be well fitted by the model. The five dimensional Likelihood is flat 
along the β parameter direction. This means that the β parameter 
is unconstrained by the supernova data. Thus, we fix the β param-
eter, without loss of generality, to be 10 and the value of κ1 and 
the integration constant c1 to be the ones at the local minimum 
for this given β value, that is very close to the General Relativity 
values. This minimum of the Likelihood that we considered here 
is approximately at β ∼ 10, c1 ∼ 0.27 and κ1 ∼ −0.02. For the 
remaining two parameters {κ2, κ3} we adapted to the grid-wise 
exploration of the Likelihood and enforced the constraints dictated 
by the supernova data.

Thus, out of the initial higher dimensional parameter space 
{	m, 	r, h, c1, κ1, κ2, κ3, β}, after marginalising and adapting the 
values for {	m, 	r, h, c1, κ1, β} close to the ones in General Rela-
tivity, we were left with two parameters {κ2, κ3}. Of course there 
could be other minima with parameter values far from the local 
General Relativity ones. Such a detail scrutiny of the Likelihood 
would require a MCMC method applied to the five dimensional 
parameter space, which is which is left to future work. We use 
the union data set [44]. The 68%, 95% and 99% C.L. regions for 
the supernova data is shown in Fig. 1. The local minimum of the 
χ2 estimator is around (κ2 ∼ −0.5, κ3 ∼ −1.1). These values are 
very close to the ones that recover the General Relativity results in 
Fig. 1. We plot the marginalised χ2 estimator in the κ2 and κ3 parameter space. 
The 68%, 95% and 99% C.L. regions for the SNIa dataset union [44] are shown by 
the colour gradient. Recall that κ1 = 3(α2 + α3) + α4, κ2 = −2(α2 + 2 α3 + α4) and 
κ3 = α3 +α4, so this plot can be also seen as the constraints on the αn parameters. 
We have chosen the κ representation for convenience.

equation (18), which correspond to κ2 ∼ −0.3 and κ3 ∼ −1.6. We 
could have chosen any other combination of pairs of the parame-
ters to compare with the data, but since there is a degeneracy in 
the β direction and the integration constant c1 is related to the 
matter energy density, any combination of the κ parameters could 
be equally good. We leave the exploration of this possibility using 
full MCMC analysis of the model parameters to future work. Our 
choice serves as a rule of principal how the supernova data can be 
nicely used to constrain the model parameters.

5. Constraints from BAO

The density of baryonic matter has periodic fluctuations re-
ferred to as baryon acoustic oscillations, which is the outcome of 
counteracting forces of pressure and gravity. The pressure released 
by the photons after decoupling creates a shell of baryonic matter 
at the sound horizon. The measurement of these baryonic oscilla-
tions yields the following distance-redshift relation at the redshifts 
z = 0.2 and z = 0.35 [45]

VBAO =
(

rs(zd)
D V (0.2)

rs(zd)
D V (0.35)

)
=

(
0.1980 ± 0.00588
0.1094 ± 0.0033

)
, (19)

with the sound horizon expressed as

rs(z) = 1√
3

1
1+z∫
0

da

a2 H(a)

√(
1 + 3	bh2

4	γ h2 a
) , (20)

and the dilation scale as

D V (z) =
(

r(z)2 z

H

)1/3
. (21)

These BAO distance measurements are obtained from combined 
Sloan Digital Sky Survey (SDSS) and 2dF Galaxy Redshift Survey 
(2dFGRS) data [45]. The SDSS data used there contains 465789 
main galaxies and 56491 Luminous Red Galaxies between redshifts 
0.3 < z < 0.5 [46]. The uncovered low redshift regimes are com-
pensated by the 2dFGRS data with 143 368 galaxies distributed 
in narrow redshift slices [47]. The selection of red galaxies in the 
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Fig. 2. This plot shows the 68%, 95% and 99% C.L. regions for the BAO.

SDSS data and the selection of the blue galaxies in the 2dFGRS 
data represent galaxies with different large-scale biases. The red-
shift value zd in (19) represents the epoch at which the baryons 
were released from the photons and is given by the fitting formula 
[48]

zd = 1291(	mh2)0.251

1 + 0.659(	mh2)0.828

(
1 + b1(	bh2)b2

)
, (22)

with the parameters b1 and b2 standing for the short-cut notations

b1 = 0.313(	mh2)−0.419
(

1 + 0.607(	mh2)0.674
)

(23)

b2 = 0.238(	mh2)0.223 (24)

The corresponding BAO data vector results in

XBAO =
(

rs(zd)
D V (0.2)

− 0.1980
rs(zd)

D V (0.35)
− 0.1094

)
, (25)

and the χ2 estimator

χ2
BAO = XT

BAOC−1
BAOXBAO (26)

with the inverse covariance matrix [45]

C−1
BAO =

(
35059 −24031

−24031 108300

)
. (27)

We are now ready to compare our model with the BAO data points. 
We can proceed in the same way as for the SNIa data. However, 
note a crucial difference. The χ2 estimator for BAO depends di-
rectly on the density parameter of the baryons 	b , hence we need 
to marginalise over this parameter as well. The parameters κ1 and 
β have been fixed to the value of the local minimum, whereas we 
marginalised over h again. The marginalised χ2 estimator over the 
parameters (κ2, κ3) is given in Fig. 2

