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Abstract

The concepts of Gröbner cone, Gröbner fan, and universal Gröbner basis are generalized to the case of
characteristic sets of prime differential ideals. It is shown that for each cone there exists a set of polynomials
which is characteristic for every ranking from this cone; this set is called a strong characteristic set, and an
algorithm for its construction is given. Next, it is shown that the set of all differential Gröbner cones is
finite for any differential ideal. A subset of the ideal is called its universal characteristic set, if it contains
a characteristic set of the ideal w.r.t. any ranking. It is shown that every prime differential ideal has a finite
universal characteristic set, and an algorithm for its construction is given. The question of minimality of
this set is addressed in an example. The example also suggests that construction of a universal characteristic
set can help in solving a system of nonlinear PDE’s, as well as maybe providing a means for more efficient
parallel computation of characteristic sets.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider a differential ring of differential polynomials and a prime differential ideal in it. We
study the dependence of the characteristic set of the ideal on the ranking of partial derivatives
and give two invariants of the ideal—the differential Gröbner fan and the universal characteristic
set.
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In the algebraic case, a similar problem has been solved in Mora and Robbiano (1988) by
introducing the concepts of Gröbner fan and universal Gröbner basis and giving an algorithm
for their construction. This was followed by the development of several efficient algorithms
for transformation of Gröbner bases from one admissible order to another, of which the most
well-known are the FGLM (Faugère et al., 1993) and the Gröbner walk (Collart et al., 1993)
algorithms.

These algorithms have been carried over to the case of characteristic sets of prime differential
ideals (Boulier, 1999; Golubitsky, 2004). Now we carry over the theoretical basis for these
algorithms to the differential case as well.

For a fixed ranking there are usually infinitely many characteristic sets, but their ranks
coincide. One can pose the converse problem: given an autoreduced set of ranks (a rank is a
power of a derivative), describe the sets of rankings with respect to which characteristic sets of
the ideal have this set of ranks. We call this set of rankings a differential Gröbner cone. Then we
show that

(1) For every differential Gröbner cone, there exists a set which is characteristic for each ranking
from this cone. We call this set a strong characteristic set and describe an algorithm that,
given any characteristic set of a prime differential ideal, constructs a strong one of the same
rank.

(2) The set of all differential Gröbner cones corresponding to any differential ideal is finite; we
call this set a differential Gröbner fan. The set of all rankings is equal to the disjoint union of
the cones in the Gröbner fan.

(3) There exists a finite set of differential polynomials whose characteristic set, for every ranking,
is a strong characteristic set of the prime ideal. We call this set a universal characteristic set
and give an algorithm for its construction.

We illustrate the algorithm for construction of a universal characteristic set on an example
from Boulier et al. (2001). For this particular example, we construct a minimal universal
characteristic set; however, the problem of minimality in general is open. Moreover, we show
how the system of nonlinear PDE’s from this example can be easily solved with the help of
the universal characteristic set (again, no claims are made about the usefulness of the universal
characteristic sets for the solution of nonlinear PDE systems in general). Finally, the problem of
efficient computation of the universal characteristic sets is discussed in relation to the problem
of fast parallel computation of (ordinary) characteristic sets.

2. Basic concepts of differential algebra

Here we give a short summary of the basic concepts of differential algebra, referring the reader
to Ritt (1950), Kolchin (1973) and Kondratieva et al. (1999) for a more complete exposition.

Let R be a commutative ring. A derivation over R is a mapping δ : R → R which for every
a, b ∈ R satisfies

δ(a + b) = δ(a) + δ(b), δ(ab) = δ(a)b + aδ(b).

A differential ring is a commutative ring endowed with a finite set of derivations ∆ =

{δ1, . . . , δm} which commute pairwise. The commutative monoid generated by the derivations
is denoted by Θ . Its elements are derivation operators θ = δ

i1
1 · · · δ

im
m , where i1, . . . , im are

nonnegative integer numbers.
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A differential ideal I of differential ring R is an ideal of R stable under derivations, i.e.

∀ A ∈ I, δ ∈ ∆ δA ∈ I.

