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Abstract 

Shavrukov, V.Yu., A note on the diagonalizable algebras of PA and ZF, Annals of Pure and 

Applied Logic 61 (1993) 161-173. 

We prove that the diagonalizable algebras of PA and ZF are not isomorphic. 

A diagonalizable algebra of an r.e. theory T is a pair (a,, 0,) = 9$- where & 

is the quotient of the Boolean algebra of sentences of T modulo the ideal of 

theorems of T. ~4~ is usually called the Lindenbaum sentence algebra of T. 0, is a 

unary operator on dT which takes a sentence y to the statement asserting that y 

is provable in T. Thus T is assumed to contain enough arithmetic to express 

syntactical notions such as “a * . is a T-proof of. . 0”. More specifically, the 

sentence 0,~ is taken to be the provability predicate of T (which shall be 

identified with 0,) after its only free variable has been replaced by the 

Godelnumber of y. The provability predicate is assumed to have the following 

form: 

3.~ Prf&, y) 

where Prf&, y), the proof predicate of T, is the formula expressing in the 

natural way that x codes a Hilbert-style proof of (the formula coded by) y from 

the extralogical axioms specified by cr. The formula (u(e) with exactly one free 

variable occurs in the proof predicate as a subformula and is assumed to be _ZI so 

that the proof and provability predicates also are 2’r formulas. To the theory T 
this LY has to bear the following relation: 

y E S iff a(y) is true 
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for all sentences y where S is a set of sentences which axiomatizes T. Of course 

neither the set of theorems of T nor S determines (Y uniquely. 

The diagonalizable algebras of theories were introduced by Magari [2] and have 

since then been studied in close connection with provability logics (see Smorynski 

How large is the collection of isomorphism types that diagonalizable algebras of 

various theories can offer? Among these algebras one finds such (cf. Smorynski 

[6]) that q Ty = T implies y = T for each y E C&- (this holds for X1 sound theories 

T, that is, for those theories that prove no false z1 sentences), and such algebras 

that there exists a y E gaT satisfying i&-y = T but y # T (2, ill theories). 

Moreover, in the latter case for any m E m the equality O”I = T can hold for all 

n > m, or it can hold for no n E o at all. (I and T are the zero and the unit of a 

Boolean or of a diagonalizable algebra.) This appears to be precisely all that has 

been known of distinctions between the diagonalizable algebras of different 

theories. 

The present paper is devoted to the question whether the diagonalizable 

algebras of PA and ZF are isomorphic. We assume that the provability predicate 

of PA is natural enough so that 

ZF k Va E /Y, (OPAu+ a). 

The reader is also supposed to believe that ZF is 2, sound. In this setting we have 

Theorem. The diagonalizable algebras 2SPA uzd 9$-, are not isomorphic. 

In connection with this theorem we would like to mention two related facts. 

First, Pour-El and Kripke [3] show the Lindenbaum sentence algebras .&rA and 

ti to be recursively isomorphic. Second, the algebras adPA and C&, are 

rez:rsively embeddable in one another (cf. Shavrukov [4]). 

The Theorem settles (a particular case of) a question in Smorynski [6]. The 

method we use to prove the Theorem is similar to (and derives from) a trick 

employed in Shavrukov [4]. 

Proof. To carry out the proof we shall have to introduce a number of auxiliary 

notions and formulate a number of lemmas as we go along. The lemmas we use 

are very well-known and/or very easy to believe and hardly shed much light on 

the proof of the Theorem and therefore their proofs are only given in the 

Appendix. 

Since our proof is going to deal with rates of growth of functions we need to fix 

a class of functions of neglectibly slow growth, elements of which are to be used 

as small change. As such we choose the class of (Kalmar) elementary functions. 

So for a set V G o and functions f and g we define 

f <vg iff there exists an elementary function CJ such that 

f svq og, that is, f(n) s q og(n) for each n E V. 
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We write f -“g to mean both f =Svg and g =Svf. In case V = o we just write < 

and = instead of CV and zV respectively. 

The partial functions f and g are equal, f =g, if their domains coincide and for 

each element n of their domain one has f(n) = g(n). The expression f =,g means 

that V rl dom f = V fI dom g and f (n) = g(n) f or each element n of the latter set. 

