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In this paper, we study a strongly coupled reaction–diffusion system describing three
interacting species in a food chain model, where the third species preys on the second one
and simultaneously the second species preys on the first one. We first show that the unique
positive equilibrium solution is globally asymptotically stable for the corresponding ODE
system. The positive equilibrium solution remains linearly stable for the reaction–diffusion
system without cross-diffusion, hence it does not belong to the classical Turing instability
scheme. We further proved that the positive equilibrium solution is globally asymptotically
stable for the reaction–diffusion system without cross-diffusion by constructing a Lyapunov
function. But it becomes linearly unstable only when cross-diffusion also plays a role in the
reaction–diffusion system, hence the instability is driven solely from the effect of cross-
diffusion. Our results also exhibit some interesting combining effects of cross-diffusion,
intra-species competitions and inter-species interactions.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Denote by u1, u2 and u3 the population densities of three interacting species. Let u = (u1, u2, u3)
T , K(u) = (Kij(u))3×3.

The strongly coupled reaction–diffusion system describing three interacting species can be written as

ut = �
[
K(u)

] + G(u). (1)

The authors of [21] studied the system for K(u) = diag(d1 + k
ε+u2

2
,d2,d3)u and

G(u) =
(

u1

(
−1 + u2u3

u1 + u2

)
, u2

(
−α + βu1u3

u1 + u2

)
, u3

(
r − u3 − (1 + β)u1u2

u1 + u2

))
.

Then the system of Eqs. (1) is a strongly coupled system of partial differential equations which models the dynamics of
a two-predator–one-prey ecosystem in which the prey exercises a defense switching mechanism and the predators col-
laboratively take advantage of the prey’s strategy. They demonstrated the emergence of stationary patterns due to the
cross-diffusion that arises naturally in the model. They proved that the system (1) has no non-constant positive steady
states if k = 0 (without cross-diffusion) and it possesses non-constant steady states with appropriate conditions and large
k. In [25], the author studied an elliptic system which models the dynamics of a two-preys–one-predator ecosystem and he
showed that the cross-diffusions can create the stationary patterns where cross-diffusions are included in such a way that
the predator chases the prey and the prey runs away from the predator. In this paper, we study the ecosystem which models
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the dynamics of simple food chain in three species, i.e., the third species preys on the second one and simultaneously the
second species preys on the first one.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1t = �
[
(k11 + k12u2)u1

] + u1(d1 − b11u1 − b12u2),

u2t = �
[
(k21u1 + k22 + k23u3)u2

] + u2(d2 + b21u1 − b22u2 − b23u3),

u3t = �
[
(k32u2 + k33)u3

] + u3(d3 + b32u2 − b33u3) in Ω × (0,∞),

∂u1

∂n
= ∂u2

∂n
= ∂u3

∂n
= 0 on ∂Ω × (0,∞),

ui(x,0) = ui0(x) in Ω for i = 1,2,3,

(2)

where n is the unit outward normal to ∂Ω . kij , bij , di , 1 � i, j � 3 are all positive constants. di denotes the intrinsic growth
rate of i-th species. kii is the diffusion rate of i-th species and kij (i �= j) is the cross-diffusion rate of i-th species due
to the pressure of the presence of j-th species. biis are for intra-species competitions and bij (i �= j) are for inter-species
interactions (see Murray [19] and Okubo [20] for a detailed discussion on biological models). Here k13 and k31 are missing
in (2), which means that we do not care the “cross-diffusion” between third and first species in the simple food chain.

The role of diffusion and cross-diffusion in the modeling of many physical, chemical and biological processes has been
extensively studied. A pure diffusion process usually leads to a stabilizing effect so that the system tends to a constant
equilibrium state. However the combined effect of diffusion and chemical reaction may result in destabilizing the constant
equilibrium. In 1952, Alan Turing published a paper “The chemical basis of morphogenesis” [24] which is now regarded as
the foundation of basic chemical theory or reaction–diffusion theory of morphogenesis. Turing suggested that, under certain
conditions, chemicals can react and diffuse in such a way as to produce non-constant equilibrium solutions, which represent
spatial patterns of chemical or morphogen concentration.