For a subset A ⊂ R, [A] denotes the smallest differential ideal containing A.
An ideal is called prime, if

∀a, b ∈ R ab ∈ I ⇒ a ∈ I or b ∈ I.

Let U = {u1, . . . , un} be a finite set whose elements are called differential indeterminates.
Derivation operators apply to differential indeterminates yielding derivatives θu. Denote by ΘU
the set of all derivatives.

Let K be a differential field of characteristic zero. The differential ring of differential
polynomials K{U } is the ring of polynomials of infinitely many variables K[ΘU ] endowed with
the set of derivations ∆.

Let m be a nonnegative integer and n be a positive integer. Let

N = {0, 1, 2, . . .}, Nn = {1, . . . , n}.

A ranking is a total order ≤ of Nm
× Nn such that for all a, b, c ∈ Nm , i, j ∈ Nn ,

• (a, i) ≤ (b, j) ⇐⇒ (a + c, i) ≤ (b + c, j)
• (a, i) ≥ (0, i).

Rankings on Nm
× Nn correspond to rankings on the set of derivatives ΘU :

δ
i1
1 · · · δim

m u j ≤ δ
k1
1 · · · δkm

m ul ⇐⇒ (i1, . . . , im, j) ≤ (k1, . . . , km, l).

Theorem 1 (Rust and Reid, 1997, Theorem 30). Let ≤ be a ranking on Nm
× Nn . Let R be a

finite subset of (Nm
× Nn)2 such that for all pairs ((a, i), (b, j)) ∈ R, (a, i) ≤ (b, j). Then

there exist non-singular m × m integer matrices M1, . . . , Mn , vectors λ1, . . . , λn ∈ Zm , and
a permutation σ of Nn , which uniquely specify a ranking ≤

′ on Nm
× Nn such that for all

((a, i), (b, j)) ∈ R, (a, i) ≤
′ (b, j).

The specification of rankings described in the above theorem has been implemented in Maple
by A.D. Wittkopf (Rust and Reid, 1997, Remark after Th. 30). This code was first included in
the Rif package, but then replaced by a simpler and more efficient code that accounts for Riquier
rankings only (see below).1

The problem of finding a ranking containing a given finite relation on partial derivatives
has been solved for Riquier rankings and implemented in the Maple 9.01, package diffalg,
procedure differential ring. Below we briefly describe the corresponding algorithm. To the
author’s knowledge, for arbitrary rankings this problem remains open.2

A ranking is called a Riquier ranking, if for all a, b ∈ Nm , i, j ∈ Nn ,

(a, i) ≤ (b, i) ⇐⇒ (a, j) ≤ (b, j).

1 From private communication with A.D. Wittkopf.
2 The problem can be reduced to a linear programming problem using Theorem 1, namely by trying all permutations

σ and numbers ti j such that matrices Mi and M j agree on the first ti j rows [from private communication with C.J. Rust].
However, this solution is inefficient, and for this reason has not been implemented.
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Let us embed Nm
× Nn into Nn+m by using the following mapping:

φ : (i1, . . . , im, j) 7−→ (i1, . . . , im, 0, . . . ,

(m+ j)

1 , . . . , 0)T .

Using this embedding, we can characterize Riquier rankings by matrices:

Theorem 2 (Rust and Reid, 1997, Theorem 6). A Riquier ranking is a ranking ≤ for which there
exists a positive integer s and an s × (m + n) real matrix M such that

• for k = 1, . . . , m, kth column ck of M satisfies

ck ≥lex (0, . . . , 0) (1)

• (i1, . . . , im, j) ≤ (k1, . . . , km, l) if and only if

M
(
i1, . . . , im, 0, . . . ,

(m+ j)

1 , . . . , 0
)

≤lex M
(
k1, . . . , km, 0, . . . ,

(m+l)

1 , . . . , 0
)
.

Vice versa, any s × (m + n) real matrix M of rank m + n satisfying Eq. (1) defines a Riquier
ranking ≤M .

