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Abstract
Consider the NLS with periodic boundary conditions in 1D

iut+Au+Mu:|:8u|u|4=O, 0.1

where M is a random Fourier multiplier defined by

Mu(n) = Vyii(n) (0.2)

and (V,),,ez are independently chosen [r-1, 1].

The quintic nonlinearity in (0.1) is unimportant and may be replaceduby?~2, p €
27, p=4.

We give a proof of the following fact.

Theorem. For appropriate M, (0.1) has an invariant tori.7 (of full dimensiof satisfying

%efr Inl lgn| <2~ Inl neZ,qed)

(r >0 is arbitrary).

Remark. The statement holds in fact for mogV,),c, € [—1, 117, although not explicitly
proven here.

Written in Fourier modeggy),cz, the Hamiltonian corresponding to (0.1) is given by

H(g.§) =Y (n®+ V)lgnl* +¢ > n1nonadngdnsing (0.3)
ni—nz+n3—ng+ns—ng=0
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The proof of Theorem 1 will proceed along the ‘usual’ KAM scheme where the perturbation is even-
tually removed by consecutive canonical transformations of phase space. The most relevant lite-
rature in the present context of an infinite dimensional phase space are the papers of Frohlich et al.
[Fréhlich, Spencer, Wayne, Localization in disordered, nonlinear dynamical systems, J. Statist.
Phys. 42 (1986) 247-274] and especially Pdschel [Pdschel, Small divisors with spatial structure
in infinite dimensional Hamiltonian systems, CMP 127 (1990) 351-393] on disordered systems.

Both [Frohlich, Spencer, Wayne, Localization in disordered, nonlinear dynamical systems, J.
Statist. Phys. 42 (1986) 247-274, Pdschel, Small divisors with spatial structure in infinite dimen-
sional Hamiltonian systems, CMP 127 (1990) 351-393] consider Hamiltonians with short-range
interactions and hence these results do not apply to our problem. It turns out, however that the
scheme, as elaborated on in great detail in [Pdschel, Small divisors with spatial structure in
infinite dimensional Hamiltonian systems, CMP 127 (1990) 351-393], is still applicable to (0.3),
due to special arithmetical features as will be explained in the next section. Roughly speaking,
the key point is the following observation. Lét;) be a finite set of mode$u1|>|n2|> -- - and

ny—np+nz—---=0. (0.4)
In the case of a ‘near’ resonance, there is also a relation

Unlessni =np, one may then controlzy| + |n2| from (0.4), (0.5) byzj>3|nj|. This feature
is specifically 1-dimensional and we do not know at this time how to prove a 2D-analogue of
Theorem 1, considering for instance the cubic NLS + Au :i:u|u|2:O on T2,

It should also be pointed out that almost periodic solutions on a full set of frequencies
for NLS and NLW in 1D were constructed in earlier works (see [Bourgain, Construction
of approximative and almost periodic solutions of perturbed linear Schrodinger and wave
equations, GAFA 6 (2) (1996) 201-230] and [Pdschel, On the construction of almost pe-
riodic solutions for nonlinear Schrédinger equations, Ergodic Theory Dynamical Systems 22
(5) (2002) 1537-1559]). These invariant tori (of full dimension) were obtained by successive
small perturbations of finite-dimensional tori, resulting in very strong compactness proper-
ties and in fact a nonexplicit decay rate of the action variahlgsfor n — oco. On the
other hand, the construction in this paper (similarly to [P6schel, Small divisors with spatial
structure in infinite dimensional Hamiltonian systems, CMP 127 (1990) 351-393]) treats all
Fourier modes at once and requires explicit and realistic decay conditions.

The multiplier M = (V,;) in (0.3) is to be considered as a parameter and (0.1) a parameter-
dependent equation. The role of this parameter is essential to ensure appropriate nonresonance
properties of the (modulated) frequencies along the iteration. In the absence of exterior param-
eters, these conditions need to be realized from amplitude—frequency modulation and suitable
restriction of the action-variables. This problem is harder. Indeed, a fast decay of the action-
variables (enhancing convergence of the process) allows less frequency modulation and worse
small divisors (cf. [Bourgain, On diffusion in high-dimensional Hamiltonian systems and PDE,
J. Anal. Math. 80 (2000) 1-35]).
© 2004 Published by Elsevier Inc.
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1. Representation of the Hamiltonians

Our analysis will be performed in complex conjugate variablgs, g,) without
passing to action-angle variables. The Hamiltonian expressions may ingpksg, |
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and J, = I, — I,(0) as notation but not as new variables. The invariant torus in

Theorem 1 will be the pull-back under the resulting symplectic transformatioof
the torus(I, = I,(0)|n € Z], where I,,(0) are fixed positive numbers with a certain
decay rate (to be specified later). At every stage of the iteration, our Hamiltdiian
will be expanded in monomials\; ; & (a,k, k' are multi-indices) of the following
form:

_k!
[10:0" g an" = Mgz i (1.1
n

n kn Ky € 24 UROR Y ky =D ki Y nky =Y nk,

SUPPM; 1 & = {nlan+k,+kj, # 0} and ‘degree’ ofM; z 1 = 3, [2a, +ky+kp] < 0.
With this notation,H has the form

H=Y B eMaii+ > 0+ V)lgul® (12
(where ) (2a, + kx + k;,) >6) with coefficientsB; ; . They will satisfy an estimate
B, ; o <P ZnCanthuthi)VTl=2p /] (1.3)

ak,k’" == .

denoting
In] = max(1, n, —n} andnj = max{|n||a, + k, + k], # O}

and wherep > 0 is a parameter which will vary slightly along the iteration (as usual
in the KAM scheme).
In order to justify (1.3), it has to be pointed out that the expressions

> (ay + ky + kj)+/In] — 2,/n} are positive. In fact

Lemma 1.1. Denote(n?); > 1 the decreasing rearrangement of

{In| wheren is repeated2a, + k, + k|, timeg.

