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Abstract

A secondary structure is a planar, labeled graph on the vertex set {1; : : : ; n} having two kind of edges: the segments
[i; i+1], for 16 i6 n− 1 and arcs in the upper half-plane connecting some vertices i; j, i6 j, where j− i ¿ l, for some
:xed integer l. Any two arcs must be totally disjoint. We enumerate secondary structures with respect to their size n, rank l
and order k (number of arcs), obtaining recursions and, in some cases, explicit formulae in terms of Motzkin, Catalan, and
Narayana numbers. We give the asymptotics for the enumerating sequences and prove their log-convexity, log-concavity
and unimodality. It is shown how these structures are connected with hypergeometric functions and orthogonal polynomials.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let us :rst explain brieDy the biological background of secondary structures and then turn to their mathematics. In
biology, many important molecules belong to the class of linear polymers. Linear polymers are long chains built from
simpler building blocks, and these blocks are called monomers. For example, polysacharides are long chains of simple
sugars while proteins are chains of amino-acids. The DNA molecules are also linear polymers, as well as the very
similar molecules of RNA. Together they make the class of nucleic acids; the building blocks of nucleic acids are called
nucleotides. The nucleic acids play an important role in coding, transferring and retrieving genetic information, and in
directing cell metabolism.

There are four diFerent kinds of nucleotides, which only diFer by one part, called base. Hence, one usually identi:es
nucleotides and bases. The bases are denoted by letters A, C, G and U. Each nucleotide is a polar molecule with two
diFering ends, usually denoted by 5′ and 3′. With the exception of one terminal nucleotide, the 5′ end of one nucleotide
:ts to the 3′ end of another nucleotide forming a p-bond (p stands for phosphorus); a sequence of such bonds is called
a backbone of the molecule. The sequence of nucleotides (or bases), when read from the 5′ end of the chain constitutes
the primary structure of an RNA molecule. As each nucleotide can bind by a p-bond to another nucleotide, the primary
structure of an n-bases RNA molecule is then simply an n-letter word in the alphabet {A;C;G;U}. The number of all
possible primary structures for an n-base RNA molecule is thus equal to 4n.

Certain pairs of bases, namely C and G, A and U, and G and U, exhibit mutual chemical aJnity. They tend to form
h-bonds (h for hydrogen), which cause folding of the molecular backbone into con:gurations of minimal energy. The
planar folding of an RNA molecule is then called its secondary structure; the non-planar folding is the molecule’s tertiary
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Fig. 1. An example of a secondary structure.

structure. Secondary and tertiary structures are important because they determine the three-dimensional shape of an RNA
molecule, which in turn contributes to determining its biological function.

The secondary structures of a given molecule are subject to certain stereo-chemical constraints. We describe them here
in some detail to explain the conditions to be imposed on the mathematical objects representing secondary structures.
Firstly, no base can participate in more than one h-bond. Secondly, a base cannot be paired by an h-bond to a base that
is too close along the backbone, due to the rigidity of the backbone’s p-bonds. Thirdly, h-bonds may not cross. It means
that, if there is an h-bond pairing the bases i and j, and an h-bond pairing the bases k and m, then either i ¡ j¡k ¡m
or i ¡ k ¡m¡j. In biological terminology, this constraint prohibits pseudoknots. (Of course, the Nature employs the
pseudoknots freely, but we consider them as the elements of the molecule’s tertiary structure.)

Besides their importance in molecular biology, where secondary structures serve as the phenotypes in evolution experi-
ments in vitro, and where the folding of RNA molecules into structures is the simplest known case of a genotype–phenotype
mapping, secondary structures raise many mathematically interesting questions concerning their enumeration and prediction.
Some of these questions are treated in [4–6,9,10,13,14,16,18,20,21] We consider here mostly those that can be formulated
and answered in the framework of enumerative combinatorics.

The natural setting for the combinatorial modeling of secondary structures is graph theory. We represent the bases
by vertices and the bonds by edges of certain graphs. The stereo-chemical constraints translate quite naturally into the
graph-theoretical language. We refer the reader to [22] for all graph-theoretical terms not de:ned here.

A secondary structure of size n¿ 1 and rank l¿ 0 is a labeled non-oriented graph S on the vertex set V (S) = [n] =
{1; 2; : : : ; n} whose edge set E(S) consists of two disjoint subsets, P(S) and H (S), satisfying the following conditions:

(a) {i; i + 1} ∈P(S), for all 16 i6 n − 1;
(b) {i; j} ∈H (S) and {i; k} ∈H (S) ⇒ j = k;
(c) {i; j} ∈H (S) ⇒ |i − j|¿l;
(d) {i; j} ∈H (S); {k; m} ∈H (S) and i ¡ k ¡j ⇒ i ¡m¡j.

Obviously, the set P(S) contains the edges corresponding to the p-bonds of a molecule’s backbone. The set H (S), which
may be empty, contains the edges representing the h-bonds, and we will often use the term h-bond when referring to an
edge from H (S). Any two vertices connected by an edge from H (S) are called paired; if a vertex of S is not incident to
any edge from H (S), it is called unpaired. The cardinality of H (S) is the order of S, and the parameter l is the structure’s
rank.

An example of a secondary structure of size 12, rank 2, and order 3 is shown on Fig. 1. Note that every h-bond “leaps”
over at least two bases.

We denote the set of all secondary structures of size n and rank l by S(l)(n). The set of all such structures of order k
is denoted by S

(l)
k (n). The cardinalities of these sets will be denoted by S(l)(n) and S(l)

k (n), respectively. By de:nition,
we put S(l)(0) = 1, for all l.