Now, the question whether a finite set R ⊂ (Nm
× Nn)2 is contained in a Riquier ranking

reduces to the question whether the system

{M(φ(u) − φ(v)) ≤lex 0 | (u, v) ∈ R},

in which matrix M is unknown and satisfies the requirements of the above theorem, has a
solution. According to Sturmfels (1996, Proposition 1.11), this is the case if and only if there
exists a vector w ∈ Nm+n satisfying

{w · (φ(u) − φ(v)) < 0 | (u, v) ∈ R}.

The above linear system of inequalities is a linear programming problem, which can be solved,
for example, by applying the simplex method (see Danzig (1998)).

3. Characteristic sets

Let ≤ be a ranking on the set of derivatives ΘU , and let f ∈ K{U }, f 6∈ K. The derivative θu j
of the highest rank present in f is called the leader of f (denoted ld≤ f or u f when the ranking is

clear from the context). Let d = degu f
f . Then f =

∑d
j=0 g j u

j
f , where g0, . . . , gd are uniquely

defined polynomials free of u f . Differential polynomial i f = gd is called the initial of f , and
differential polynomial s f =

∑d
j=1 jg j u j−1 is called the separant of f . The rank rk≤ f is

the monomial (u f )
d . For a set A ⊂ K{U }, the set of its ranks is rk≤ A = {rk≤ f | f ∈ A}.

Similarly, the set of initials and the set of terminals of A are denoted iA and sA respectively. Let
hA = iA ∪ sA.

Denote by R = {td
| t ∈ ΘU, d > 0} the set of all ranks. A ranking on the set of derivatives

ΘU induces a linear order on the set of ranks R, if we consider a rank td
∈ R as a pair (t, d) and

compare two such pairs lexicographically. Let f, p ∈ K{U }, p 6∈ K. Differential polynomial f is
partially reduced w.r.t. p, if f is free of all proper derivatives θup (i.e. θ 6= 1) of the leader of p.
If f is partially reduced w.r.t. p and degup

f < degup
p, then f is said to be (fully) reduced, or
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irreducible, w.r.t. p. A polynomial f is called (partially) reducible w.r.t. p, if it is not (partially)
reduced w.r.t. p.

A differential polynomial f is called (partially) reduced w.r.t. a set of differential polynomials
A ⊂ K{U }, if it is (partially) reduced w.r.t. every polynomial p ∈ A.

A nonempty subset A ⊂ K{U } is called (partially) autoreduced if every f ∈ A is (partially)
reduced w.r.t. A \ { f }.

Every autoreduced set is finite (Kolchin, 1973, Chapter I, Section 9). If A = {p1, . . . , pk} is
an autoreduced set, then any two leaders upi , up j for 1 ≤ i 6= j ≤ r are distinct; we assume
that elements of any autoreduced set are arranged in order of increasing rank of their leaders
up1 < up2 < · · · < upk .

Let A = { f1, . . . , fk}, B = {g1, . . . , gl} be two autoreduced sets. We say that A has lower
rank than B and write rk≤ A < rk≤ B, if either there exists j ∈ N such that rk≤ fi = rk≤ gi
(1 ≤ i < j) and rk≤ f j < rk≤ g j , or k > l and rk≤ fi = rk≤ gi (1 ≤ i ≤ l). If k = l and
rk≤ fi = rk≤ gi (1 ≤ i ≤ k), then we have rk≤ A = rk≤ B.

Any nonempty family of autoreduced sets contains an autoreduced set of the lowest rank
(Kolchin, 1973, Chapter I, Section 10). For a subset X ⊂ K{U }, an autoreduced subset of
X of the lowest rank is called a characteristic set of X . It follows from the definition that all
characteristic sets of X w.r.t. ≤ have the same rank. An autoreduced set A is a characteristic set
of X if and only if all nonzero elements of X are reducible w.r.t. A.

Lemma 1 (Kolchin, 1973, Chapter IV, Section 9, proof of Lemma 2). If C is a characteristic set
of a prime differential ideal I , then

h∞

C ∩ I = ∅.