Then
1
> @+ ka kI B2+ 7 Y . 14
n i>3
Proof. Denote (n;), |n1]|>|n2|>---, the system # repeated @, + k, + k, times}.

From the definition of the monomiald/; ;  in (1.1), clearlyd e;n; = 0 for some
signse; = £1 (as a consequence of the relatidn, (k, — k;,)n = 0). Thereforen}
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= 1< Y 5o il and /nf< (X5, IniDY?, so that (1.4) will follow from the in-
equality

1/2

S Vit (St 3 3 Vi 15

i>2 i>2 i>3

To justify (1.5), we need to show that ify >no> --- >1, then

D iz /Zni+32¢n‘i. (1.6)
iz1

i>1 i>2

Assume /1< 3 Y51 /i
Then, writingn; <./n1 - /n;

2
1 1
Zniéz Z«/n_z = /iglnz‘STZ Z«/"_z ;

izl i=1

Assume next/n1 > 351 /.

We need to verify that
2 2
1 1
i>1 i>1 =2 i>1 =2

and this follows from

Zni+2«/”—1(Z\/”_i >Zni+(_ N Jn_)

i>1 i>2 i>1

WV
NA
Y,
N

This proves Lemma 1.1.0J
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Remark. 1. Assuming|g,| < eVl it follows from (1.4) that
My ol < e DVimi s/, 1.7
For the result of [Pol] to be applicable, we would need a bound
Mg 1ol < e” @0V (1.8)

for some u > 0, which is in general not implied by (1.7). It turns out, however
that (1.7) does suffice to carry out the analysis. The specific (arithmetic) structure is
of importance here. Assume, say, that the monom\4) ; ., creates a small divisor,
hence ’

Y ke — k) + Vi) = o(1) (1.9)
implying
‘Z(k,, - k,;)n2’ <3k + k) + (D). (1.10)
Let (m;),|m1|>|ma|> ---, denote the systenin repeatedk, + k, timeg. Since
> (kn — kj)n =0,
Im1 £ ma| <Y |mil (111
i=3
while (1.10) implies
mf £m3|< > A+ m?) + o(1) (1.12)
i>3

(with sign correspondence in (1.11), (1.12)).
In case of =’ sign. We may assume:; # m» since otherwiseni, mo cancel in the
small divisor. From (1.11), (1.12)

2
m1 —ma| + lm1+ma| <5 m?
i>3

hence

ma |4 4 a1 <3 ).

i=3
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In the case of 4+’ sign, obviously

m2 +m3 <3Zml~2,
i>3

Ima Y% 4 malYt <33 il

i=3

In both cases, assuming (1.9) or (1.10)

1 1
PR AN TR DN SR R AN/ N R CEE
n

i>3 n

and in particular, small divisor effects may be taken care of using only the modes
{nili =3}

2. The weight function)_, (2a, + k, + k,)+/In] may have been replaced by any
expressiony_ (2ay, + ky —|—k;L)|n|0 for some 0< 0 < 1. Possibly slower growing weights
(as considered in [Pol]) may work as well but will not be explored here. If on the
other hand, we want to construct invariant tori in the real analytic category, replace
JInl by /n] + c|n| (for somec > 0). The presence of thg/[z] in the weight and
inequality (1.4) remains essential in our analysis.

3. Returning to (1.2), thé/, are modulated frequencies. Suitably adjustment of the
V, in (0.3) will enable us to freezd&, = w, along the process, where = (w,),c7
is a fixed frequency vector with good diophantine properties.

Definition.

B, ; vl
IH |, = max Sk

: (1.14)
akk P 2n VnQRap+kn k) —2p/n}

At every stage of the proces#/ will be controlled in a norm (1.14), wherg will
increase slightly from one step to the next.

The remainder of the paper consists mainly in doing the bookkeeping cBat},gg;,—
coefficients when performing the consecutive symplectic transformations of phase space.
The procedure and issues are ‘standard’ and may be found in [3]. We already pointed
out the main conceptual novelty. Remains the usual tedious technicalities.

2. Estimation of the Poisson brackets

Let
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hence

{H1, Hp} = Zb ki BiiwMakw. Mak k')

Check coefficient off |, I, (0)*"qn"Gn" = My, ,c..o- Write

Mok Ma g k)

_ iz <5Ma,k,k’ OMap gk OMaki (7MA,K,K'>
2i 0qn 0qn 0qn 0qn

k K-
~ (]_[ In(O)“”*A") > kK, =k Kp)gpr K1 + H g+ K gt K
n n

m#n

Thus according to (1.14)

[{H1, H2}||, = max
oK, K

exp[Zp\/vT{— pZ(Zocn + Kp + K;,)\/W} Z Z

x(@a+A=z) "

x > \kn Ky, = kKl 1ba il 1Bak kol (2.2)
kn + K, —1=k,
k,+K,—1=x,

km + Ky = K
Lotz men
m m

Estimate
b | < [l p, et 2 Hhathi)Vn=2p13/15 2.2)
|Ba kx| < | Hall o2 ZCAHKnt KD Vi=2p2/NT. 2.3)
Here we let

p1, P2 < p; p=p1+e1=py+e.
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From (1.4), we get