Turing’s idea is a simple but profound one. He considered a reaction–diffusion system{
ut = Du�u + f (u, v), t > 0,

vt = D v�v + g(u, v), t > 0,
(3)

and its corresponding kinetic equation{
u′ = f (u, v), t > 0,

v ′ = g(u, v), t > 0.
(4)

He said that if, in the absence of the diffusion (considering (4)), u and v tend to a linearly stable uniform steady state, then,
with the presence of diffusion and under certain conditions, the uniform steady state can become unstable, and spatially
inhomogeneous patterns can evolve through bifurcations. In other words, a constant equilibrium can be asymptotically
stable with respect to (4), but it is unstable with respect to (3). Therefore this constant equilibrium solution becomes
unstable because of the diffusion, which is called a diffusion-driven instability.

In [23], the authors presented a general instability analysis on cross-diffusion system with two species. They showed that
cross-diffusion can destabilize a uniform equilibrium which is stable for the kinetic and self-diffusion–reaction systems; on
the other hand, cross-diffusion can also stabilize a uniform equilibrium which is stable for the kinetic system but unstable
for the self-diffusion–reaction system. Zeng [29] studied a prey–predator system with the Holling type-I functional response
involving cross-diffusions. The author conducted Turing instability analysis and established the existence and non-existence
of its non-constant positive solutions. Fu, Wen and Cui [7] established the existence and the uniform boundedness of global
solutions for a similar strongly coupled three species food chain model with cross-diffusion by using the energy estimate
and Gagliardo–Nirenberg-type inequalities.

Over the years, Turing’s idea has attracted the attention of a great number of investigators and was successfully devel-
oped on the theoretical backgrounds. Not only it has been studied in biological and chemical fields, some investigations
range as far as economics, semiconductor physics, and star formation. These include the predator–prey model [1–12,15–17,
22,25–28], the vegetation pattern formation [13,14,23], the chemotactic diffusion model [18,26] and the references therein.

The main purpose of this paper is to give an interesting example of the Turing instability which is driven solely from
the effect of cross-diffusion. In Section 2 we first show that the unique positive equilibrium of (2) is globally asymptotically
stable for the ODE system (5). In Section 3 we show that the positive equilibrium remains linearly stable in the presence
of self-diffusion without cross-diffusion. It becomes linearly unstable with the inclusion of some appropriate cross-diffusion
influences. The Turing instability occurs only when the cross-diffusion rate k21 and k32 are large.

Remark 1.1. Since our main attention in this paper is to discuss the non-constant positive solutions of (2), we shall not
discuss the well-posedness of the initial and boundary value problem of the corresponding time-dependent PDE system.

2. Stability of the positive equilibrium solution of the ODE system

In this section, we consider the ODE system associated with (2):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1

dt
= u1 g1(u1, u2) := u1(d1 − b11u1 − b12u2),

du2

dt
= u2 g2(u1, u2, u3) := u2(d2 + b21u1 − b22u2 − b23u3),

du3

dt
= u3 g3(u2, u3) := u3(d3 + b32u2 − b33u3),

ui(0) = ui0 in Ω for i = 1,2,3.

(5)

Let u = (u1, u2, u3)
T be a positive solution of (5), i.e. ui > 0, i = 1,2,3. It is easy to know that the ODE system (5) has

a unique positive equilibrium if{
b32d1b23 + d1b22b33 + b12d3b23 > b12b33d2,

b33b11d2 + b33b21d1 > d3b11b23.
(6)

Denote by ū = (ū1, ū2, ū3)
T the unique positive equilibrium. Then ū is given by

ū1 = m1

M
, ū2 = m2

M
, ū3 = m3

M
, (7)

where

m1 = b32d1b23 + d1b22b33 + b12d3b23 − b12b33d2,

m2 = b33b11d2 + b33b21d1 − d3b11b23,

m3 = b11b32d2 + b21b12d3 + b11b22d3 + b21b32d1,

M = b11b32b23 + b11b22b33 + b21b12b33. (8)

Remark 2.1. We give two examples at the end of the paper, for which the conditions (6) are satisfied. Each of them gives
a unique positive equilibrium.