Lemma 2. Let C be a characteristic set of a prime differential ideal I w.r.t. a ranking ≤, and let
f ∈ I, f 6= 0 be such that rk≤ f is irreducible w.r.t. C. Then i f ∈ I .

Proof. Since f ∈ I , f 6= 0, and C is a characteristic set, f is reducible w.r.t. C . Since rk≤ f is
irreducible w.r.t. C , two cases are possible:

(1) i f is reducible w.r.t. a polynomial p ∈ C . Let q be the result of this reduction:

q = h · i f − τθp, h ∈ h∞
p .

If q = 0, we obtain that h · i f ∈ I .
If q 6= 0, consider the corresponding reduction of f :

f ′
= h · f − τ rk≤ f · θp.

Then rk≤ f ′
= rk≤ f and i f ′ = q . Now, f ′ reduces to 0 in less steps than f , hence, by

induction i f ′ ∈ I . This implies h · i f ∈ I .
Since h 6∈ I (by Lemma 1) and I is prime, i f ∈ I .

(2) i f is irreducible w.r.t. C , and f − i f rk≤ f is reducible w.r.t. C . Let f ′ be the result of a
reduction step of f w.r.t. C . Then rk≤ f ′

= rk≤ f and i f ′ = h · i f , where h ∈ h∞

C , which, in
particular, implies that f ′

6= 0.
Now, since f ′ reduces to 0 in less steps than f , by induction we obtain that i f ′ ∈ I . Since

also h 6∈ I (by Lemma 1) and I is prime, we have i f ∈ I . �
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4. Differential Gröbner cones

Definition 1. Let X ⊂ K{U }, and let ≤ be a ranking. Define the characteristic rank of X w.r.t.
≤, rkchar≤ X , to be equal to the rank of any characteristic set of X w.r.t. ≤.

Definition 2. Let I be an ideal, and let R = rkchar≤ I for some ranking ≤. Define the
differential Gröbner cone corresponding to R as follows:

ΣI (R) = {≤
′

| rkchar≤′ I = R}.

Let also coneI (≤) = ΣI (rkchar≤ I ) denote the differential Gröbner cone containing ranking ≤.

The above definition is a generalization of the concept of Gröbner cone for algebraic ideals.
Indeed, for a polynomial ring K[x1, . . . , xn] and an admissible monomial ordering ≤, one can
define the rank of a polynomial f ∈ K[x1, . . . , xn] to be equal to its leading monomial w.r.t.
≤. For this definition of rank (which is rather unusual), a set A is autoreduced if and only if it
is autoreduced w.r.t. ≤ in the usual algebraic sense. Hence, the autoreduced subset of I of the
smallest rank is the reduced Gröbner basis of I (up to multiplication by constants from K), and
rkchar≤ I is the set of its leading monomials. Furthermore, ΣI (R) = {≤

′
| rkchar≤′ I = R}

is the set of all admissible orderings, for which the set of leading monomials of the reduced
Gröbner basis is equal to R. According to Mora and Robbiano (1988), this set corresponds to
an open convex cone in Rn , called the Gröbner cone. As is shown below, in the general (i.e.,
differential) case, the set ΣI (R) is convex in the following sense:

Definition 3. For two rankings ≤1, ≤2, the segment [≤1, ≤2] is defined as the following set of
rankings:

[≤1, ≤2] = {≤ | ∀ u, v ∈ Nm
× Nn (u ≤1 v ∧ u ≤2 v) ⇒ u ≤ v}.

A set of rankings R is called convex, if ≤, ≤′
∈ R implies that [≤, ≤′

] ⊂ R.

Note that, unlike the algebraic case, in which the reduced Gröbner basis of I w.r.t. ≤ is
unique, a characteristic set of a differential ideal I may not be unique. Moreover, if we take
an arbitrary characteristic set w.r.t. a ranking ≤∈ ΣI (R), it may not be characteristic for all
rankings from ≤∈ ΣI (R). For the purposes of construction of the universal characteristic set, we
are interested in finding a set that is characteristic for all rankings from a differential Gröbner
cone. The algorithm for constructing such a set, given an arbitrary characteristic set, is proposed
in the following section.