(2.2) < |[Hallp, ef ECamthatkoVn=2p /o= Liza/n] 2.4)
23)<|Hallp, o LQRAAKu+K)V=20/NT = F Liza/NT (2.5)

Substitution of (2.4), (2.5) in (2.1) gives

IH1llpy - H2llp,-

S Y DK -
" ni.Ni“}\nl

xe~ 4 Liza/nf o= F Liza/N] (2.6)

(i) Assumev] <Ny
Case(i1): [n|<n3.
Since

2PV < g F 5= /nD
we get for (2.6) the bound

S 3k + KKy + Ko FWIT a1 E T /N
n *

<3S ki + K (K + K™ B X8/ F Xana /N 2.7)
n *

Concerning(x), if n is specified andi, k, K/, then A, K, K’ are uniquely determined.
Also

S =3 Can kK > S Can + ka4 k).
iz1

1 1
»Zg’/Ni* > ) QA+ Kn+ K)) =225 3 (A0 + Kn + K> S(Kn + K)).



70 J. Bourgain/Journal of Functional Analysis 229 (2005) 62-94

Thus
2.7 < < Z (Z(kn + kl/q)> o~ T X Qantkntki)/In]
e
TN
¢ — 53 Y (2a,+hn k) /T]
< — 2: e 20 nTRn TRy
£182 “—
ak i
< Vy—-1 NN
<— (1—e TV ™H1L — e 20V")
£162
n>1
Estimate
€1
5 [Z:>1efm¢ﬁ c
_a _1 1 :12 nz -5 1 ?12
l_[(l— e ZOﬁ) g (_) e ef < (_ )
" n<d > é1 €1

Hence we get the bound

mm‘q

2.7) < (£> 1 i
1) &

Case(ip): n € {n1, np} where |n1| = nj, |na| = n3.

2a, + k, + k,, > 2: Then |n|<n} and we are in Cas€é1)
2a, + ky + K S2

Thus

26)S Y e L=V (K, + K] + Ky + K)o £ Ziza /N

ak.k'

kanll

Since

D o+ 1w+ 1) < Y Ram Ak k) + Y (A + K + K;,)
m m m

<22ﬁ+22\/N>,.*

i=3 i=3

(2.8)

(2.9)
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71
and
K 4 K, <t + Ky — ki — kyy + 2< 0 + 1), + 2
2.9< Z e LizaVii(x, + Kpy + Knp + 16, + 1)
ak, k'
e~ e Do O +Ky) (2.10)

Also, clearly{n1, n2} NsuppM; i i # ¢. Givenn; (i >3), n1 (resp.,n) is determined

by ny (resp.,n1) and hence{ni, np} range in a set of sizésuppM; i w|< D (o
Km + K),).

Finally, if (n;) is given, then(2a,, + k, + k) is specified and hencg, k, k') up
to a factor]_[m(1+£31), denoting¥¢,, = #{i|n; = m}. Hence

210 < > J[a+)e 821>3f[2(xm+x ) + IsuppMs, . i ]

ni(i=3) m

81/\&2

Zm (O‘trz+hm+’c ) Z l_[(1+ gz )e 8 Zt>3\/7

ni(i=3) m
: [Z(am T kom + x;,)} €7 Gt (211)
m

and

(211)<€1/\82 Z e 821>3f1_[(1+32 <—Ze_8 T+ €2

n3,ng--

C
1\2 1
- (_) i1 (2.12)
&1 &2

(i) Assumev] =nj > Ny
Thusny is specified andi, determined fronmy and {n;}; >3
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We get again, with¢,, = #{i|n; = m}

26 < Y [Ja+e |:Z(k,, +k,;)]8—cz e izaVii

ni(i =3)

C
1\

< < (—) e (2.13)
g2 \ &1

In conclusion, we proved the following inequality:

Lemma 2.1.
1\Ca° 1
{Ha1, Ha}lp < (8—1) 5”7'[1”/)—81”%2”/)—82 (2.19

The reason we need that type of asymmetric estimate will be clear in the next
section.

3. Estimating the symplectic transformation

DenoteCr the symplectic transformation induced by the Hamiltonign
It follows from Taylor's formula that

1
HoCr=)Y ;HW where H") = (H"~D, F). 3

Estimate from (2.14), replacing by 2.

C

1)\:2 r _
IO,y < (8—1) I lp—e IR 22
C 2 2
1\:2 r _2
< [(a) 1||f||pgl} (5) 112, 2
1 Ty
& r
< [(E) ||f||p_gl} (5) 1#Hlp—eo- (32)

Hl\)‘q

Assume

[N o}

1/1\:
— | — Fllp— 1
& <81) 1Flp—er <

(3.3)
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It follows thus that

1o Crlly < (L4 B.3))IHllpe,- (3.4)

4. Small divisor effects

Take, for simplicity, theV,, to be random in—1, 1].
Denote |/ x| = dist(x, Z). The following statement addresses the resonance issues:

Lemma 4.1. Let (V,,) be as above. Then, except on a set of small measyrein1]Z,
the following holds