Theorem 2.2. The unique positive equilibrium ū given by (7) is globally asymptotically stable for the ODE system (5).

Proof. We are going to construct a Lyapunov function for the system (5) to prove the theorem. Define

V
(
u(t)

) =
(

u1 − ū1 − ū1 ln
u1

ū1

)

+ p

(
u2 − ū2 − ū2 ln

u2

ū2

)
+ q

(
u3 − ū3 − ū3 ln

u3

ū3

)
, (9)

where

p = b12/b21, q = b12b23

b21b32
.

Then V (ū) = 0, V (u) > 0 if u �= ū. By using (5), we compute

dV

dt
=

(
1 − ū1

u1

)
u′

1 + p

(
1 − ū2

u2

)
u′

2 + q

(
1 − ū3

u3

)
u′

3

= (u1 − ū1)g1(u1, u2) + p(u2 − ū2)g2(u1, u2, u3) + q(u3 − ū3)g3(u2, u3).

Note that g1(ū1, ū2) = 0, i.e. d1 = b11ū1 + b12ū2 and similarly for g2 and g3. Then we have

dV

dt
= (u1 − ū1)

(−b11(u1 − ū1) − b12(u2 − ū2)
)

+ p(u2 − ū2)
(
b21(u1 − ū1) − b22(u2 − ū2) − b23(u3 − ū3)

)
+ q(u3 − ū3)

(
b32(u2 − ū2) − b33(u3 − ū3)

)
= −(

b11(u1 − ū1)
2 + (b12 − pb21)(u1 − ū1)(u2 − ū2) + pb22(u2 − ū2)

2

+ (pb23 − qb32)(u2 − ū2)(u3 − ū3) + qb33(u3 − ū3)
2)

= −
(

b11(u1 − ū1)
2 + b12b22

b21
(u2 − ū2)

2 + b12b23b33

b21b32
(u3 − ū3)

2
)

� −σ
(
(u1 − ū1)

2 + (u2 − ū2)
2 + (u3 − ū3)

2),



542 Z. Xie / J. Math. Anal. Appl. 388 (2012) 539–547
where σ = min{b11,
b12b22

b21
,

b12b23b33
b21b32

} > 0. Then

dV

dt
< 0 for all u �= ū.

By the Lyapunov–LaSalle invariance principle [8], ū is globally asymptotically stable for the ODE system (5). �
Theorem 2.3. Suppose that ki j = 0 for i �= j. The unique positive equilibrium ū given by (7) is globally asymptotically stable for the
reaction–diffusion system (2) without cross-diffusion.

Proof. To study the global behavior of system (2), we introduce the following Lyapunov functional

W (t) =
∫
Ω

V
(
u(x, t)

)
dx, (10)

where V (u(x, t)) is given by (9). More methods of constructing Lyapunov function can be found in Hsu’s paper [10]. By
direct computation, we have

dW

dt
=

∫
Ω

gradu V · ∂u

∂t
dx

=
∫
Ω

(
1 − ū1

u1
, p

(
1 − ū2

u2

)
,q

(
1 − ū3

u3

))
· (k11�u1 + u1 g1,k22�u2 + u2 g2,k33�u3 + u3 g3)dx

=
∫
Ω

(
k11

(
1 − ū1

u1

)
�u1

)
dx +

∫
Ω

p

(
k22

(
1 − ū2

u2

)
�u2

)
dx +

∫
Ω

q

(
k33

(
1 − ū3

u3

)
�u3

)
dx +

∫
Ω

dV

dt
dx.

From Green’s identity, it follows that∫
Ω

(
kii

(
1 − ūi

ui

)
�ui

)
dx =

∫
∂Ω

kii

(
1 − ūi

ui

)
∂ui

∂n
dS −

∫
Ω

kii∇x

(
1 − ūi

ui

)
· ∇xui dx

= −
∫
Ω

kii ūiu
−2
i |∇xui|2 dx � 0.

Since dV
dt � 0,

∫
Ω

dV
dt dx � 0. Thus,

dW

dt
< 0 for all u �= ū.