6. Constraints from CMB

As next we would like to confront our model to the CMB data. 
For this purpose we tightly follow the distance priors method of 
Komatsu et al. [49], which relies on the use of two distance ratios. 
The first distance ratio constitutes the ratio between the angu-
lar diameter distance to the decoupling epoch and the comoving 
sound horizon size rs at the decoupling epoch
lA = πr(z�)

rs(z�)
, (28)

with the fitting function

z� = 1048(1 + 0.00124(	bh2)−0.738)(1 + g1(	mh2)g2) (29)

with the short-cut notations g1 and g2 standing for

g1 = 0.0783(	bh2)−0.238

1 + 39.5(	bh2)0.763
(30)

g2 = 0.560

1 + 21.1(	bh2)1.81
(31)

The second distance ratio is the one between the angular diameter 
distance and the Hubble horizon size at the decoupling time

R =
√

	m H2
0r(z�) . (32)

Following Komatsu et al. [49], we take the following values for the 
distance priors

VCMB =
⎛
⎝ lA(z�)

R(z�)

z�

⎞
⎠ =

⎛
⎝ 302.10 ± 0.86

1.710 ± 0.019
1090.04 ± 0.93

⎞
⎠ , (33)

with the CMB data vector as

XCMB =
⎛
⎝ lA − 302.10

R − 1.710
z� − 1090.04

⎞
⎠ , (34)

and the inverse covariance matrix

C−1
CMB =

⎛
⎝ 1.800 27.968 −1.103

27.968 5667.577 −92.263
−1.103 −92.263 2.923

⎞
⎠ . (35)

The corresponding χ2 estimator of the CMB is

χ2
CMB = XT

CMBC−1
CMBXCMB . (36)

Note that even if the used CMB data in this format does 
not contain the full CMB information, it provides an economical 
method to constrain a wide variety of dark energy models, under 
some assumptions related to the content of neutrinos, gravitational 
waves and entropy perturbations. Although the used parameters 
are derived quantities, they are nearly independent of the dark 
energy model provided that the dark energy component is not rel-
evant at the decoupling time. Since in our model of massive gravity 
the modifications become appreciable only at small redshifts for 
the allowed small mass of graviton, the usage of these priors is 
justified. Massive gravity is an infrared modification of gravity and 
hence the effects of this modification are present only at large dis-
tances and small energy scales. In order words, the effects due to 
the mass of the graviton m/H0 ∼ 1 are dominant at small red-
shifts, which make the model appealing as a dark energy model in 
the first place.

In difference to the previous analysis, the CMB distance priors 
are very sensitive to the radiation component, hence we reinstall 
the explicit dependence of 	r in the Hubble function. Furthermore, 
we have to marginalise over 	bh2 and h. We show the 68%, 95%
and 99% C.L. regions for the distance priors of the CMB in Fig. 3.

7. Conclusions

This work was devoted to the detail study of the background 
evolution of massive gravity in the presence of the composite ef-
fective metric to which the matter fields in the dark sector couple. 
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Fig. 3. This plot shows the 68%, 95% and 99% C.L. regions for the CMB.

Using the constraint and Friedmann equation, we have seen that 
the direct dependence of the matter field in the dark sector dis-
appears. The resulting modified Hubble function only depends on 
the model parameters and the fluid dynamics of the standard mat-
ter fields that live on the space–time metric. Clearly, in order to 
constrain the matter field in the dark sector, one would need to 
go beyond background observations and consider the implications 
coming in the perturbations. This shall be investigated in a future 
work. In a previous work, we had shown the existence of attractor 
de Sitter critical points and studied the stability of perturbations. 
In this work, we have studied the constraints on the parameters of 
the theory coming from SNI, BAO and CMB data. The model con-
sists of eight parameters {	r , 	m, h, β, κ1, κ2, κ3, c1}. Since with-
out a proper MCMC it is challenging to handle the eight param-
eters with our grid sampler, we either marginalised over some of 
the parameters or fixed some of them to the corresponding values 
in General Relativity, leaving at the end just two free parameters. 
Our main goal was to show the observational viability of these 
models as well as to provide estimated mean values for their pa-
rameters. In this respect, a proper treatment with MCMC chains 
will result in tighter constraints on the parameters, but we do not 
expect the mean values to vary significantly.

The two free parameters appearing in the effective composite 
metric enter such that one of them can be fixed to unity. The re-
maining parameter β introduces degeneracy in the Likelihood in 
the sense that the observational data is insensitive to its pres-
ence. We first obtained the constraints coming from the SNI data. 
For this we explored grid-wise the Likelihood and fixed the two 
parameters β and κ1 to the values of a local minimum whereas 
marginalised over h, leaving the two parameters κ2 and κ3 free. In 
a similar way we compared our model to the BAO and CMB data as 
well. As can be seen in Fig. 4, the contours of the SNI data agree 
nicely with the BAO and CMB data even in the simple grid-wise 
exploration of the Likelihood of the parameters. The one sigma 
contours of the three observations overlap nicely and the preferred 
values for the two parameters are {κ2 ∼ −0.6, κ3 ∼ −0.5}, thus the 
agreement is at the one sigma level. The corresponding values for 
these parameters in order to recover General Relativity are given 
by κ2 ∼ −0.3 and κ3 ∼ −1.6. These values differ from the ones we 
obtained since we were marginalising over some of the parame-
ters which are not present in the standard model. This has most 
notably effects on the BAO and CMB contours. In a future work, 
a detail analysis of the background observations will be performed 
Fig. 4. This plot shows the 68%, 95% and 99% C.L. regions for the SNI, BAO and CMB 
data. We see nicely that the contours of the SNI data set are in nicely agreement 
with the BAO and CMB data set.

using a MCMC chains method together with the constraints analy-
sis imposed by the observations coming from perturbations.
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