5. Strong characteristic sets

Definition 4. Let C be a set of differential polynomials, and let ≤ be a ranking. Denote by C≤

the following set:

C≤
= {( f, rk≤ f ) | f ∈ C}

and call it a marked set of differential polynomials.

Definition 5. Let ≤ be a ranking, and let C be a characteristic set of ideal I w.r.t. ≤. Define the
subcone corresponding to the marked characteristic set C≤ as follows:

subcone(C≤) = {≤
′

| C≤
′

= C≤
}.
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It follows from the above definition that for any ≤
′
∈ subcone(C≤), set C is a characteristic

set of I w.r.t. ≤
′ and has the same rank as w.r.t. ≤.

Lemma 3. The set subcone(C≤) is convex.

Proof. Let ≤1, ≤2∈ subcone(C≤). Then C≤1 = C≤2 = C≤. Hence, by Definition 3, for any
ranking �∈ [≤1, ≤2] we have C�

= C≤1 = C≤2 . Thus, �∈ subcone(C≤), and subcone(C≤) is
convex. �

Definition 6. A characteristic set C of ideal I w.r.t. a ranking ≤ is called strong, if

subcone(C≤) = coneI (≤).

In other words, a characteristic set C w.r.t. ranking ≤ is strong, if for any ranking ≤
′
∈ coneI (≤),

rk≤′ C = rk≤ C . Note also that the above equality of two sets can be replaced by inclusion
subcone(C≤) ⊇ coneI (≤), since the inverse inclusion always holds.

For example, consider prime differential ideal I = [ux ]. Then, for any ranking ≤, sets
{ux } and {uux } are characteristic sets of I of rank {ux } w.r.t. ≤. Hence, the corresponding
subcones, subcone({ux }

≤) and subcone({uux }
≤), are equal to the set of all rankings R. Also,

since rkchar≤ I = {ux } for any ranking ≤, we have coneI (≤) = R. Therefore, sets {ux } and
{uux } are strong characteristic sets of I w.r.t. any ranking ≤.

Now, consider sets

{u yux }, {u yyux }, . . . , {vux }, . . . .

Each of these sets is a characteristic set of I w.r.t. a proper subset of the set of all rankings R (e.g.,
{u yux } is a characteristic set of I for all rankings ≤ satisfying u y < ux ), hence the corresponding
subcones are proper subsets of R, and none of these sets is a strong characteristic set of I .

If there exists a strong characteristic set of I w.r.t. ≤, then we obtain that the differential
Gröbner cone coneI (≤) is convex. Below we prove that a strong characteristic set exists for any
prime differential ideal w.r.t. any ranking.

For a polynomial f , denote by allrk( f ) the set of its ranks w.r.t. all possible rankings; for
every t ∈ allrk( f ), it f denotes the initial of f w.r.t. a ranking ≤ such that t = rk≤ f .

Theorem 3. Let C be a characteristic set of a prime differential ideal I w.r.t. ≤ satisfying the
following condition:

∀ f ∈ C ∀ t ∈ allrk( f ) it f 6∈ I.

Then C is strong.

Proof. Assume that C is not strong. Then there exists a ranking

≤
′
∈ coneI (≤) \ subcone(C≤).

Since ≤
′
6∈ subcone(C≤), there exists polynomial f ∈ C such that ld≤′ f 6= ld≤ f .

Let C ′ be a characteristic set of I w.r.t. ≤
′. Then rk≤′ f is irreducible w.r.t. C ′ and ≤

′. Indeed,
suppose that rk≤′ f is reducible by g ∈ C ′. Then rk≤′ f is also reducible by rk≤′ g. Since
≤

′
∈ ΣI (rk≤ C), there exists a polynomial f1 ∈ C such that rk≤ f1 = rk≤′ g, which implies

that f is reducible by f1 w.r.t. ≤. It remains to notice that f1 6= f , since rk≤′ f < rk≤ f and
therefore rk≤′ f cannot be reducible by rk≤ f . Contradiction.