By the Lyapunov–LaSalle invariance principle [8], ū is globally asymptotically stable for the reaction–diffusion system (2)
without cross-diffusion. �
3. Turing instability without or with cross-diffusion

For simplicity we denote

K(u) =
(

(k11 + k12u2)u1
(k21u1 + k22 + k23u3)u2

(k32u2 + k33)u3

)
,

G(u) =
( u1(d1 − b11u1 − b12u2)

u2(d2 + b21u1 − b22u2 − b23u3)

u3(d3 + b32u2 − b33u3)

)
.

Then the reaction–diffusion system (2) can be rewritten in matrix notation as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
= �K(u) + G(u) in Ω × (0,∞),

∂u

∂n
= 0 on ∂Ω × (0,∞),

u(x,0) = (
u (x), u (x), u (x)

)T
in Ω.

(11)
10 20 30
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Linearizing the reaction–diffusion system (11) about the positive equilibrium ū = (ū1, ū2, ū3), we have

∂Ψ

∂t
= Ku(ū)�Ψ + Gu(ū)Ψ , (12)

where Ψ = (Ψ1,Ψ2,Ψ3)
T and

Ku(ū) =
(k11 + k12ū2 k12ū1 0

k21ū2 k21ū1 + k22 + k23ū3 k23ū2
0 k32ū3 k33 + k32ū2

)
,

Gu(ū) =
(−b11ū1 −b12ū1 0

b21ū2 −b22ū2 −b23ū2
0 b32ū3 −b33ū3

)
.

Let 0 = μ1 < μ2 < μ3 < · · · be the eigenvalues of the operator −� on Ω with the homogeneous Neumann bound-
ary condition, and E(μi) be the eigenspace corresponding to μi in C2(Ω). Let X = {u ∈ [C1(Ω̄)]3 | ∂nu = 0 on ∂Ω},
{φi j} j=1,2,...,dim E(μi) be an orthonormal basis of E(μi), and Xi j = {cφi j | c ∈ R3}. Then

X =
∞⊕

i=1

Xi and Xi =
dim E(μi)⊕

j=1

Xi j.

For each i � 1, Xi is invariant under the operator Ku(ū)� + Gu(ū). Then problem (12) has a non-trivial solution of the form
Ψ = cφ exp(λt) if and only if (λ, c) is an eigenpair for the matrix −μiKu(ū) + Gu(ū), where c is a constant vector. Then the
equilibrium ū is unstable if at least one eigenvalue λ has a positive real part for some μi .

The characteristic polynomial of −μiKu(ū) + Gu(ū) is given by

ρi(λ) = λ3 + B2iλ
2 + B1iλ + B0i, (13)

where

B2i = b22ū2 + b11ū1 + b33ū3 + (k33 + k32ū2 + k21ū1 + k22 + k23ū3 + k11 + k12ū2)μi, (14)

B1i = b11ū1b33ū3 + ū2b23ū3b32 + ū2b21ū1b12 + b22ū2b33ū3 + b11ū1b22ū2

+ [
b22ū2(k33 + k32ū2) + (k11 + k12ū2)b33ū3 + (k11 + k12ū2)b22ū2 + k12ū1ū2b21

+ (k33 + k32ū2)b11ū1 + (k21ū1 + k22 + k23ū3)b11ū1 + k23ū2ū3b32

+ (k21ū1 + k22 + k23ū3)b33ū3 − b12k21ū1ū2 − b23k32ū2ū3
]
μi

+ [
k23k33ū3 + k11k21ū1 + (k21ū1 + k22)(k33 + k32ū2)

+ (k11 + k12ū2)(k33 + k32ū2) + (k11 + k12ū2)(k22 + k23ū3)
]
μ2

i , (15)

B0i = [b11ū1b22ū2b33ū3 + ū2b21ū1b12b33ū3 + b11ū1ū2b23ū3b32]
+ [

b11ū1b22ū2(k33 + k32ū2) + ū2b21k12ū1b33ū3

+ ū2b21ū1b12(k33 + k32ū2) + (k11 + k12ū2)ū2b23ū3b32

+ b11ū1k23ū2ū3b32 + (k11 + k12ū2)b22ū2b33ū3 + b11ū1(k21ū1 + k22 + k23ū3)b33ū3

− b11ū1ū2b23k32ū3 − k21ū2ū1b12b33ū3
]
μi

+ [
ū2b21k12ū1(k33 + k32ū2) + b11ū1(k21ū1 + k22 + k23ū3)(k33 + k32ū2)