There are many ways of representing secondary structures graphically. Three of them, the loop diagram, the chord
diagram, and the arc diagram, are shown in Fig. 2(a), (b), and (c), respectively. Some other representations are discussed
in [14]. One among them, the so-called “mountain representation” puts the secondary structures into the well-researched
context of lattice paths. Here we remind the reader on some basic families of lattice paths and their corresponding number
sequences.

A Dyck path of length 2n is a lattice path in the coordinate plane (x; y) from (0; 0) to (2n; 0) with steps (1; 1) (Up) and
(1;−1) (Down), never falling below the x-axis. We denote the set of all Dyck paths of length 2n by D(n). A peak of a
Dyck path is a consecutive Up–Down step pair. The set of all Dyck paths of length 2n with exactly k peaks (16 k6 n)
is denoted by Dk(n). It is well known that Dyck paths are enumerated by Catalan numbers, i.e. that |D(n)| = Cn, where
Cn = (1=(n+ 1))

( 2n
n

)
, see Exercise 6.19 of [17].
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Fig. 2. Three representations of secondary structures.
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Fig. 3. A secondary structure and the corresponding Motzkin path.

A Motzkin path of length n is a lattice path in (x; y) plane from (0; 0) to (n; 0) with steps (1; 1) (Up), (1;−1) (Down)
and (1; 0) (Level), never falling below the x-axis. We denote the set of all Motzkin paths of length n (i.e. with exactly
n steps) by M(n). The number Mn = |M(n)| is nth Motzkin number. By de:nition, M0 = 1. A plateau of length l is a
sequence of l consecutive Level steps, immediately preceded by an Up step, and immediately followed by a Down step.
Let us denote by M(l)(n) the set of all paths from M(n) whose every plateau is at least l steps long. For l= 0 we get
simply M(0)(n) =M(n).

The following folklore result has been used for enumeration purposes in [20,9].

Proposition 1.1. There is a bijection between M(l)(n) and S (l)(n), for all n¿ 1; l¿ 0.

A secondary structure from S (1)(10) and the corresponding Motzkin path from M(1)(10) are shown in Fig. 3.
Let us now examine the eFect of relaxation of our constraints by allowing the parameter l to be −1. Now we allow

an h-bond to terminate at the same base from which it begun, i.e. we allow loops. This situation is biologically highly
unrealistic, but the result emphasizes the intrinsic connection between secondary structures and other objects counted by
the Catalan–Motzkin family of sequences, and concurs with the appearance of the Catalan numbers in the title of [18].

Proposition 1.2. S(−1)(n) = Cn+1 for all n¿ 0.

Proof. We will exhibit a bijection between S (−1)(n) and D(n+1). Take a Dyck path on 2(n+1) steps. Discard the :rst
and the last step and divide the remaining steps in groups of pairs of consecutive steps. Assign to each pair a vertex in a
secondary structure according to the following rule. To a pair of two Up steps assign a vertex in which an h-bond starts;
to a pair of two Down steps assign a vertex in which an h-bond terminates; to a pair consisting of (Up;Down) pair we
assign a vertex with a loop attached to it, and to a pair (Down;Up) we assign an unpaired vertex. By de:nition of Dyck
paths, we get a valid secondary structure of rank −1, and the construction is obviously bijective.

An example of described correspondence is shown in Fig. 4. It is clear from the above construction that all the peaks
in a Dyck path that correspond to loops in a given secondary structure of rank −1 must have even altitudes. Since the
secondary structures without loops are counted by Motzkin numbers, we have the following result.

Corollary 1.3. The nth Motzkin number, Mn, counts the number of Dyck paths on 2n steps without peaks at even
altitudes.

Almost all our results in forthcoming sections can be extended also to the case l = −1. However, in all cases they
reduce to known facts about Catalan numbers. Hence, through the rest of this paper we assume l¿ 0.
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Fig. 4. The correspondence between secondary structures of rank −1 and Dyck paths.

2. Sequences S(l)(n)

2.1. Convolutions and generating functions

We start this section by stating some results needed for our investigations [5,18].
For a :xed integer l¿ 0 we have

S(l)(n+ 1) = S(l)(n) +
n−1∑
k=l

S(l)(k)S(l)(n − k − 1); n¿ l+ 1;

S(l)(0) = S(l)(1) = · · · = S(l)(l+ 1) = 1: (1)

Let Sl(x) =
∑

n¿0 S(l)(n)xn be the generating function of the sequence S(l)(n), n¿ 0. From (1) it follows easily that the
function Sl(x), l¿ 0, satis:es the functional equation

x2[Sl(x)]
2 + !l(x)Sl(x) + 1 = 0; (2)

where

!l(x) = x − 1 − x2 − x3 − · · · − xl+1 = 2x − (1 + x + x2 + · · · + xl+1) = x − 1 − x2
1 − xl

1 − x
:

The following explicit formula for Sl(x) will be useful for establishing the asymptotic behavior of numbers S(l)(n):

Sl(x) =
−!l(x) −√!2

l (x) − 4x2

2x2
=

1 − x + · · · + xl+1 −
√

(1 + x + · · · + xl+1)(1 + x + · · · + xl+1 − 4x)
2x2

: (3)

By dividing Eq. (3) for l + 1 by xSl+1(x) and using !l+1(x) = !l(x) − xl+2, we get the following simple recursion for
the generating function Sl(x), l¿ 0:

xSl+1(x) +
1

xSl+1(x)
= xSl(x) +

1
xSl(x)

+ xl+1:

The initial condition for this recurrence is

S0(x) =
1 − x − √

1 − 2x − 3x2

2x2
=M (x);

the generating function for Motzkin numbers Mn. By expanding the term
√
1 − 2x − 3x2 in M (x) via binomial series and

then taking the coeJcient of xn+2 on both sides of 1− x−√
1 − 2x − 3x2 =2x2M (x), after some manipulations we obtain

the following expression of Mn.