In fact we shall only deal with recursive partial functions. These are computed 

by the usual Turing machines. A Turing machine will be identified with its 

Godelnumber and Q?; will stand for the function f computed by the ith Turing 

machine. In an alternative manner of speaking, i is a q-index for (computing ) f. 
The expression vi(n) will not only stand for the output (if any) of the Turing 

machine (of Godelnumber) i on the input IZ but also for the computation executed 

by that Turing machine on this input. Thus we write ~&(n)i or vi(n)? according 

to whether this computation con- or diverges, and the expression 

the number of steps in the computation qi(n) 

also makes sense. We shall employ a (slum) complexity measure @ (cf. Blum [l]) 

associated with the q-indexing which is slightly different from the usual ones, 

namely 

@i(n) = i + 12 + the number of steps in the computation vi(n). 

Our favourite feature of this complexity measure is that for each m E w there only 

exists a finite number of pairs (i, n) for which there is a chance of Qi(n) sm. 

Next we define the class of (elementarily) cumulative partial recursive functions 

by putting 

f is elementarily cumulative 

iff there exists a q-index f for f s.t. @~&,mff 

(Note that we then also have ~&=~",,,~f.) The intuition is that the rate of growth 

off correctly reflects the complexity of computing it. 

Lemma 1. Each Kalmar elementary function is majorized by an elementarily 
cumulative elementary function. 

Expressions concerning vi and Qi (or even partial recursive functions if it is 

clear which particular q-index is meant) will also occur in formalized contents. 

We assume that the underlying formalization is reasonable, so that some simple 

facts about Turing machines and the complexity measure are provable in formal 

theories in question, and economic, that is that the Kleene T-predicate is 

expressed by an elementary formula SO that the relation @i(n) < m is also 

expressed by an elementary formula, the relation qi(n) = m is an elementary 

formula preceded by an existential quantifier etc. 

Elementarity is also assumed of Godelnumbering of syntax and of the proof 

predicates of formal theories under consideration, that is, the relation Tk,, y 
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defined by 

Tt, y iff T proves y by a proof of Godelnumber <n 

is elementary in n and y and is expressed by an elementary formula q T,,y, which 

by abuse of terminology will also be referred to as the proofpredicate of T. In the 

presence of the 2r collection schema, for any provability predicate q T we can, 

using a trick due to Craig which possibly involves a minor rearranging of the set 

of axioms of T, find an elementary proof predicate IIT,, such that 

T 1 VY (QY ++ 3n Q.n~). 

Note that the natural proof predicates of PA and ZF are elementary because 

these theories are axiomatized by a finite number of axioms and axiom schemas. 

Next, to every 2’r sound theory T containing IA0 + exp we associate an 

indexing bT of O-l-valued partial recursive functions by sentences of T in the 

following manner. 

Define the sequence of sentences {#nT}ne,O 

#;=o;+lI A@*T 

(0 is short for 33 and the upper indices of 0 and 0 denote iteration) and put 

G,T(n)=O if TF#“,*y, 

= 1 if T k #+ ly, 

divergent if T + #; does not decide y. 

From the viewpoint of T itself it is not clear that the value of ST(n) is determined 

uniquely. Therefore, if one wants to deal with SF in T, one has to add that the 

value SF(n) is determined according to the shortest proof of either of the two 

sentences in question. 

AT is a complexity measure associated with aT which is defined as follows: 

AT(n) = the minimal d s.t. Tkd #+ y or Ttd #F+ly. 

The crucial fact connecting aT and AT with Q, and @ is: 

Lemma 2. Let T be an r.e. E, sound theory containing IA,, + exp. To each 
q-index k for O-l-valued partial recursive function there corresponds a sentence y 
of T such that 

SC- Qlk and A~+,mqa Q. 

Conversely, to each sentence y of T there corresponds a q-index k for a 
O-l-valued partial recursive function such that 

g&=8; and Qk =&om6;Ac. 

We are now ready to start. Our strategy is to assume the existence of an 

isomorphism e : SPA + Ci$-F and use it to derive an absurdity. 

Let X be a nonrecursive r.e. set. 
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Lemma 3. There exists a partial recursive O-l-valued function h and a q-index h 
for it such that dom h = X and whenever i is a q-index for h one has 

@c =Sx@;. 