+ (k11 + k12ū2)k23ū2ū3b32 + (k11 + k12ū2)b22ū2(k33 + k32ū2)

+ (k11 + k12ū2)(k21ū1 + k22 + k23ū3)b33ū3 − k21ū2ū1b12(k33 + k32ū2)

− k21ū2k12ū1b33ū3 − b11ū1k23ū2k32ū3 − (k11 + k12ū2)ū2b23k32ū3
]
μ2

i

+ [
k11k21ū1k33 + k11k21ū1k32ū2 + k11k22k33 + k11k22k32ū2 + k11k23ū3k33

+ k12ū2k22k33 + k12ū2
2k22k32 + k12ū2k23ū3k33

]
μ3

i . (16)

Let λ1i , λ2i , λ3i be the three roots of (13)

ρi(λ) = λ3 + B2iλ
2 + B1iλ + B0i = 0.
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In order to obtain the stability of ū, we need to show that there exists a positive constant δ such that

Re{λ1i},Re{λ2i},Re{λ3i} < −δ for all i � 1. (17)

The aim of the following theorem is to prove that the diffusion alone (without cross-diffusion, i.e. k21 = k12 = k32 = k23 = 0)
cannot drive instability for this food chain model, i.e., Turing instability does not occur in the three species food chain model
without cross-diffusion.

Theorem 3.1. Suppose that (6) holds and k21 = k12 = k32 = k23 = 0. Then the positive equilibrium ū of (11) is linearly stable.

Proof. Substituting k21 = k12 = k32 = k23 = 0 into (14), (15), and (16), we have

B2i = b22ū2 + b11ū1 + b33ū3 + (k33 + k22 + k11)μi > 0,

B1i = b11ū1b33ū3 + ū2b23ū3b32 + ū2b21ū1b12 + b22ū2b33ū3 + b11ū1b22ū2

+ [b22k33ū2 + k11b33ū3 + k33b11ū1 + k22b11ū1 + k22b33ū3 + k11b22ū2]μi

+ [k22k33 + k11k33 + k11k22]μ2
i > 0,

B0i = b11ū1b22ū2b33ū3 + ū2b21ū1b12b33ū3 + b11ū1ū2b23ū3b32

+ [b11ū1b22ū2k33 + ū2b21ū1b12k33 + k11ū2b23ū3b32 + k11b22ū2b33ū3 + b11ū1k22b33ū3]μi

+ [b11ū1k22k33 + k11k22b33ū3 + k11b22ū2k33]μ2
i + k11k22k33μ

3
i > 0.

A direct calculation shows that B2i B1i − B0i > 0 for all i � 1. It follows from Routh–Hurwitz criterion that, all the three
roots λ1i , λ2i , λ3i of ρi(λ) = 0 have negative real parts for each i � 1.

Let λ = μiξ , then

ρi(λ) = μ3
i ξ

3 + B2iμ
2
i ξ

2 + B1iμiξ + B3 ≡ ρ̃i(ξ).

Since μi → ∞ as i → ∞, we have

ρ̄(ξ) = lim
i→∞

ρ̃i(ξ)

μ3
i

= ξ3 + (k33 + k22 + k11)ξ
2 + (k22k33 + k11k33 + k11k22)ξ + k11k22k33.

Applying the Routh–Hurwitz criterion it follows that the three roots ξ1, ξ2, ξ3 of ρ̄(ξ) = 0 all have negative real parts. Thus,
there exists a positive constant δ̄ such that Re{ξ1}, Re{ξ2}, Re{ξ3} � −2δ̄. By continuity, we see that there exists i0 � 1 such
that μi0 > 1 and the three roots ξi1, ξi2, ξi3 of ρ̃i(ξ) = 0 satisfy Re{ξi1}, Re{ξi2}, Re{ξi3} � −δ̄ for any i � i0. Then Re{λi1},
Re{λi2}, Re{λi3} � −μi δ̄ � −μi0δ̄ � −δ̄ for any i � i0. Let −δ̃ = max1�i�i0 {Re{λi1}, Re{λi2}, Re{λi3}} and δ = min{δ̃, δ̄}. Then

Re{λ1i},Re{λ2i},Re{λ3i} < −δ for all i � 1.