Proposition 2.1.

Mn =
(
3
2

)n+2 ∑
k¿1

1
3k

Ck−1

(
k

n+ 2 − k

)
; n¿ 0:

2.2. Asymptotic behavior of S(l)(n)

From the explicit form of the generating function (3) we can get the asymptotics for the numbers S(l)(n) from a version
of Darboux theorem [11].
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Table 1
Exact values of parameters �l

l �l

0 3

1
(
3 +

√
5
)
=2

2
√
2 + 1

3 3
4 + 1

12

[√
57 + 6w +

√
114 − 6w + 126

√
3=

√
19 + 2w

]
; w =

(
908 + 12

√
993

)1=3
+

(
908 − 12

√
993

)1=3

4 1
6

(
172 + 12

√
177

)1=3
+ 8

3

(
172 + 12

√
177

)−1=3
+ 2

3

5 1
6

(
188 + 12

√
93

)1=3
+ 14

3

(
188 + 12

√
93

)−1=3
+ 1

3

6 1
2 + 1

6

√
9 − 3u +

(√
3=6

) √
6 + u + 18=

√
9 − 3u; u =

(
54 + 6

√
129

)1=3
+

(
54 − 6

√
129

)1=3

Proposition 2.2.

S(l)(n) ∼ hl(rl)n−3=2

�(−1=2)rnl
;

where

hl(x) = −
√−!l(x) + 2x

√
wl(x)

2x2
;

wl(x) =
−!l(x) − 2x

1 − x=rl

and rl is the smallest positive root of the discriminant �l(x) = !2
l (x) − 4x2 = 0.

In other words, S(l)(n) ∼ (
hl(rl)=�

(− 1
2

))
n−3=2�n

l , where �l = 1=rl.
Let us investigate in more detail how r = rl depends on l.

�l(x) = !2
l (x) − 4x2 = (−!l(x) + 2x)(−!l(x) − 2x) = (1 + x + · · · + xl+1)(1 + x + · · · + xl+1 − 4x):

As the :rst factor is strictly positive for all positive x, rl must satisfy

1 + x + · · · + xl+1 = 4x:

This equation can be solved exactly for l= 0; 1; 2, and 3. The solutions for 0; 1; and 2 are r0 = 1
3 , r1 =

(
3 − √

5
)
=2, and

r2 =
√
2− 1, respectively. The solution r3 of the equation x4 + x3 + x2 − 3x+1= 0 can also be obtained in explicit form,

using Ferrari method.
It is also possible to obtain the exact solutions of the equation �l = 0 for the cases l = 4; 5, and 6. Observe that the

above equation can be written in the form

1 − xl+2

1 − x
= 4x

or, equivalently, xl+2 = (2x − 1)2. For even values of l we then get (xl=2+1 − 2x+ 1)(xl=2+1 + 2x − 1) = 0. The :rst factor
is positive on the interval

[
0; 12
]
, and the second factor changes its sign there, so rl must be a root of the second factor.

It is clear that this is the only root of xl=2+1 + 2x − 1 in this interval. The case l=4 gives an equation x3 = 1− 2x, which
we solve explicitly using the Cardano formula. In the case l=6, r6 is obtained by solving the equation x4 = 1− 2x using
Ferrari method. The case l = 5 does not :t into this pattern, but its discriminant factors in a nice way, thus enabling us
to get an exact value of r5, also.
The exact values of the parameters �l = 1=rl for 06 l6 6 are listed in Table 1. For the values of l¿ 7, the equation

xl=2+1 = 1 − 2x cannot be solved in radicals. However, using the generalized binomial series [3, p. 200], one can easily
obtain the following representation of rl.
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Proposition 2.3. Let rl be the smallest positive root of the equation xl=2+1 = 1 − 2x. Then

rl =
∑
j

1
2 + 2j + jl

(
1 + j + jl=2

j

)(
− 1
2l=2+1

)j

:

Proof. The generalized binomial series Bt(z) is de:ned for arbitrary complex values of t and z by

Bt(z) =
∑
k¿0

(tk)k−1 z
k

k!
:

Here xm denotes the falling factorial, xm = x(x− 1) · · · (x−m+1) [3, p. 47]. It is shown in [3, p. 363] that Bt(z) satis:es
the following identity:

zBt(z)
t =Bt(z) − 1:

The solution rl of the equation xl=2+1 = 1 − 2x must satisfy rl=2+1
l = 1 − 2rl. This can be rewritten as(

1
2l=2+1

)
(2rl)

l=2+1 = 1 − 2rl:

By multiplying this equation by −1, and by setting l=2 + 1 = t, −1=2l=2+1 = z, we obtain

z(2rl)
t = 2rl − 1:

Hence,

2rl =Bt(z) =Bl=2+1

(
− 1
2l=2+1

)
:

The claim of the proposition now follows by plugging the values of t and z into the formula

Bt(z) =
∑
j

(
jt + 1

j

)
z j

jt + 1
;

given on p. 363 of [3].