*ntH1 4.1)

whenever0 # ¢ = (¢,),c7 is a (finitely supporte}l sequence of integers

Proof. Letting 6 > 0 be a small number, we get clearly

mes U HZZ”V"
#0 L

s>1 Lgr1 n>s n>s
év#

<oy s ] <1+ %) <o
N n

1
<51:[<1+zgn4>]

proving the claim.
Following the usual KAM scheme, resonant monomi&fs, ;  give a ‘small divisor’

3, (kn — k.)(V,, +n?), where V,, denote the modulated frequencies and

Hor = BajMaxw — F= Bake Marx
n Z ak.k' Ma k. k ZZ(k Z k) (Vn +12) ak.k

(nr denoting ‘nonresonant’).
In our approach, we will readjust the multipli¥,,) in (0.3) to ensure that at each
stageV,, = w,, with v = (w,) a fixed frequency vector satisfying Lemma 4.1.
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We estimate|| 7|,

B ! * /
IFl, = max Bapor | AN R Cacth k)i (4.2
a kK@) | | (ke — k) (Vi + n2)|

Distinguish two cases

() | Xk — kj)n?| > 10 |k — k}|

Since [V, | <1, | Y (ky — k) (V, +n?)| > 103 (k, + k},) — 3" |k, — kj,| >1 and there
is no small divisor issue.
(i) | > (kn — k)n? <103 |ky — k|

From (1.13)

3 ke — Ky ln 4SS @ay + ki + k) — 2,0 43)

Since V, satisfies (4.1)

- 1
Xt =kt )| 21T 15—
n n

Hence (4.2) becomes

| Bl [T+ Cn — k) 2n) e203/mimp D@arthuctly) Vi
n

by (4.3 , ,
Y (43) S logunlk,—k,1+1) ,—e X byt ¥ - (4.4)

Assumek, # k;,. Then

1 1
log nlk, — k.| > elk, — k,,|nY/* = |n| < = lky — k! | < > (4.5)
Hence

C
(4.8 e8| H]l p—e- t (4.6)

In conclusion, we showed the following:

Lemma 4.2. Let F be defined fron,, as above. Then

-6
IFl, < e IH N p—e- (4.7)
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5. Normal forms
Hamiltonians will be of the form

M= ®+Vlgul>+ Y BaswMarw
n

suppkNsuppk’=¢
k|+Ik| =2

+ Z Ju Z B[gr’l]z’k,./\/la’k,k/
n

suppknsuppk’ =¢
|k|+1k| > 2

D It | D0 BIE Mas | (5.1)

ni,nz o
no assumptlon

where J, = I, — 1,(0), I, = |gn|°.

As pointed out earlier, use of the symbadls, J,, is only notational and does not
indicate a change of variable.

Rewrite according to (5.1)

H = Ho+ Ho+ H1+ Ho,

which is the Hamiltonian obtained at a given stage.
Next step involves conversioN — H' = H o Cr, Cx = symplectic transformation
with generating functionF = 7y + F1, as to removeHg + Hi. Thus

Ba
Fo~ > — —Ma ks
Y 2 SKy
suppkrsuppr=g 2=k k) (1% + Vi)

Hence

1 1
H =Hot+Ha+ ) —{{Ho F}..... F}+ ) —{{Ho+ M1+ Hp F} - F)

rz2" r—fold rz1l" r—fold
1 Ho
=Ho~I—H2+ZO<—'> XML, F oy, F (5.2)
r>1 N Ho
r—fold

Last term of (5.2) is then again converted to the format (5.1).
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We first discuss how the coefficients in representations (1.2) and (5.1) relate.

5.1. Coefficient estimates in convention (1.2)—(5.1)

/
[n
n

Write M ; i in the form Mz pii = [1, 1.0 I,f"qf;”q_ where I,, = |gu|2, b, =
ko ANk, and £, =k, — by, €, = k|, — by, satisfying{,¢, =0, Vn.

List the /-factors in natural ordef., ., I., ..., I. and expres§], I,l,’” by monomials
of the form
[]0©", (5.3
n
Yo T 0@ (1@ 1), (5.4)
m|by, = 1n#m
ST @™ [T 12 (1n (@) J315m72), (5.5)
m|h[,’n 222 n<m n>m
r<bm-—

> (H In<o>bn> (@11,

m<m’(bm.bm/ =1 n<m
rgbm/fl
by —r—1
x ( [ I,,(O)b"> Ly O T I (]‘[ 1,fn> . (5.6)
m<n<m' n>m'
This gives the following bounds for the coefficients in (5.1), as easily verified
|Bawr] < [](@+ anyer Cn@anthth) V=2 3y (5.7)
n
1BU 1 < TT @+ an) @+ ap)2er En@onthat k) i2dm=2mD 131, (5.8)
n#m
B < T (@ an) (L @) 3P Eon V@t +4m =210 3 (5.9)
n<m
BUI< []A+an [ A+ad@+am)?@+ aw)?
n<m m<n<m'

P (T Va4 24 2/ =27 2 (5.10)
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Hence for representation (5.1)

C

1\:
||H||§,5+12<<8) I+ 2. (5.12)

5.2. Coefficient estimates in conversion (5.1)—(1.2)

The coefficient ofM‘-Z,,;_,;’,;, increases by at most a fact6y_ a, + by)2.
Hence '

2
log %
IHIGSS < (T) IHIED. (5.12)