Consequently the equilibrium ū is linearly stable. �
Note that B2i > 0 in (14), B1i > 0 in (15), B0i > 0 in (16), and B2i B1i − B0i > 0 if k21 = k32 = 0 since the possible negative

terms all involve either k21 or k32. By the same arguments as in Theorem 3.1, we have

Theorem 3.2. Suppose that (6) holds and k21 = k32 = 0. Then the positive equilibrium ū of (11) is linearly stable.

The Turing instability [24] refers to “diffusion-driven instability,” i.e., the stability of the positive equilibrium ū =
(ū1, ū2, ū3) changing from stable, for the ODE dynamics (5), to unstable, for the PDE dynamics (11). Here we are going
to give sufficient conditions on cross-diffusion which drives the instability. k21 and k32 are chosen as variation parameters,
whereas the other constants are fixed.

Theorem 3.3.

(1) Suppose that b11ū1 −b12ū2 < 0. Consider k21 as the variation parameter. Then there exists a positive constant δ21 such that when
k21 > δ21 , the equilibrium u(x, t) = ū is linearly unstable for some domain Ω .

(2) Suppose that (b21b12ū2 + b11b22ū2 − b11b23ū3) < 0. Consider k32 as the variation parameter. Then there exists a positive con-
stant δ32 such that when k32 > δ32 , the equilibrium u(x, t) = ū is linearly unstable for some domain Ω .
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Remark 3.4. (A) The conditions in Theorem 3.3 b11ū1 − b12ū2 < 0 and (b21b12ū2 + b11b22ū2 − b11b23ū3) < 0 are compatible
with the condition (6).

(B) k21 and k32 can be chosen as variation parameters because the number of sign of change for the polynomial (18)
could be bigger than one for large values of k21 or k32. By Descartes’ rule, the polynomial (18) could have positive roots
which lead to linear instability.

(C) Biological interpretation: In our model, the third species preys on the second one and simultaneously the second
species preys on the first one (prey). The positive steady state of the three species food chain can be broken by the reaction–
diffusion among two species on the chain. Case one: In this case, the first species (the prey) are assumed to reproduce
exponentially unless subject to intra-species competitions and predation. This exponential growth is represented in the
equation by the term (d1u1). The level of intra-species competitions among first species is assumed to be proportional
to the population density of first species by the term (b11u1). The rate of predation upon the prey is assumed to be
proportional to the rate at which the predators and the prey meet by term (b12u1u2). When the effects on first species due
the fact that the second species preys on the first one (b12ū2) are larger than the effects on first species due to the intra-
species competitions among first species (b11ū1), the large cross-diffusion of the second species due to the first species (k21)

can break the stability of the positive steady state. In other words, if the predator (second species) has a dominate effect
on the decreasing of the prey (first species) such as predation rate is larger than the rate of intra-species competitions,
then the predator (the second species) with large cross-diffusion can destabilize the constant steady state. Case two: In this
case, the third species (predator) shall have a dominate effect on the decreasing of the second species. Because (b21b12ū2 +
b11b22ū2 −b11b23ū3) < 0 implies b22ū2 < b23ū3, predation rate of third species on the second species is larger than the rate
of intra-species competitions in second species. The similar situation as in case one happens in the case two: the predator
(the third species) with large cross-diffusion can destabilize the constant steady state.