2.3. Short recursions

In the beginning of this section we stated convolutional recurrences for the secondary structure numbers. But the
generating functions of S(l)(n) are algebraic of degree 2 for each l¿ 0, and hence D-:nite [17, p. 190]. So, there must
exist short, non-convolutional recurrences for the numbers S(l)(n). More precisely, there are polynomials P0; P1; : : : ; Pe with
Pe �= 0 such that

Pe(n)S
(l)(n+ e) + · · · + P0(n)S

(l)(n) = 0; n∈N:

We start from the expression of (3), that is,

Sl(x) =
1
2x2

[
−!l(x) −

√
!2

l (x) − 4x2
]
:

Then we set

!2
l (x) − 4x2 = A(x) =

2l+2∑
k=0

akx
k ;

where

ak =




1; k = 0;

k − 3; 16 k6 l+ 1;

l − 3; k = l+ 2;

2l+ 3 − k; l+ 36 k6 2l+ 2:
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Now we set
∑

n¿0 f(n)x
n =

√
A(x), and use formula (6.38) in [17, p. 190]:

r∑
j=0

ar−j(dn+ dj − r + j)f(n+ j) = 0:

Substituting d= 2; r = 2l+ 2 in this formula, we get the following recursion for f(n):
2l+2∑
j=0

a2l+2−j(2n+ 3j − 2l − 2)f(n+ j) = 0:

After some manipulations, we obtain

(n+ 2l+ 2)f(n+ 2l+ 2) = (2n+ 4l+ 1)f(n+ 2l+ 1) + (n+ 2l − 1)f(n+ 2l)

−1
2


 2l−2∑

j=l+1

(2l − j − 1)(2n+ 3j − 2l − 2)f(n+ j) + (l − 3)(2n+ l − 2)f(n+ l)

+
l−1∑
j=0

(j + 1)(2n+ 3j − 2l − 2)f(n+ j)


 :

Taking now the coeJcient of xn+2 in

2x2Sl(x) + !l(x) = −
√

!2
l (x) − 4x2;

we get 2S(l)(n) = −f(n+ 2) and hence

(n+ 2)S(l)(n) = (2n+ 1)S(l)(n − 1) + (n − 1)S(l)(n − 2)

−1
2


 2l−2∑

j=l+1

(2l − j − 1)(2n − 6l+ 3j − 2)S(l)(n − 2l+ j − 2) + (l − 3)(2n − 3l − 2)S(l)(n − l − 2)

+
l−1∑
j=0

(j + 1)(2n − 6l+ 3j − 2)S(l)(n − 2l+ j − 2)


 :

Finally, we can express S(l)(n) in terms of S(l)(n − k); k = 1; : : : ; 2l+ 2.

Theorem 2.4.

(n+ 2)S(l)(n) =
2l+2∑
k=1

A(l)(n; k)S(l)(n − k);

where

A(l)(n; k) =




− 1
2 (k − 3)(2n+ 4 − 3k); 16 k6 l+ 1;

− 1
2 (l − 3)(2n − 3l − 2); k = l+ 2;

− 1
2 (2l+ 3 − k)(2n+ 4 − 3k); l+ 36 k6 2l+ 2

with the initial conditions S(l)(0) = S(l)(1) = · · · = S(l)(l+ 1) = 1, S(l)(l+ m) = 2m−1 for 26m6 l+ 1.

In particular, for l= 0; 1; and 2, we have:

Corollary 2.5.

Mn =
2n+ 1
n+ 2

Mn−1 +
3n − 3
n+ 2

Mn−2; n¿ 2;

M0 =M1 = 1;
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S(1)(n) =
2n+ 1
n+ 2

S(1)(n − 1) +
n − 1
n+ 2

S(1)(n − 2) +
2n − 5
n+ 2

S(1)(n − 3) − n − 4
n+ 2

S(1)(n − 4);

S(1)(0) = S(1)(1) = S(1)(2) = 1; S(1)(3) = 2;

S(2)(n) =
2n+ 1
n+ 2

S(2)(n − 1) +
n − 1
n+ 2

S(2)(n − 2) +
n − 4
n+ 2

S(2)(n − 4) − 2n − 11
n+ 2

S(2)(n − 5) − n − 7
n+ 2

S(2)(n − 6);

S(2)(0) = S(2)(1) = S(2)(2) = S(2)(3) = 1; S(2)(4) = 2; S(2)(5) = 4: (4)

2.4. Log-convexity results

We conclude this section by proving log-convexity of the sequences S(l)(n) for :xed l¿ 0. Recall that a sequence
an of positive numbers is called logarithmically convex, simply log-convex, if a2n6 an−1an+1, for all n. Equivalently,
a sequence an of positive numbers is log-convex if the sequence xn = an=an−1 is increasing.

The log-convexity of Motzkin numbers was proved in [1] algebraically, and recently in [2] purely combinatorially.
Unfortunately, none of these approaches is suitable for generalization to the cases l¿ 0. We present here a method based
on interlacing the sequence of quotients of successive elements of S(1)(n) with a suitably chosen increasing sequence [19].

Theorem 2.6. The sequence S(1)(n) is log-convex.

Proof. We start from the short recursion (4). Dividing this relation by S(1)(n−1), and denoting S(1)(n)=S(1)(n−1) by xn,
we obtain the following recursion for the numbers xn:

xn =
1

n+ 2

[
2n+ 1 +

n − 1
xn−1

+
2n − 5

xn−1xn−2
− n − 4

xn−1xn−2xn−3

]
; n¿ 4

with initial conditions x1 = x2 = 1; x3 = 2.
De:ne now a sequence an=(2n=(2n+3))%2, where %=

(
1 +

√
5
)
=2 is the golden ratio. Note that %2=�1=

(
3 +

√
5
)
=2,

the constant from the asymptotics of the sequence S(1)(n). The sequence an is obviously increasing, and its limit is %2.
We claim that this sequence is interlaced with our sequence xn, i.e. that an6 xn6 an+1, starting from n= 6.