Hence, Lemma 2 applies and we obtain that i≤′ f ∈ I . This contradicts the condition

∀ f ∈ C ∀ t ∈ allrk( f ) it f 6∈ I. �
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The above theorem provides an algorithm for construction of a strong characteristic set, given
any characteristic set of a prime differential ideal.

Algorithm StrongCharSet(C , ≤)
repeat

flag = false
for f ∈ C do

for t ∈ allrk( f ) do
if it f ∈ I then

C = C \ { f } ∪ {it f }

flag = true
end if

end for
end for

until flag = false
return C

end
The algorithm terminates, because each replacement of f by it f reduces the total number

of derivatives present in C . Also, since initially C is a characteristic set w.r.t. ≤, and for any
polynomial f and derivative t , rk≤ it f ≤ rk≤ f , we obtain that rk≤ C is an invariant of the
above algorithm. Hence, the result of the algorithm is a characteristic set of I w.r.t. ≤. According
to the above Theorem 3, it is a strong characteristic set of I .

We illustrate this algorithm on our example. Let a characteristic set of ideal I = [ux ] be
given, e.g. {u yux }. For f = u yux , we have allrk( f ) = {ux , u y}. Next, for t = u y , we have
it f = ux ∈ I , hence the algorithm replaces f by ux and thereby obtains a strong characteristic
set of I .

6. Gröbner fan and universal characteristic sets

It follows from Definition 2 that distinct differential Gröbner cones do not intersect each other
and that every ranking belongs to a cone, i.e., the set of all rankings can be represented as a
disjoined union of differential Gröbner cones. The set of all differential Gröbner cones is called
the differential Gröbner fan. As follows from Golubitsky (2004, Theorem 3), the fan is finite for
any differential ideal. To make this paper self-contained, we also include the proof of this result
here.

Let

Ld(I ) = {ld≤(A) | ≤ is a ranking and A is a char. set of I w.r.t. ≤}.

In other words, Ld(I ) is the family of sets of leaders of characteristic sets of I w.r.t. all possible
rankings. We will first show that the set Ld(I ) is finite for any ideal I .

Let t1, t2 ∈ ΘU be two derivatives. We say that t2 is a derivative of t1, if there exists θ ∈ Θ
such that t2 = θ t1.

Lemma 4 (Kolchin, 1973, Chapter 0, Lemma 15). Let t1, t2, . . . ⊂ ΘU be an infinite sequence
of derivatives. Then there exist indices i < j such that t j is a derivative of ti .

Lemma 5. For any differential ideal I ⊂ K{U }, family Ld(I ) is finite.
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Proof. Suppose that Ld(I ) is infinite. For each L ∈ Ld(I ), denote by ≤L the corresponding
ranking. Then the set Σ = {≤L | L ∈ Ld(I )} is infinite.

Let f1 ∈ I be a differential polynomial, and let A1 = { f1}. Since f1 contains only a
finite number of derivatives, according to the pigeonhole principle, there exists an infinite subset
Σ1 ⊂ Σ such that for all ≤, ≤′

∈ Σ1, ld≤ f1 = ld≤′ f1.
Suppose A1 is a characteristic set of I w.r.t. a ranking ≤1∈ Σ1. Then A1 is also a characteristic

set of I w.r.t. any ranking ≤∈ Σ1, since the reduction relations w.r.t. A1 and any ≤∈ Σ1
coincide. However, this contradicts the definition of the set of rankings Σ , because characteristic
sets corresponding to different rankings in Σ have different sets of leaders. Therefore, A1 is
autoreduced but not a characteristic set of I . Hence, there exists a polynomial f2 ∈ I reduced
w.r.t. A1 and any ≤∈ Σ1.

According to the pigeonhole principle, there exists an infinite subset Σ2 ⊂ Σ1 such that for
all ≤∈ Σ2, the characteristic set of A1 ∪ { f2} is the same and the polynomials in it have the same
leaders; call this characteristic set A2.

The set A2 cannot be a characteristic set of I for some ≤∈ Σ2 (according to the definition of
Σ ), hence there exists a polynomial f3 ∈ I reduced w.r.t. A2 and any ranking ≤∈ Σ2.