By Lemma 3 pick a partial recursive O-l-valued function h and a q-index 6 for 

it such that dom h = X and whenever i is a q-index for h there holds 

Next let a be a sentence of PA corresponding to h by Lemma 2 such that 

oPA=h and A~*<~@- a h. 

Let A be a sentence of ZF such that A = e(a). Since e is an isomorphism, and as 

such has to send #GA to #&, we have that 

&=,ar*Eh 
A (Y 

and hence for some q-index i for the function h 

A;* =c~ @i <x Gi <x AAZF 

by Lemma 2 and the choice of h. We have now that 

APA < o( ,xpOA; 

for some elementary function p which we can by Lemma 1 assume cumulative 

and which will bear this name p throughout the sequel. 

At this point we need more lemmas. 

Lemma 4. There exists a ZF-provably recursive monotonic elementarily 
cumulative function d eventually majorizing every provably recursive function of 
PA and such that if o1 and a, are sentences satisfying 

PAI, &A~, v q PAa, 

then 

PA I+) ol or PA Id(n) oz. 

Lemma 5. For each r.e. zI sound theory containing Ido + exp and each sentence y 
of T the function A,’ is cumulative. 

Lemma 6. If a and b are cumulative partial recursive functions, then a 0 b is also 
cumulative. 

The next lemma is a specialization of the Compression Theorem (cf. Blum [l]) 

and an improvement on Lemma 3. 

Lemma 7. Let a be a cumulative function with dom a = X. Then there exists a 
partial recursive O-l-valued function k and a p-index k for it such that dom k = X 
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and whenever i is a q-index for a O-l-valued (partial) recursive function satisfying 
vi =x k there holds 

a zx @i <x Gi. 

Define g = dodod, d being introduced through Lemma 4. Note that for each 
pair q, r of elementary functions g eventually majorizes the function q 0 d 0 r. 

Since by Lemmas 4-6 the function g op 0 AAZF is cumulative, Lemma 7 provides 
a O-l-valued partial recursive function f and a v-index f for it such that 
dom f = X and 

whenever i is a q-index for a O-l-valued (partial) recursive function extending f. 
Let s be an elementary function such that 

@px sogopo AAZF. 

Let B(x) be the following formula of ZF: 

EF(x)J * (@F(X) <sogop”A,ZF(x)+f(x)=O) 

and define the formula B to be 

Vx (#&‘B(x)). 

We want to show that 

GgFGXf. 

Indeed if n E X then S,““(n)l and B(n) provably reduces to 

@~(n)<sogopoA~F(n)+f(n) =O 

and then, since the antecedent of this formula is true and hence provable, to 

f(n) = 0. 

From this one derives 

ZF k #$+V~ (sf”zr-+n. = 0) 

+ (Vx (#;F-+ %)) ++. (%F+ B(n))) 

+ (B -B(n)) 

+ (B 4+f (n) = 0) 

whence 6gF(n) Exf (n). M oreover, by formalizing the above argument we have 

ZFEVX (CI&#&+A) V q zF(#&+T~)‘. 6zF(X)J) 

+.s~g~p~AAz”(x)~) 

+. q ,FB(x) v q ZF1B(x)) 

+. &,(ff”zF+ B, v q ZF(#%F- -)), 
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and in particular for each II E w 

ZF t q ZF(#fnZF-+ A) v q z,(W&-+~A)+. q ,,(#;,+ B) v ‘&(%+lB). 

Let /? = e-‘(B). e-l should also be an isomorphism and so 

sf;* z5 ij;r ex f 

whence by Lemma 2 and the choice off 

@j<x A;*. 

Also one has by the same isomorphism that 

PAF q pA(#np~+a)V q ,A(~~",A~~~)~.O,A(#",A~~)~O,A(#~A~~~) 
for all n E w. Since PA is r.e. there exists a total recursive function j such that for 

each n E w 

PAkj(,,ClP~(ffF~+a)v &A(#:A+~&)+. •,A(#",A~P)V~,A(#",A~~P). 

The totality of j implies that the set 

Y = {n E X 1 j(n) s A:*(n)} 

is infinite for otherwise dom A:*, that is, X would be recursive. Therefore the set 

{A:*(n) 1 n E Y} is unbounded. 