We will prove, by induction, that (n + 2)an6 (n + 2)xn6 (n + 2)an+1 for n¿ 6. First, we check directly the cases
n= 6; 7; 8 and 9. Now, take n¿ 9. From the induction hypothesis, we have

(n+ 2)xn¿ 2n+ 1 +
n − 1
an

+
n − 1
anan−1

+ (n − 4)
an−3 − 1

anan−1an−2
:

We would like the right-hand side to be at least (n+ 2)an. But this is equivalent to

(2n+ 1)anan−1an−2 + (n − 1)an−1(an−2 + 1) + (n − 4)(an−3 + 1) − (n+ 2)a2nan−1an−2¿ 0:

Plugging in the formulae for an’s, we get
12
(
5 +

√
5
)
n4 − 2

(
241 + 121

√
5
)
n3 + 2

(
847 + 382

√
5
)
n2 − 3

(
341 + 146

√
5
)
n+ 126 + 54

√
5

(2n − 3)(2n − 1)(2n+ 1)(2n+ 3)2
¿ 0:

The denominator is positive for all integers n¿ 2. Now take the numerator, denote it by L(n) and shift its argument by 6.
The polynomial L(n + 6) has only positive coeJcients, so it cannot have a positive root. From there follows that L(n)
cannot have a root '¿ 6. So the above inequality is valid for all n¿ 6, and hence xn¿ an.

To prove the other inequality, note that the induction hypothesis implies

(n+ 2)xn6 2n+ 1 +
n − 1
an−1

+
n − 1

an−1an−2
+ (n − 4)

an−2 − 1
an−1an−2an−3

:

The condition that the right-hand side of this inequality does not exceed (n+ 2)an+1 is equivalent to

(2n+ 1)an−1an−2an−3 + (n − 1)an−3(an−2 + 1) + (n − 4)(an−2 − 1) − (n+ 2)an+1an−1an−2an−36 0:

Plugging in the formulae for an’s, we get

−3

(
82 + 42

√
5
)
n3 − (572 + 248

√
5
)
n2 +

(
1103 + 474

√
5
)
n − (529 + 247

√
5
)

(2n − 3)(2n − 1)(2n+ 1)(2n+ 5)
6 0:

If we put n + 5 instead of n in the numerator, we get a polynomial with all the coeJcients positive, and from this
we conclude that the numerator does not change the sign for n¿ 6. So, we have proved the inequality xn6 an+1, and
completed the induction step. This proves the theorem.
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Corollary 2.7. The sequence xn = S(1)(n)=S(1)(n − 1) is strictly increasing for all n¿ 5. The sequence is bounded from
above by %2 and xn → %2 =

(
3 +

√
5
)
=2 as n → ∞.

The similar approach will give us the log-convexity of the secondary structure numbers for values l = 2; 3 and 4, but
the details become more and more complicated. Hence, we only state the following result.

Theorem 2.8. The sequences S(l)(n) are log-convex, for l= 2; 3 and 4.

Remark 1. An indication that S(l)(n), n¿ 0 is (at least asymptotically) log-convex for any l is as follows. Let x(l)n =
S(l)(n)=S(l)(n − 1). From the remark after Proposition 2.2, it follows that the ratio S(l)(n)=S(l)(n − 1) is of the form

x(l)n ∼ �l

(
1 − 1

n

)3=2

and this increasingly tends to �l. In other words, x(l)n asymptotically behaves as an increasing sequence tending to �l as
n → ∞.

3. The numbers S(l)
k (n)

We have so far examined how the number of secondary structures for RNA molecules depends on the size n and the
rank l. Let us now consider the role of the parameter de:ning its order, i.e. the number of its h-bonds.

The Narayana numbers N (n; k) are de:ned for integers n; k¿ 1 by

N (n; k) =
1
n

(
n

k

)(
n

k − 1

)
=

1
k

(
n

k − 1

)(
n − 1

k − 1

)

with the initial value N (0; 0) := 1 and the boundary values N (n; 0) = 0; N (n; 1) = 1 for n¿ 1 [8].
A combinatorial proof that the Narayana numbers N (n; k) enumerate Dyck paths on 2n steps with exactly k peaks and

thus decompose the Catalan numbers, i.e. that Cn=
∑

k¿0 N (n; k) is given in the solution of Exercise 6.36 on p. 272
of [17].

3.1. Explicit formulae

The following theorem states our main result in this section. We assume that
( r
k

)
= 0 for any r ¡ 0.

Theorem 3.1. Let n and k be positive integers. Then

S(l)
k (n) =

k∑
p=1

N (k; p)

(
n − lp

2k

)
(5)

for all l¿ 0. For k = 0, we have S(l)
0 (n) = 1, for all n∈N and for all l¿ 0.

Proof. We employ the lattice-path representation of secondary structures. Consider a Dyck path P on 2k steps with exactly
p peaks. There are N (k; p) such paths. By inserting l horizontal steps between every two steps forming a peak, we get
a path P′ in M(l)(2k + lp), the set of all Motzkin paths on 2k + lp steps with plateaus of length at least l. There are
exactly N (k; p) such paths. Now take additional m horizontal steps and distribute them at will in the path P′. From every
path P′ ∈M(l)(2k + lp) we can get

( 2k+m
m

)
paths in M(l)(2k + lp+m). Denoting the total number of steps by n, we get

N (k; p)
( n−lp

2k

)
as the number of paths from M(l)(n) which have exactly p plateaus. Summing over all p’s from 1 to k,

we get the number of paths in M(l)(n) having k ascends and having plateaus of length at least l. By recalling the folklore
correspondence between such Motzkin paths and secondary structures of rank l (Proposition 1.1), we get the claim of the
theorem.