Proof. Denote A(μ) = −μKu(ū) + Gu(ū). By the direct computations we have

det
(

A(μ)
) = −(

C3μ
3 + C2μ

2 + C1μ + C0
)
, (18)

where

C3 = [k11k21ū1k33 + k11k21ū1k32ū2 + k11k22k33 + k11k22k32ū2 + k11k23ū3k33

+ k12ū2k22k33 + k12ū2
2k22k32 + k12ū2k23ū3k33] > 0,

C2 = −k21ū2
2ū1b12k32 − k11ū2b23k32ū3 − k21ū2ū1b12k33 − k12ū2

2b23k32ū3

+ ū2b21k12ū1k33 + k12ū2k23ū2
3b33 + k11k21ū1b33ū3 + k11b22ū2

2k32 + b11ū1k22k33

+ k12ū2k22b33ū3 + b11ū2
1k21k32ū2 + b11ū1k23ū3k33 + k12ū2

2b22k33 + b11ū1k22k32ū2

+ ū2
2b21k12ū1k32 + k12ū2

2k23ū3b32 + k12ū3
2b22k32 + k11b22ū2k33

+ k11k23ū2ū3b32 + b11ū2
1k21k33 + k11k23ū2

3b33 + k11k22b33ū3,

C1 = b33ū1ū3(b11ū1 − b12ū2)k21 + ū1ū2(ū2b21b12 + ū2b11b22 − b11b23ū3)k32

+ k11ū2b23ū3b32 + k11b22ū2b33ū3 + k12ū2
2b23ū3b32 + ū2b21k12ū1b33ū3 + ū2b21ū1b12k33

+ b11ū1k23ū2
3b33 + k12ū2

2b22b33ū3 + b11ū1k22b33ū3 + b11ū1k23ū2ū3b32 + b11ū1b22ū2k33,

C0 = ū1ū2ū3(b11b23b32 + b11b22b33 + b21b12b33) > 0.

Case 1: k21 is the variation parameter.
We assume that b11ū1 − b12ū2 < 0. The following arguments by continuation are based on the fact that each root of

the algebraic equation (18) is a continuous function of the variation parameter k21. It is easy to prove that Eq. (18) has
three real roots μ

(i)
1 = μ

(i)
1 (k21), i = 1,2,3 when k21 goes to infinity and they are limk21→∞ μ

(1)
1 (k21) = − b33 ū3

k33+k32 ū2
< 0 and

limk21→∞ μ
(2)
1 (k21) = 0 and

lim
k21→∞

μ
(3)
1 (k21) = −b11ū1 − b12ū2

k11
> 0.

By continuation, there exists a positive constant δ21 such that when k21 > δ21, C1 < 0 and det(A(μ)) = 0 has three real
roots. Because C3 > 0 and C0 > 0, the number of sign changes of (18) is exactly two. Therefore by Descartes’ rule, the three
real roots have the following properties:

(i) −∞ < μ
(1)
1 < 0 < μ

(2)
1 < μ

(3)
1 < ∞;

(ii) det(A(μ)) > 0 if μ ∈ (−∞,μ
(1)
1 ) ∪ (μ

(2)
1 ,μ

(3)
1 );

(iii) det(A(μ)) < 0 if μ ∈ (μ
(1)

,μ
(2)

) ∪ (μ
(3)

,∞).
1 1 1
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If μi ∈ (μ
(2)
1 ,μ

(3)
1 ) for some i, then det(A(μi)) > 0 by (ii), and consequently B0i = −det(A(μi)) < 0. The number of sign

changes of the characteristic polynomial (13) ρ(λ) = λ3 + B2iλ
2 + B1iλ + B0i is either one or three. By Descartes’ rule, the

characteristic polynomial (13) has at least one positive eigenvalue. Hence, the equilibrium ū of (11) is linearly unstable for
any domain Ω on which at least one eigenvalue μi of −� is in the interval (μ

(2)
1 ,μ

(3)
1 ).

Case 2: k32 is the variation parameter.
We assume that (b21b12ū2 + b11b22ū2 − b11b23ū3) < 0. The following arguments by continuation are based on the fact

that each root of the algebraic equation (18) is a continuous function of the variation parameter k32. It is easy to prove that
Eq. (18) has three real roots μ

(i)
2 = μ

(i)
2 (k32), i = 1,2,3 when k32 goes to infinity and they are limk32→∞ μ

(1)
2 (k32) < 0 and

limk32→∞ μ
(2)
2 (k32) = 0 and limk32→∞ μ

(3)
2 (k32) > 0.