Now we concentrate our attention on Y. For n E X we clearly have 

PA+, •pA(SfnpA'~Y)VnPA(#~A'lLY) 

for some partial recursive function 16, AZ* because constructing a PA-proof of 

q pAy from that of y is quite an elementary task. Hence for all IZ E X and some 

partial recursive m such that 

m =s~ max(j, I) <y AZ* 

there holds 

PAt,,,) &A(#:A-+P) v"~A(#:A+lP) 

whence by the choice of the function d we have 

PAt dWl(n) #;A+p Or PAt,,,,,, #;,+‘7p 

that is, 

Af;A<XdOm<yd~t~A~A 

for some elementary function t for m <y AL* and d is monotonic. Next recall that 

god;* <xgopo AAZF 6x 9=&A;* 

(the first inequality holds because g is monotonous and AZ* cxp 0 AzF). Putting 

things together we get 

pAP,*=+dOtOA;*. 
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By the unboundedness of {ALA(n) 1 n E Y} we infer that there exists an 

elementary function u such that u 0 d 0 t exceeds g for infinitely many arguments 

which contradicts the choice of g. 

Thus from the existence of an isomorphism e: 9r.A’ 9zF we derived a 

contradiction and therefore proved the absence of such e. 0 

The theories PA and ZF occupy a special place in the study of diagonalizable 

algebras and provability logics in that they constitute a conventional example of a 

pair of theories of which the second is much stronger than the first one (cf. 

Smorydski [7]). In the Theorem of the present paper this pair can be replaced by 

a wide class of others. For convenience we now bring together the conditions on 

the two theories under which this replacement is possible. 

First, we either have to assume that both employed proof predicates are 

elementary, or that both theories T and S contain enough _X1 collection to 

provably equivalently replace their given proof predicates by elementary versions. 

In fact our proof of the Theorem goes through for any pair of 2, sound r.e. 

theories T and S containing IA0 + exp such that S proves a ‘smoothened’ version 

of uniform z1 reflection for the chosen elementary proof predicate of T: 

S ttlx 3y Vu,,(.) E A” (O,, 3w so(w)- 32 cy a&)) 

which follows from the usual uniform z1 reflection schema 

VCJ E .X, (O,a-+ cJ) 

if S proves the appropriate instance of 2, collection. 

Appendix 

Proof of Lemma 1. It is well known that each elementary function can be 

majorized by one of the functions {Ax.2”,},,, and that each of these functions is 

cumulative. 0 

Proof of Lemma 2. Constructing the q-index k from a sentence y is easy. The 

required Turing machine looks through the T-proofs and outputs 0 or 1 on input 

IZ once a proof of #+ y or of #+=ly is found, respectively. The task is clearly 

elementary in the Godelnumber of the shortest proof of this kind, that is, in 

A;(n). Of course, it is important that the proof predicates we use are elementary 

as well as the Godelnumbering of the syntax of T. 
We turn to the converse construction. Thus we are given a Turing machine (of 

Godelnumber) k which can only output 0 or 1 (this latter fact need not be 

provable in T). We have to produce a sentence y and an elementary function q 

such that for all n E w 

Tk#“,-+y iff qpk(n) =O, 

iff Tky~~k-(n) #nT+ Y 
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and 

Tt #F+iy iff Q)~(H) = 1, 

iff Tt,,,,,, #?-+iy. 

In order to construct such y we shall essentially reproduce the proof of the 

Uniform Dual Semi-Representability Theorem of Smorynski [5] (slightly 

weakened). 

By self-reference define G(x) to be the formula 

3~ (((@Ax) <Y A Q)&) = 0) v q ~,,W+~G(4) 

A VZ <Y 3(%(x) <z A ql&) = 1) v &A#;+ G(x)))). 

Note that for no n E o can the theory T refute #T because T is 2, sound. First 

we show that 

A&&) 4 @/An) 

for no n E w either. For if this did hold for some n then we would have 

Tl- +x(n) #f+ G(n) and hence TY,(,, #+lG(n) 

or 

Tt @h.*(n) #+ lG(n) and hence TX,,,, #‘+ G(n) 

(if q&)? then kQkcn) is an euphemism for k). These two possibilities after being 

formalized imply on inspection of the definition of G(n) 

T tlG(n) or T t G(n) resp. 

whence in either case T t-~#+ quod non. So A&, c c&(n) holds for no n E w 

and in particular if ~~(a)? then T + #“, does not decide G(n). If Eli then we 

have cP,(n) < A&,, and this easily implies 

T t G(n) if ~)~(n) = 0, and T tlG(n) if vk(n) = 1. 