For n= 0, we put S(l)
0 (0) = 1.

In the special case l= 0, we get S(0)
k (n) = Ck

( n
2k

)
for all n; k¿ 0, and hence, as a corollary, the well-known relation

Mn = S(0)(n) =
∑
k¿0

S(0)
k (n) =

∑
k¿0

Ck

(
n

2k

)
:
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Using this explicit formula, it is easy to prove the following result.

Corollary 3.2. The sequence (S(0)
k (n))n=2k=0 is log-concave and hence unimodal in k. The maximum value is attained for

two consecutive values of k if n ≡ 2mod 3, and is unique otherwise.

When l= 1, we can express the sum in (9) in a closed form. We present here a combinatorial proof.

Proposition 3.3. S(1)
k (n) = N (n − k; k + 1) for all n; k¿ 0.

Proof. We construct a bijection ’n; k : S
(1)

k (n) → Dn−2k(n − k). Take a secondary structure S from S
(1)

k (n). There are
n−2k unpaired vertices in S. Starting from the vertex 1 and proceeding to the vertex n construct a lattice path with steps
Up and Down as follows. If the vertex under consideration is a beginning vertex of an h-bond, add an Up step to the
already constructed part of the path. If an h-bond ends in the considered vertex, add a Down step. Finally, if the vertex
is unpaired, add a pair of steps (Up, Down) forming a peak. Obviously, the number of peaks will be equal to the number
of unpaired vertices, and the total number of steps will be 2(n − 2k) + 2k = 2(n − k). It is also clear that the path will
never fall below the x-axis. So, we have constructed a path in Dn−2k(n − k), and the construction is obviously bijective.
The claim now follows by using the symmetry of Narayana numbers, N (n; k) = N (n; n+ 1 − k).

Another combinatorial proof of this formula, based on the correspondence between secondary structures and linear trees,
was given in [13].

As another consequence of Theorem 3.1 we have:

Corollary 3.4.

N (n; k) =
∑
j¿1

N (k − 1; j)

(
n+ k − j − 1

2k − 2

)
:

3.2. Log-concavity results

We :rst examine the log-concavity behavior of S(1)
k (n) for a :xed n.

Theorem 3.5. The sequence S(1)
k (n) is log-concave (and hence unimodal) in k for any <xed n¿ 0. Moreover, for n¿ 3,

the maximal value is attained for unique k.

Proof. The log-concavity of this sequence is easy. Namely, the condition (S(1)
k (n))2¿ S(1)

k−1(n)S
(1)
k+1(n) is equivalent to

(k + 2)(n − k − 1)(n − 2k + 1)2(n − 2k + 2)¿ k(n − k + 1)(n − 2k − 1)2(n − 2k − 2);

which, in turn, follows from (k + 2)(n − k − 1)¿ k(n − k + 1), for n¿ 2k + 1.
The log concavity implies that the maximal value can be attained for at most two consecutive values of k. To show

that the maximum is attained for a unique k, we begin by considering the quotient

S(1)
k (n)

S(1)
k−1(n)

=
(n − 2k)(n − 2k + 1)2(n − 2k + 2)

(n − k + 1)(n − k)(k + 1)k
:

Put a := n − 2k + 1. We claim that for all positive integers a; k, with a¿ 3, the quotient

(a − 1)a2(a+ 1)
(a+ k)(a+ k − 1)k(k + 1)

(6)

is never equal to 1. Assume the contrary, i.e. that it is equal to 1. Then

k4 + 2ak3 + (a2 + a − 1)k2 + (a2 − a)k + a2 − a4 = 0 (7)

or equivalently

a4 = a2(k2 + k + 1) + ak(2k2 + k − 1) + k2(k2 − 1): (8)

Multiplying both sides of (8) by 64 and rearranging it, we get

64a4 = (8ak + 8k2 + 4a)2 + 48a2 − 64ak − 64k2
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or equivalently

(8a2 − 3)2 = (8ak + 8k2 + 4a)2 + 9 − 64ak − 64k2 ¡ (8ak + 8k2 + 4a)2: (9)

Thus,

(8a2 − 3)26 (8ak + 8k2 + 4a − 1)2:

On the other hand,

(8a2 − 3)2 = (8ak + 8k2 + 4a − 4)2 + 9 − 64ak − 64k2 + 64ak + 64k2 + 32a − 16

= (8ak + 8k2 + 4a − 4)2 + 32a − 7¿ (8ak + 8k2 + 4a − 4)2:

So, the set of all possible values of the term 8a2 − 3 has only three elements, 8ak + 8k2 + 4a − 3; 8ak + 8k2 + 4a − 2
and 8ak + 8k2 + 4a − 1. We can exclude the middle one since it is even and 8a2 − 3 is odd. Let us examine the two
remaining possibilities. The equality 8a2 − 3 = 8ak + 8k2 + 4a − 1 implies that 4a2 − 1 = 4ak + 4k2 + 2a, but this is
impossible because of parity. The only remaining possibility is 8a2 − 3 = 8ak + 8k2 + 4a − 3. Hence

2a2 = 2ak + 2k2 + a: (10)

The left-hand side of (9) can be written in the form

(8a2 − 3)2 = (8ak + 8k2 + 4a − 3)2 + 9 − 64ak − 64k2 + 48ak + 48k2 + 24a − 9:

Hence,

3a= 2ak + 2k2:

Plugging this into (10), we get 2a2 = 3a + a, and then a = 2; k = 1. So, there are no other solutions of Eq. (7) in the
positive integers.