Return to (5.2). We evaluate the last term.
ExpressHo, Hi1, Ho, Fo, F1 in the form (1.2).
From (4.7) and (5.12)

1
IHo IS < 3e66||H<i>||§)5~1’ (i=01,2), (5.13)
1 .
1Fo)llpie < et SIHGISY G =0,1). (5.14)
Ho
Consider the expression, ., 0($) {---{ H1. F ¢..... F ¢ in (5.2) which we eval-
Ho

uate by means of (2.14), (3.3), (3.4).
To satisfy (3.3), assume

2
6
e (IHoll>P + 1M1 PY) <« 1 (5.15)
so that by (4.7)
12 1.2 <
175 170 < e, (5.16)

(In (3.3), (3.4),e1 = 2 = ¢ and p replaced byp + 2¢).
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Hence, by the estimate in Section 3 and (5.13), (5.14)

(1.2) c
1) 1.2 12
<(;) 171552 1#Holl 52

1
ZO<E>{-«-{HO,}‘},...,}'}

r=1

p+2¢
2
<eS ([ Holl S + [Hall )

x| Holl >

and thus

(5.1

1
Zo(ﬁ>{...{}[0,}“},...]—'}

r=1

p+3¢

Similarly

3
< e[ HollplHallp,

1
Zo<ﬁ>{...{7{17_7:0}’_7:’...’]:}

r=1

p+3e

3
{H1, Fi}llp3e < e® I HallpllHallp,

3
< eS| HallplHallp

1
ZO(E>{"'{Hlsfl},f,...,]:}

r>=2

p+3e
x([[Hollp + [IH1llp).

3
{H2, Fo}llp+3: < e=° [ HollpllH2llp,

3
< e[ HallplHollp

1
ZO(;){-~-{H2,}'0},}",...}"}

p+3e
x(IHollp + 11H1llp),

(5.17)

3
< et (1Mol + IIHI S [ Holl S, (5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)
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3
{H2, Fa}llp+3e < e<® [ HallpllHallp. (5.24)

3
I{{H2. F1}. FYlpt3e < eSIIHallpllHllo(1Hollp + IHzllp)s (5.25)

1
Z||0<ﬁ>{---{7—[2,]-"1},]-",...,]-"}

rz3 p+3e

3
< e [ HallpIHallp(IHollp + 1M1l ). (5.26)

Notice that the terms in (5.20) are at least linear/in
Therefore{#1, F1} will only contribute to#} and 5.
We use here the fact that the decomposition in monomials

_k;
1_[ J’fn l_[qufnqnn’ ky - k;z =0 (527)
n

n

is unique.
Similarly
(5.22) contributes only t&{}, H5.
(5.24) contributes only t&{,
(5.25) contributes only t&{}, H5.

Consequently
3
1Hllp+3e < e®  (1Hollp + I1Hall) I Hollp + [H1l5), (5.28)
3
IH1lp+3e < e<® (I Hollp + I|H1II,§), (5.29
3
IH5 0 p+2e < 1H2llp + €® (I Hollp + [ Hallp)- (5.30)

At stages of the iterationp = p, and we takes = ¢; = Slz (zr, s small constant).
From (recursive) inequalities (5.28)-(5.30), we verify inductively that

: 3y
IH 1y, < e (5.31)
! 0,9(3)"?
HO Ny, <9 2 (5.32)
#1511, < €0, (5.33)

(e0 small enough).



80 J. Bourgain/Journal of Functional Analysis 229 (2005) 62-94

Indeed
12 3\s 3ys—1 3ys—1 3\s+1
38 2)54(0.9)(3 33y -L0.9 3
(528) = ||H(()s+l)”ps+1 <e 7@(8(2) ( )(2) + 80(2) ( )) < 882)
+1 Gy | 183yt 0.93)"
1, < O 6 + b < 0%

(in particular (5.15) is satisfied).
Obviously

3 3
ps+1=ps+s—2<p+;m<p+10‘c. (5.34)

Remark. In #/, J' = I' — I(0), wherel’ = I o Cr. We did not replacd (0) by 1'(0)
(which we could do with some additional work). Thig0) = (1,(0)),_, will be the
action-variable of the invariant torus in the new coordinates (after applying the final
symplectic transformation).

From H}, we need to remove the quadratic ter@(ZB(”) oM a.0,0)Jn, Where

Mizoo = [[1,(0)%. It is added to the first term in (6 1) and the new modulated

frequencies ik’ are
Vi =Va+ Y B oMaoo (5:39
a
6. Modulated frequencies
In (5.35), we get by (5.32) (at staget+ 1) that

1B 5.0l < IHE Pl @it Vot o)

1,.3ys
< 80?(?)3 ezp.Y+l(Zl71 maﬂl+\/ﬁ_v mi)‘

Consequently

2( ) Zezf)erl(Zm mam+/n— \/_) 1_[ I (O)am

<2 3 o251 X Vitan T 1, 0. (6.1)
a m
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Assuming
Ln(0) < 720V
and insuring thap, < 3p at any stage, we get
%(%)v —p Y., ma —pm\—1 %(%)T
(6.1 < &§ Ze m m o< H(l —e ) &4
a m
hence

() 33
ZBa,o,oMa,o,o Sey - (6.2)

a

However, since thel{®)-coefficients depend orv, we need also to make derivative
bounds. This is achieved the ‘standard’ way.

(i) Truncation of the Hamiltonians.
(i) Complexification of the frequency parameter.