Finally put y to be 

Vx (#XT+ G(x)). 

Since 

T1VxVy(#+r\#fy,+.x=y), 

we have 

T t #;-+ (Vx (#+ G(x)) *. (#+ G(n))) 

+ (Y f, G(n)), 

and therefore 

Tk#;+y if qk(fl) = 0, 

T t #;-+ly if Q?,J~) = 1, and 

T + #;t”T does not decide y if Q)~(~)T 

which amounts to ST- Q)k. 
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For IZ E dom Q)k the T-proofs of ff+ + y and of #+ly are elementary in 

those of G(n) and of lG(n) respectively and the latter essentially amount to 

verifying D(n, @k(n)) for D(x, y) an elementary formula which only takes 

elementrily long. Hence 

The proof of Lemma 3 will follow that of Lemma 7. 

Proof of Lemma 4. First we show that there is a function D satisfying all the 

conditions of the Lemma except possibly the majorization property. This is easy. 

One just lets D(n) be the minimal m such that 

PAI, u1 or PAF, a, whenever PA t, q pAo1 v QAa2. 

D is then monotonic and cumulative for the computation of D(n) consists of 

constructing all the PA-proofs with Giidelnumbers CD(~) and a simple analysis 

of their structure. This is clearly elementary in D(n). 

Moreover, D is provably recursive in ZF for 

ZF t Va E 2, (OPAo+ a) 

and so 

ZF k Vo, Vo2 (&,(Q~or v Q+,o4*. &~o, v &oz) 

1 Vx 3y Vo, Vo, (Q4.x(&4oI v Q%%)‘. &+o1 v QA,JoZ) 

(the last step uses 2, collection). 

Second, we construct a ZF-provably recursive monotonic cumulative function F 

majorizing all the PA-provably recursive functions: 

F(n) = c {@Am> 1 m C n and PA t, Vz q+(z)J}. 

F is clearly recursive, monotonic and majorizes each provably recursive function 

of PA. 

To see that F is cumulative we note that the identity function id = vi is among 

those provably recursive in PA and so id =5 Qi =5 F. The computation of F(n) 

consists of looking through the first it proofs of PA and calculating and summing 

up <n2 values, each of the calculations taking SF(~) time. This is clearly 

elementary in IZ and F(n) and since id < F, also in just F(n). 

Now we have to show that ZF proves F total. This is done in several steps. Let 

By induction on y within ZF one shows that for some elementary function q 

ZF 1 Vx Vy q PA,q(x,y) ‘3~ Y )I 
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(the bound q enables us to do with just elementary induction). Applying 
induction on y again we get an elementary function r such that 

In particular, 

that is, 

ZF t- Vx q ,,F(x)~ 

and since ZF proves uniform E, reflection for &A, 

ZF EVx F(x)i. 

Finally put d = D + F and observe that all the conditions of the lemma are 
met. 0 

Proof of Lemma 5. The reasons for Afs being cumulative are exactly the same 
as those for that of the function D defined in the proof of Lemma 4. 0 

Proof of Lemma 6. The cumulativity of a and b means that there exist q-indices 
ti and 6 for computing these functions and elementary functions qa and qb such 

that 

Q6 sdoma qaOa and @G sdomb q&o b. 

Clearly the following can be assumed of q6: 

l qg is monotonic, 
l qg(n) 2 n, and 

l q&r + m) 3 4&) + q&). 
We want to prove the existence of a q-index E for computing c = a ob and of a 
Kalmar elementary function qE such that 

Take the Turing machines (with Godelnumbers) 6 and 6 and rename the states 
of 6 so that each one of them be distinct from every state of 6 and then identify 
the starting state of 6 with the halting state of 6. Let c be (the Godelnumber of) 
the resulting Turing machine. One has 

e:(n) = E + n + the number of steps in the computation ~~(12) 

+ the number of steps in the computation rpz(b(n)). 