Corollary 3.6. The only solutions (x; y) in positive integers of the equation(
x

2

)(
x + 1

2

)
=

(
y

2

)(
y − x + 1

2

)

are (1; 1) and (2; 3).

Proof. The claim follows by expressing (6) via binomial coeJcients and equating this expression to one.

Next we examine, asymptotically, the position of the maximum value of S(1)
k (n). Let kn be the value of k for which

the maximal value of S(1)
k (n) is attained, i.e.

S(1)
kn
(n) = max

k
{S(1)

k (n)}

for a :xed n.

Proposition 3.7.

lim
n→∞

kn
n

=
5 − √

5
10

:

Proof. It is enough to :nd the value of k which maximizes the binomial coeJcient
( n−k

k

)
, because

S(1)
k (n) =

1
k + 1

n − 2k
n − k

(
n − k

k

)2

and the term (1=(k +1))((n− 2k)=(n− k)) can aFect the location of the maximum by at most a constant term. The value
of k maximizing the term

( n−k
k

)
is easily found to be

kn = 1
10

(
5n+ 7 −

√
5n2 + 10n+ 9

)
and the claim follows.
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For higher-rank secondary structures, i.e. for l¿ 1, no closed form for the numbers S(l)
k (n) exists, but we can still

establish their log-concavity in k. First, we need the two following lemmas.

Lemma 3.8. Let (ai); (bi) and (ci) be positive, log-concave sequences, i = 0; 1; : : : ; n. Then

(i) the sequence (aibi)ni=0 is log-concave;
(ii) the sequence (Ci)ni=0, where Ck =

∑k
i=0 ci, is log-concave.

Lemma 3.9. Let (an)n¿0 be a positive log-concave sequence of real numbers. Then any subsequence of (an) whose
indices form an arithmetic progression is a log-concave sequence.

Proof. Let (bm)m¿0 be such a subsequence of a positive log-concave sequence (an)n¿0. Then from bm=an follows bm+1=
an+k , for some :xed positive integer k and all m; n¿ 0. But the log-concavity of an is equivalent with an=an−1¿ an+1=an.
Iterating this and multiplying all inequalities an−i+1=an−i¿ an+i=an+i−1, i= 1; : : : ; k, we get an=an−k ¿ an+k =an, and this is
precisely the condition of log-concavity of the sequence bm.

Corollary 3.10. The sequence
( n−lj

2k

)
is log-concave in j for all l¿ 0.

Proof. The claim follows from the log-concavity of a column of the Pascal triangle and the previous lemma.

Now we can prove the log-concavity of S(l)
k (n) in k for all l¿ 0.

Theorem 3.11. The sequence S(l)
k (n) is log-concave in k for all n¿ 0 and l¿ 0.

Proof. For the case l=0 the claim follows by straightforward computation. The case l=1 has been proven in Theorem 3.5,
and for l¿ 1 the claim follows by applying Lemma 3.8 to the sequences aj = N (k; j); bj =

( n−lj
2k

)
and cj = ajbj .

3.3. Hypergeometric representations

Although no simple closed form expression for S(l)
k (n) exists for l¿ 2, we can obtain a representation of S(l)

k (n) in
terms of hypergeometric functions.

Theorem 3.12. For all n; l¿ 0, 06 k6 �(n − l)=2�, we have

S(l)
k (n) =

(
n − l

2k

)
l+2Fl+1

(
1 − k;−k; p̃l

2; q̃l

∣∣∣∣∣ 1
)

;

where

(̃ql)i =
l − n+ i − 1

l
; (p̃l)i = (̃ql)i +

2k
l
; i = 1; : : : ; l:

Proof. The claim follows by considering the quotients of successive terms in the sum
∑k

p=1 N (k; p)
( n−lp

2k

)
and reading

oF the parameters of hypergeometric series.

For l= 0, we get

S(0)
k (n) =

(
n

2k

)
2F1

(
1 − k;−k

2

∣∣∣∣∣ 1
)

and then

2F1

(
1 − k;−k

2

∣∣∣∣∣ 1
)

= Ck

for k¿ 0. From there we get a representation of Motzkin numbers in terms of hypergeometric functions.
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Proposition 3.13.

Mn = 2F1

( 1−n
2 ;− n

2

2

∣∣∣∣∣ 4
)

for n¿ 0.

Proof. We start from the equality Mn=
∑

k¿0 S(0)
k (n). Plugging in the explicit values for S(0)

k (n), considering the quotients
of successive terms and reading oF the parameters of the corresponding hypergeometric function yields the formula.

By repeating the same procedure with the explicit formulae for S(1)
k (n), we get the following result.

Proposition 3.14.

S(1)(n) = 4F3

(
1 − n

2 ;
1
2 − n

2 ;
1
2 − n

2 ;− n
2

2;−n;−n+ 1

∣∣∣∣∣ 16
)

:

The explicit formula from Proposition 3.3 can be easily obtained from this result via the SaalschTutz identity.
Note now that the elements of the parameter vectors p̃l and q̃l diFer by a constant value, 2k=l. For the values l = 1

and 2 this diFerence will be an integer, 2k and k, respectively. We can use this to reduce the number of parameters in
our hypergeometric functions.

Proposition 3.15.

3F2

(
1 − k;−k; 1 − n+ 2k

2; 1 − n

∣∣∣∣∣ z
)

=
zn

(1 − n)2k
d2k

dz2k

[
z2k−n

2F1

(
1 − k;−k

2

∣∣∣∣∣ z
)]

;

4F3

(
1 − k;−k; 1 − n

2 + k; 32 − n
2 + k

2; 1 − n
2 ;

3
2 − n

2

∣∣∣∣∣ z
)

=
zn=2

(1 − n=2)Uk
(
3
2 − n=2

)Uk dk

dzk

[
zk−1=2 dk

dzk

[
zk+(1−n)=2

2F1

(
1 − k;−k

2

∣∣∣∣∣ z
)]]

:

Here xm denotes the rising factorial, xm = x(x + 1) : : : (x + m − 1) [3, p. 48].