According to the pigeonhole principle, there exists an infinite subset Σ3 ⊂ Σ2 such that for
all ≤∈ Σ3, the characteristic set of A2 ∪ { f3} is the same and the polynomials in it have the same
leaders; call this characteristic set A3.

Proceeding in the same way, we construct an infinite sequence of polynomials f1, f2, . . ., an
infinite sequence of autoreduced sets A1, A2, . . ., and an infinite sequence of sets of rankings
Σ1 ⊃ Σ2 ⊃ . . .. For each polynomial fi , one of the following two options is possible:

(1) For all j > i , ld≤ f j > ld≤ fi (≤∈ Σ j ). In this case fi ∈ A j for all j ≥ i , and we say that
fi remains in the sequence.

(2) There exists j > i such that ld≤ f j < ld≤ fi (≤∈ Σ j ). In this case we say that fi is
followed by a smaller derivative, and denote the smallest such j by ν(i).

Denote by νk(i) the expression ν(ν(. . . ν(i) . . .)), where ν is applied k times.
Now we will construct a subsequence of f1, f2, . . . contradicting Lemma 4.
If f1 remains in the sequence, let i1 = 1. Otherwise, if fν(1) remains in the sequence, let

i1 = ν(1). Otherwise, if fν2(1) remains in the sequence, let i1 = ν2(1), and so on. We will either
find an index i1 such that fi1 remains in the sequence, or will construct an infinite sequence

f1, fν(1), fν2(1), . . . .

But the latter is not possible. Indeed, it follows from the definition of ν(i) that for all i < j ,
ld≤ fν j (1) < ld≤ fνi (1) (≤∈ Σν j (1)). Hence, ld≤ fν j (1) is not a derivative of ld≤ fνi (1), which
contradicts Lemma 4.

If fi1+1 remains in the sequence, let i2 = i1+1. Otherwise, if fν(i1+1) remains in the sequence,
let i2 = ν(i1 + 1), and so on. Applying the above argument, we show that the process will
eventually stop and we will find an index i2 such that fi2 remains in the sequence.

Continuing in the same way, we obtain an infinite sequence of indices i1 < i2 < . . .

such that for all j , fi j remains in the sequence. But the fact that both fi j and fik (i j < ik)
remain in the sequence means that they both belong to the autoreduced set Aik , therefore ld≤ fik

is not a derivative of ld≤ fi j (≤∈ Σik ). Thus we have constructed an infinite sequence of
derivatives {ld≤ j fi j | ≤ j∈ Σi j }, none of which is a derivative of another one. This contradicts
Lemma 4. �
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Theorem 4. The set of ranks of characteristic sets of any differential ideal I w.r.t. all possible
rankings is finite.

Proof. According to Lemma 5, the set

Ld(I ) = {ld≤(C) | ≤ is a ranking and C is a char. set of I w.r.t. ≤}

is finite.
Suppose that the set of ranks of characteristic sets

Rk(I ) = {rk≤(C) | ≤ is a ranking and C is a char. set of I w.r.t. ≤}

is infinite. Then there exists an infinite subset R ⊂ Rk(I ) such that for all sets of ranks r ∈ R,
the set of derivatives present in r is the same; denote this set of derivatives {l1, . . . , lk}. It
follows from Dickson’s Lemma (Cox et al., 1996) that there exist two distinct ranks r1 =

{l i1
1 , . . . , l ik

k }, r2 = {l j1
1 , . . . , l jk

k } ∈ R such that for all m ∈ {1, . . . , k}, im ≤ jm . Take an index m
such that im < jm . Take also the corresponding characteristic sets C1, C2 and rankings ≤1, ≤2,
i.e., rk≤i Ci = ri (i = 1, 2). Let f ∈ C1 be the polynomial with rk≤1 f = l im

m . Then f is
irreducible w.r.t. C2 and ≤2, which contradicts the fact that C2 is a characteristic set of I w.r.t.
≤2 and f ∈ I . �

The finiteness of the differential Gröbner fan implies the existence of a finite universal
characteristic set in the following sense:

Definition 7. A subset C of ideal I is called a universal characteristic set of I , if for any
ranking ≤, the characteristic set of C w.r.t. ≤ is a characteristic set of I w.r.t. ≤.