Now set 

q&n) = E + 460 q&n). 
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We only have to calculate: 

q~Oaob(n)=~+q,-~q,~aob(n)~E+q,-~~,(b(n)) 

= E + qG(ti + b(n) + the number of steps in the computation rp,(b(n))) 

3 E + 6 + q,-oh(n) + the number of steps in the computation q,(b(n)) 

2 E + @b(n) + the number of steps in the computation rp,(b(n)) 

= E + 6 + n + the number of steps in the computation q&(n) 

+ the number of steps in the computation cp,(b(n)) 

2 E + it + the number of steps in the computation qb(n) 

+ the number of steps in the computation q,(b(n)) 

= Q&r). 0 

Proof of Lemma 7. Since a is a cumulative there exists a q-index 6 for 

computing a such that uzx @: and in the sequel we can deal with @,- instead 

of a. 
We describe an algorithm for computing the required function k step by step 

starting with Step 0. At Step m the value of k is defined precisely for those n E X 

that satisfy G,(n) = m. 

Step m. Let 

D,={neX( @&r)<m} and N,={ncXl @,-(n)=m}. 

Our present task is to define k on the elements of N,,,. We assume the value of k 

to have already been defined on elements of D, and note that the cardinality of 

D,,, and of N,,, does not exceed m. If N, is empty then we just go to Step m + 1. 

Otherwise put 

IV, = {h E w ) there exists an IZ E N, s.t. Q,(n) <rn = Q,(n), 

and Q)~(~z) = k(n) for each II E D,,, s.t. Gh(n) G Qt(n)}. 

Again, note that IV, can contain at most m elements. If W, is empty then let the 

value of k on every element of N, be 0. Else let w, = min W, and define 

k(n) = 1 A q,+,(n) for those n E N, that satisfy a,,,,(n) G m, and k(n) = 0 for the 

remaining n E N,. 

Finally go to Step m + 1. 

Let f q-index the Turing machine corresponding to the above algorithm. We 

easily have that @L <x @,- because k(n) is defined at Step &(n) (for this reason 

we also have @,- <x @,-) and clearly each Step m is elementary in m because to 

carry it out k’ executes at most m first steps of at most m first Turing machines on 

at most m inputs along with some simple bookkeeping. Thus 

@g zx @, zx a. 

Consider the set 

Z = {h E o 1 cph(n) = k(n) for all y1 E X s.t. Q,(n) s G;(n), 

and Q,(n) =z Q,(n) for infinitely many II E X}. 
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We are going to show that Z is empty. Suppose h,, is its minimal element. Then 

for each h < h,, there is an n E X such that ~)~(n) #k(n) and C&(II) c G6(n), or 

there exists a j E w such that the value of k is defined during the first j steps on all 

II E X satisfying @,(lz) s Q;(n). Now let J E w be so large that for each h < ho, 

(i) there exists an n E X such that ~)~(a) f k(n) and Gh(n) < Q,-(n) d J, or 

(ii) the value of k is defined during the first J steps on all n E X such that 

@,(n) C Q,-(n). 

Since we assumed that Gh,,(n) < G,(n) for infinitely many n E X there should be 

an n,, E X such that 

Let us now compute k(n,,). This value is defined at Step Q,-(Q). We claim that 

W@&no) = min WQicnC,) = h,. It is straightforward to see that ho E WQGcn,,, since 

% E N,(,,,, and Qi,,,(no) 6 Q;(Q). Let h <h,,. If (i) holds for h, then we have that 

k was defined to differ from qh at an earlier step because J < CD,-(a,,). If (ii) is the 

case for h, then Q&n,,) < Q,(Q) (or even @,(no)t). In either case h $ W~zcnrlj. 

Thus ho = wec,(,,,) and therefore k(n,,) = 1 - cph,,(no) since cD~,,(~,,) 6 ~&(n,,). But 

this contradicts the assumption h, E Z. The contradiction proves Z to be empty. 

Next imagine a q-index i such that Q?; =x k. Since i $ Z the relation @i(n) G 

G,(n) can only hold for finitely many n E X, so 

@i =x @, <x CD, 

which completes the proof of Lemma 7. 0 

Proof of Lemma 3. This lemma follows from Lemma 7 once we know that 

cumulative functions whose domain is X exist. By Lemmas 2 and 5, they do. 0 
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