Proof. The :rst result follows by applying formula (5) from [7, p. 169]. The second result follows by using the same
formula twice.

Proposition 3.16.

2F1

(
1 − k;−k

2

∣∣∣∣∣ z
)

=
2(1 − z)k−1

k(k + 1)
d
dz′ Pk(z

′);

where Pk is the kth Legendre polynomial, and z′ = (1 + z)=(1 − z).

Proof. First apply formula (9) in [7, p. 273]

dj

dzj

[
(1 − z)a+j−1

2F1

(
a; b

c

∣∣∣∣∣ z
)]

= (−1) j a
Uj(c − b) Uj

c Uj
(1 − z)a−1

2F1

(
a+ j; b

c + j

∣∣∣∣∣ z
)

with a= b= −k, c = 1 and j = 1 to get

2F1

(
1 − k;−k

2

∣∣∣∣∣ z
)

=
(1 − z)k+1

k(k + 1)
d
dz

[
(1 − z)−k

2F1

( −k;−k

1

∣∣∣∣∣ z
)]
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and then use the fact that

2F1

( −k;−k

1

∣∣∣∣∣ z
)

= (1 − z)kPk

(
1 + z
1 − z

)
[12; p: 466]:

Now we can express S(1)
k (n) and S(2)

k (n) in terms of Legendre polynomials.

Proposition 3.17. For all n¿ 0, k6 �(n − l)=2�, l= 1; 2, we have

S(1)
k (n) =

1
P′

k(1)(2k)!
d2k

dz2k

[
z2k−n(1 − z)k−1P′

k

(
1 + z
1 − z

)]∣∣∣∣
z=1

and

S(2)
k (n) =

22k

P′
k(1)(2k)!

dk

dzk

[
zk−

1
2
dk

dzk

[
zk+(1−n)=2(1 − z)k−1P′

k

(
1 + z
1 − z

)]]∣∣∣∣
z=1

:

Proof. The claim follows by combining Propositions 3.15 and 3.16.

3.4. Bivariate generating functions

The bivariate generating function of numbers S(0)
k (n) has been implicitly stated and studied in [9], and its generalization

to the case l¿ 0 is discussed in [10]. We derive it here explicitly, starting from the bivariate generating function for
Narayana numbers [17, p. 238],

N (x; t) =
∑
n;k¿1

N (n; k)xntk =
1
2x

[
1 − x − xt −

√
(1 − x − xt)2 − 4x2t

]
:

Let us denote by S̃l(x; y) the bivariate generating function for the numbers S(l)
k (n), n; k¿ 1.

S̃l(x; y) =
∑
n;k¿1

S(l)
k (n)xnyk =

∑
n;k;p¿1

N (k; p)

(
n − lp

2k

)
xnyk

=
∑
k;p¿1

N (k; p)yk
∑
n¿1

(
n − lp

2k

)
xn =

∑
k;p¿1

N (k; p)yk x2k+lp

(1 − x)2k+1

=
1

1 − x

∑
k;p¿1

N (k; p)
[

x2y
(1 − x)2

]k
[xl]p =

1
1 − x

N (u; v);

where u= x2y=(1 − x)2; v = xl.
In order to get the bivariate generating function for all S(l)

k (n), we add the generating function of the zeroth column,
Sl;0(x) =

∑
n¿0 S

(l)
0 (n)xn =

∑
n¿0 x

n = 1=(1 − x).

Theorem 3.18. The bivariate generating function of numbers S(l)
k (n) is given by

Sl(x; y) =
1

2x2y

[
1l(x; y) −

√
12

l (x; y) − 4x2y
]
;

where

1l(x; y) = (1 − x)(1 − y) − y!l(x);

!l(x) = x − 1 − x2
1 − xl

1 − x
:
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Let El(n) be the expected number of h-bonds in a secondary structure of size n and rank l. We can express El(n) in
terms of the bivariate generating function in the following way [15]:

El(n) =
[xn](@Sl(x; y)=@y)|y=1

[xn]Sl(x; y)|y=1
: (11)

Starting from formula (11) and using Darboux’s theorem, one can derive the following result.

Theorem 3.19. Let El(n) be the expected number of h-bonds in a secondary structure of size n and rank l. Then,
for n → ∞

El(n) ∼ fl(rl)n;

where

fl(x) = 2
(x − 1)!l(x) − 2x2

(−!l(x) + 2x)wl(x)
;

wl(x) =
−!l(x) − 2x

1 − x=rl
;

!l(x) = x − 1 − x2
1 − xl

1 − x

and rl is the smallest positive root of the equation −!l(x)−2x=0, i.e. the positive root of the equation xl=2+1+2x−1=0.

Corollary 3.20.

E0(n) ∼ n
3
;

E1(n) ∼ 5 − √
5

10
n;

E2(n) ∼ n
4
:

Although the result for the case l= 0 is not very interesting in the context of secondary structures, we can rephrase it
in terms of Motzkin paths.

Corollary 3.21. The average number of Up steps in a Motzkin path of length n behaves as n=3 when n → ∞.

For the higher values of l, the expressions fl(rl) become very complicated. The approximative values for l=3; 4, and
5 are 0.236738, 0.23036, and 0.227971, respectively.
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