(i) In the steps — s + 1, there is saving of a factor
o6 (X Vlkn k) +2an) ~2/n7) ge—sx(\/n_§+\/n_z+...)7 6.3)

whereeg ~ ;lz (from definition of thep,). Denote

(%)&Fl
K= 80

In the normal forms reduction, we may thus dismiss all monomials; ;. for which
(6.3) < k. Thus we only remove monomials satisfying

1
\/n>’§+\/&+~-<Cs2Iog;. (6.4)

Returning to the small divisors analysis in Section 5, we only need to impose conditions
on the divisory_ (k, — k,)(V, +n?) when (1.15) holds, thus

1
1/4 2
§:|kn—k;,||n|/§§ /i < Cs? log = (6.5)

i=3



82 J. Bourgain/Journal of Functional Analysis 229 (2005) 62-94

In particular, all conditions relate only t&V,), <»,, where

4
ne < Cs® (Iog E) . (6.6)
K

These conditions are of the form (cf. (4.1))

- 1
Y Gn—kp)Va| 2 [ 1 e |- 6.7)

n<ng n < ny

Assumption (6.5) permits us to get a lower bound on ([Iﬂangn* lJr(knflkg)zﬂ)-factor
in (6.7).
Claim. Assume)_ ¢,nY/* < B. Then
[T+ e2n% < 5 (6.8)
Proof. Write
H(1+£5n4)= 1_[ . l_[ < ¢CNlog B ,C3,_ v tn-log n
n<N n2N
B
< echOg B"rm. (6,9)
Optimizing in N clearly implies (6.8).
From (6.5), (6.8), it follows that the left-hand side of (6.7) is at least
emestlog YT p=Clog 17, (6.10

Clearly conditions (6.7) will therefore essentially remain preserved,ij are perturbed
by < [Cs?(log 1) €09 911 (again from (6.5)).
Thus (V,) is subject to a restriction ofV,,),<,, to cubes of size

y = ¢~ Clog DT/® (6.11)

Moreover, all estimates remain clearly preserved if we complexify dacto a y-size
neighborhood. Furthermore, there is analyticity on that neighborhood.
We now proceed as follows.
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Fix a strongly nonresonanb = (w,), i.e. satisfying (4.1)

HZE Wy

> (1+£2 Ht vi=wne]]z. t#0 (6.12)

We assume at stage # and V in (5.1) extend to analytic functions i on a set
Os = [ DV, 1) C JIC where V(V = (Vn)) = w (V will depend ons). Call this

n n
property (x). We will specify 5, later.
Consider the transformatiol — H' = H®+D,
Since o satisfies the desired nonresonance conditions (6.12), it follows from the
preceding that it suffices to impose o the condition

V, € D(wp,y) Vn (6.13)

wherey =y, is given by (6.11).
Since by assumption, ofi[, D(V,,., %Ws)

OVm
; T <1077 vm (6.14)
clearly
v (]_[ D(V,. %)m)) c [] p@ny- (6.15)

ConsequentlyH’ expands to an analytic function ivi € [], D(Vj, %ﬁs)-

Returning to (5.35), the perturbatiofi —V is an analytic function ofi[, D(V,. {51,)
satisfying the bound (6.2), i.e.

V! Ul < 2@ <303, (6.16)
It follows that on[], D(V,, yn,), Ym

v, oV
v, oV,

73 1 1 13+
< M 3P (6.17)
s M n,

z

Assume

L(§)S
ny > g% % . (6.18)
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(6.17) gives then orf [, D(V,, 45yn,), Ym (by induction)

v, 1 13+ 1
— — S| < —ei? <&l =0(1
;avn - ;m/o 3 =o(1)
s'<s
or equivalently
v’ i
-1 < &b, 6.19
o 0 (6.19
(S =L

Recall thatV (V) = w. We invoke an inverse function argument to obtaihsatisfying
V(V) = o. (6.20)

We consider the mapy’ : £ > [, D(V,,, 5m,) — ¢ satisfying (6.19). Rewriting
(6.20) as

V-V =U-V)YV)—=I-V)YV)+ (V= V)V)
(6.19), (6.16) imply

1
IV = V'lloo < 82NV = V' lloo + &3,
IV = Ve < 23 <, (6.21)

Define then
1 , 1
541 = 555 Os41 = 1_[ D(V,,ng11) C l_[ D Vy, 150" ) © Os. (6.22)
n n

Then#’, V' extend to analytic functions om,,1 and (6.20) holds.
From (6.11)

9
c(Hio
Nep1 > Ns€g ° (6.23)
hence, iterating
et
Ny >é&g o . (6.24)

Clearly (6.18) holds.
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This establishegs) for #“*1 and completes the inductive argumentl

7. Mapping properties of the symplectic transformations

Define

Q= {q = (qnnez | lgnl<e VM ,Vn}

and let| |, be the corresponding norm.

DenoteCr the symplectic transformation at stage-> s + 1.