By continuation, there exists a positive constant δ32 such that when k32 > δ32, C1 < 0 and det(A(μ)) = 0 has three real
roots. Because C3 > 0 and C0 > 0, the number of sign changes of (18) is exactly two. Therefore by Descartes’ rule, the three
real roots have the following properties:

(i) −∞ < μ
(1)
2 < 0 < μ

(2)
2 < μ

(3)
2 < ∞;

(ii) det(A(μ)) > 0 if μ ∈ (−∞,μ
(1)
2 ) ∪ (μ

(2)
2 ,μ

(3)
2 );

(iii) det(A(μ)) < 0 if μ ∈ (μ
(1)
2 ,μ

(2)
2 ) ∪ (μ

(3)
2 ,∞).

If μi ∈ (μ
(2)
2 ,μ

(3)
2 ) for some i, then det(A(μi)) > 0, and consequently B0i = −det(A(μi)) < 0 and ρi(0) = B0i < 0. By

similar argument as in case 1, the characteristic polynomial (13) has at least one positive eigenvalue. Hence, the equi-
librium ū of (11) is linearly unstable for any domain Ω on which at least one eigenvalue μi of −� is in the interval
(μ

(2)
2 ,μ

(3)
2 ). �

We end our paper by the following three examples. They demonstrate the reason why K21 and K32 can be chosen as
variation parameters and the existence of the parameters with which Theorem 3.3 holds.

Example 3.5. This example is to show the reason why k21 and k32 can be chosen as variation parameters. Let d1 = 3; d2 = 2;
d3 = 1; b11 = 1; b22 = 1; b33 = 1; b12 = 20; b21 = 2; b23 = 3; b32 = 3. Then ū = (1, 1

10 , 13
10 ), (b11ū1 − b12ū2) = −1 < 0 and

the coefficients of the polynomial (18) are: C0 = 13
2 ;

C1 = −13

10
k21 + 1

50
k32 + 13

10
k11 + 39

100
k12 + 41

10
k33 + 52

25
k23 + 13

10
k22;

C2 = −19

50
k11k32 − 9

500
k12k32 − k21k33 − 1

10
k21k32 + 21

100
k12k33 + 26

125
k12k23 + 13

10
k11k21

+ k22k33 + 13

100
k12k22 + 1

10
k22k32 + 13

10
k23k33 + 1

10
k11k33 + 52

25
k11k23 + 13

10
k11k22;

C3 = 1

100
k12k22k32 + 1

10
k12k22k33 + 1

10
k11k21k32 + 1

10
k11k22k32

+ k11k21k33 + 13

10
k11k23k33 + 13

100
k12k23k33 + k11k22k33.

It is easy to see that the only negative term in C1 is k21. For the large value of k21, the number of change of the signs in
polynomial (18) is two. Then there are some possible positive roots which are shown in the next examples.

Example 3.6. This example is for case 1 in Theorem 3.3. Let d1 = 3; d2 = 2; d3 = 1; b11 = 1; b22 = 1; b33 = 1; b12 = 20;
b21 = 2; b23 = 3; b32 = 3; k11 = 1; k12 = 2; k22 = 1; k23 = 2; k33 = 1. We choose k21 = 200 (large k21), k32 = 2. Then
ū = (1, 1

10 , 13
10 ), (b11ū1 − b12ū2) = −1 < 0 and C1 = − 6208

25 < 0. The three real roots of Eq. (18) are μ
(1)
1 = −1.083026588,

μ
(2)
1 = 0.0262773031, μ

(3)
1 = 0.933916442.

Example 3.7. This example is for case 2 in Theorem 3.3. We choose b12 = 2, k21 = 2; k32 = 200 (large k32) whereas other
constants remain the same as in Example 3.6. Then ū = ( 16

7 , 5
14 , 29

14 ), (b21b12ū2 + b11b22ū2 − b11b23ū3) = − 31
7 < 0 and

C1 = − 222994
343 < 0. The three real roots of Eq. (18) are μ

(1)
2 = −1.501263441, μ

(2)
2 = 0.369764704, μ

(3)
2 = 0.922342861.
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