We specifyCr(Q,). Thus we need to estimate @)

(I, o Cp)Y2.
Recall that at stage — s + 1, by (4.8), (5.31), (5.32)
1F 15 < €D2AHG U, +1H 1)

520, 3y 093yt 083yt
< B (el 40X T) < 00D

and hence by (3.3), (3.4)

ln = I Crll, 135 < (280" (7.1)
This means that
LioCr—1In= Y BaxxMair (7.2)
a,k,k’
where
Ba i < 88-8(%)“1 P54 1T 2t o+l 2 /) (7.3)

Observe that in (7.2) we only get monomiald; ; 1, satisfying
> mik + kp,) >2In]. (7.4)
For g € Q,,

|M£_Z,];,]E’| < l_[ [m (O)Qm e,r Zm \/rz(kn1+k;n)‘ (75)
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Assume also
1,(0) <e "V Vm (7.6)

so that

Magie| < e 2 Vit 7

Letting m3 >m3%> --- be the decreasing rearrangement{|of|(2a,, + k, + k;,)-times},
we have

3ys-1 ¥ * * *
|Ba,k,k’| |Ma,k,k’| < 58'8(2) eﬂs+1(\/’"3+\/’"4+"')—r(«/’"1+«/m2+-~)_ (7.8)

We distinguish 2 cases.
(A) mi=|n|

By (1.5), Y 51 VMl =22/mi+3 3 o5 y/mi =2Jn+3 3o 5/mi+1y/mi—J/nll.
Assume(cf. (5.34).

r > 10p; ;. (7.9

Thus (7.8)<
88'8(%)S_1 RN D S N e | (7.10)

Summing ovena, k, k') gives therefore the bound:§ determined byn; andm’ (i 23))

3
0.8(3)? 1
S (b)) X e

m mi 2 |n|

3ys—1
Sep P eV L2, (7.11)

(B) mi <nl
Recalling (7.4)

2l < Y mi< fmi Y Jmr.

i>1 i>1

< St < 3 o

i>2 i>2
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Hence
3y Jmt > 2l +\/>+ +\/» \/>+Z\/>
i>1
2
4«/_+2\/_+Z\/7+2< ﬁ)
i>3
B 2
Zf 20+ = Zf+(ﬁ ‘/_) (7.12)
i>1 1>3
and we get the bounelgs( IS N
Hence
(7.2 < 22D 234, (7.13)

The factorn®* may be removed by more careful analysis. Recall that

B—kk!
j.‘
Z S (ki — kL) (M2 + V)

M&’,;J;/,

where
s—1 ,
|Barxl < 8 82 ) ePs o Qam+hm+k,)/m—2/m D (7.14)

Consider the expansion

Z%{-u{lm,}'},}',...,}‘}
;

r>1""

and the first Poisson brackék,, 7}. From (7.14)
|Basxo| < efs Zizz /M (7.15)

We distinguish the following case$n( is assumed large).

() Yiopy/mf > (l0g |n])2.

One may then obviously save qu-factor by increasing slightly,.

() X,.o/mi<dog |n|).
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Then {I,, M; t p} = 0 unlessn € {m3, m3} and |k,| + |k, | # O(m] = |m1|, m5 =
[m2l). ~

If m% # m3, then clearly| 3" (ky, — k.,)(m?+ V)| > [(m% —m3) An?] — (log |n[)10 >
|n|.

If mj = m% = |n|, then the preceding still holds, unleks =k, = 1, in which case
again{l,, M; ; v} = 0.

Hence, also

3ys
(7.2)] < g2 =2V, (7.16)

Consequently

3ys
Vi (I o Cr) — I| < eg 2 e~ 2 /Il (7.17)

3\s
which implies in particular tha€» mapsQ, into (1+88'8(2) Q.

Considering the resulting symplectic transformationC .,y oCri-o- - -0Cra = C,
iteration of (7.17) gives

3ys
08" _ Jege VI (7.18)

Vi i |(I, 0C) — I,| < e—Z’WZS%SO
andC mapsQ, to (1+ /£0)Q;.

Recalling (7.6), (7.9), we assumg;—o € Q,,, thus [,(0) < e~2ovn vp. The
symplectic transformatio® will perturb the action variableg, = |qn|2 by at most

\/%efho\/ﬁ_

8. Conclusion of the argument

We consider first the case of finite dimensional phase spag, <~ truncating the
original NLS-HamiltonianH (¢, g) at orderN the usual way. Consider the correspond-
ing evolution

vy OH™

ig, %
n

(In|<N). 8.1

Recall (from the wellposedness theory for 1D NLS ©hthat if ¢ = ¢(¢) is the NLS
solution with ¢(0) € H(T), thus

0
iGn=2— (1€ 4q|,_o=q0 (8.2)
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there is a uniform comparison estimate

maxlg () — ¢ 0)ll2 <D Ol 1 83)

whereg" (0) = Pyq(0) and oy (T) "3 = 0 for fixed T.

Starting fromH = H™), perform preceding normal forms reduction up to stage
(chosen large enough depending M.

All estimates in this process are of course independeny of

Thus at stage, we get the Hamiltonian (5.1)

H=HY = YY" 00®+on)lgul® + Ho+ H1+ Ha, (8.4)
[n|<N
where
1,(0)<e 2oV (8.5)

and by (5.31)—(5.33)

C
IHollp, <& (8.6)
0.9(3)y1
IHallp, <9 = (8.7)
[Hallp, < eo. (8.8)

Let ¢(0) satisfy |¢,(0)|? = I,,(0). Consider the solution of

. O0H
lgn = P (In|<N), Qn|t2024n(0)~ (8.9)

dn
We will show thatg(r) remains in 8, for |1|<T; = — oo and moreover
lgn (1) = g ()" +O) < (e0) B oV (<N, (8.10
Consider firstl,,(1) — 1,(0). Clearly
I={L,H} (nl<N),

1
11,(1) — 1, (0)] < /o ({2, Holl + [{dn, Ha}l + [{Ln, H2}]. (8.11)
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Assumingg (1) € 2Q,,, it follows from the estimates in Section 7 (cf. (7.13)) and (8.6),
(8.7) that

083yt _
Lo, Hod| + {1, Hid| < g 2 e~ 20vIl | 3/4

08(3) e 2oV 34

< 80
< eﬁ(%)hle—%m (8.12)
by the choice ofs.
Let
p=sup  @VIIL,0) — 1,0, (8.13)

[n]<N,|11<1

SinceH; is at least quadratic iy, the estimate (from (8.8))

{1, Ha}| < ege~ 20V NO/4 (8.14)
may be restated as

|1y, Ha}| < soe 20V N34 (8.15)
(8.11)—(8.13), (8.15) imply then that

79 (3ys-1
100(2)

V<€ + N3/4V2
hence
100(2)"
Y < 284 (8.16)
Consequently
79 (3ys—-1
n(D) — L(O)] < 5632 e 20V (jn|<N) (8.17)
and for 0<r <1
073yt
q(t) € (L+eg, )Qy, C 2Qy,. (8.18)
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Pass then from = 1 to t = 2. We redefineJ;, = I, — I,(1) and express (5.1) in this
form. Thus inH1, Ha, replaceJ, by J, + (I,(1) — ,(0)), hence

Hz = 7:l2 + H6,2 + H&,Z’

H=Hy+H)+Hy+ Y %+ on)lgul?,

where
6 = 7:[0 + H6,1 + Haz,
1=Hi+Hyo,
/2 = Ho.
Clearly
/ 2p,4n 0T oo _ B
1Hoallp, < I1Hallp, | Y€ Veg 2 e <,
n
1,3 2 3
,(,)S _ (7)3‘
Ho.2llp, < Hzllp, (Zezf%ﬁsg e Zroﬁ> <2,
n
1:3\s 1.3\s
33 13
1H35llp, < [Hallp, (Zezﬂsﬁsg 2 Zfoﬁ) <2
n
3
I Holl pr,ng . (8.19)
33
%311y, Seg - (8.20)
IHlp, < €0 (8.21)
and again
33 2o
|In(2) - In(l)|§80 e 0 (|I’l| <N) (822)

For some|t| < T, = s say, we will ensure that

1,(t) — 1,(0)] < e 20V (50)®" < =20V (]n|<N) (823
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hence
q(t) € 2Qy,.

Estimate for Xr<1

. Lo 0 0
) = 4,0 < [ (‘ ol ' e ‘ 2 ) . (8.24)
0 8(]11 aQn 6‘]11
Similarly as we got (8.12), one sees that ipe 2Q,,
0 13y
‘m_{" 4| ] 25 proum, (8.25)
0qn 4n
Since %7;2 contains at least X/-factor, (8.17) implies forg = ¢(z), 0<r<1
0 1.3y
‘ a2 <522 oV (8.26)
0dn

Substituting (8.25), (8.26) in (8.24) gives fg{ <1
(n (1) — gu(@) o | < (2P o, (8.27)
Similarly, sinceq(z) € 2Q,, up tor < T, and (8.23)
140(0) = gu( D] B (1<)

and forrg <t <tg+ 1< Ty

. 9ys
19 (1) — gu(io)e! "= < ¥ roV, (8.29)
. 10ys
G (£) — g (0)e TN | < g88 ooVl 1y < N, (8.29)

This proves (8.10).
In the limit (s — oo) one obtains the almost-periodic motion

(1) = gn(0) & HOT (In| < N). (8.30)



J. Bourgain/Journal of Functional Analysis 229 (2005) 62-94 93

Returning to (8.1), one needs to pull back the invariant tgiys= I, (0)| In|<N] by
the symplectic transformatiofi. Recalling (7.18), we obtain thus an invariant tofljs
for (8.1) satisfying

|1gnl? = 1,0)| < eoe VI (jn|<N). (8.31)

Next, the uniform estimate (8.31) allows us to pass to a limie limy_. o 7y. Thus
T consists of elementg = (g,),c7z satisfying (8.31) and such that for ally

lim inf max —gM|=o0. 8.32
NTbe LT, TN lgn —aq,"| (8.32

Since obviouslyTy, 7 are bounded inH2(T) say, (8.32) also implies

lim inf | Pyg—qg™ |y =0 (8.33

N—o0 q(N)GTN

denotinglgll 1 = (3, n®lgnl?/2.

Denote Sy () the flow map of (9.1) ands(¢) the flow map of (8.2). We verify that
T is S(¢) invariant. Fix¢. Since Sy(r) and S(¢) are (with fixedr) Lipschitz on H1,
(8.33) implies for someg;™) e Ty

1Sy () Pyg — Sy (g™ [ "0, (8.34)
From (8.3)
N—
IS(t)g — Sn(t) Pxgll2" = — 0. (8.35)

Since Sy (1)g™") € Ty, distzz, (S(t)q,TN)N3>°°O and henceS(t)g € T.
Thus 7 is an invariant torus for the NLS (8.2) and4fe 7 by (8.31)

| 1gal? = 1,0)| < ege 2Vl for all n € 7. (8.36)
Taking I,(0) = e~2ov" ¢f. (8.5), we have fog € T,n € Z

11— Veo)e VI < jg,| < (L + eg)e VI (8.37)
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