In fact, the union of strong characteristic sets corresponding to the cones in the differential
Gröbner fan is a universal characteristic set. Below we give an algorithm which, given a
characteristic set of a prime differential ideal, constructs a universal characteristic set.

Algorithm UniversalCharSet(C , ≤)
U =StrongCharSet(C , ≤)
R = {rk≤ U }

while ∃ ≤
′ such that rkchar≤′ U 6∈ R do

C ′
=convert(U , ≤, ≤

′)
C ′

=StrongCharSet(C ′,≤′)
U = U ∪ C ′

R = R ∪ {rk≤′ C ′
}

end while
return U

end
The while-loop in the above algorithm has the following invariant: for each set of ranks

stored in R, U contains the corresponding characteristic set. This invariant implies correctness
of the algorithm. Termination is guaranteed by the above Theorem 4. In fact, since family
{rkchar≤ I | ≤ is a ranking} is finite, set R in the above algorithm cannot grow infinitely. On the
other hand, set R grows with each iteration of the while-loop. Note also that the conversion step
C ′

=convert(C, ≤, ≤′) can be performed using any of the following algorithms: PARDI (Boulier
et al., 2001), DFGLM (Boulier, 1999), or differential Gröbner walk (Golubitsky, 2004). In the
latter case, from the efficiency point of view, it is worthwhile to add intermediate characteristic
sets to U immediately once they are constructed.
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The above algorithm works for general rankings, except for the following part, which is
restricted to Riquier rankings only. The diffalg package of Maple 9.01 contains a subroutine
(which is embedded in the procedure for specification of differential rings) that, given a finite
marked set of polynomials, determines whether there exists a Riqiuier ranking w.r.t. which the
marked derivatives are leaders, and if so, constructs such a ranking (see also end of Section 2).
In particular, this subroutine allows us to generate all possible Riquier rankings on a finite set of
derivatives. Thus, given a finite set U , we can generate all Riquier rankings on the derivatives
present in it, compute rkchar≤ U for each of them (the computation of the characteristic set U is
trivial, since U is finite), and check whether at least one of the resulting characteristic ranks is
not in R.

We illustrate the performance of the algorithm on an example from Boulier et al. (2001).
Consider the prime differential ideal

I = [u2
x − 4u, uxyvy − u + 1, vxx − ux ].

Before we started our experiments, we already knew some characteristic sets of this
ideal w.r.t. several different rankings. These characteristic sets contained 7 derivatives:
u, ux , u y, vy, vxx , vxy, vyy . In an attempt to simplify our implementation, we decided, instead
of implementing the generation of all possible rankings on the derivatives present in U at each
iteration of the while-loop, to generate first all possible rankings on the above 7 derivatives and
compute the union of characteristic sets w.r.t. them. The latter was done using the Rosenfeld–
Gröbner algorithm implemented in the diffalg package of Maple 9.01. It turned out that there are
37 Riquier rankings on the above derivatives (call the set of these rankings R0), and the union of
the corresponding characteristic sets consists of the following 19 polynomials:

−32v2
y + 16 − 8v2

xx + v4
xx , −2v2

y + 1 − 2u + u2,

−2v2
y + 1 − 2v2

yy + v4
yy, vxx − ux , −vxx + uvxx − 2vyu y,

ux u − ux − 2vyu y, 4u − v2
xx , 4vxx + 8vyvxy − v3

xx ,

4vyu + ux u y − ux u yu, u2
y − 2u , −v2

yy + u, vyvxy + vyy − v3
yy,

vxx − uvxx + 2vyvxy, −vyyu + vyvxy + vyy, −vxx + 2vyy,

u yu − u y − vyux , vxxx − 2, u2
x − 4u, u yu − u y − vyvxx .

We have obtained a set of polynomials that contains a characteristic set of I for each ranking
from R0. Now notice that all polynomials in this set, except for the polynomial vxxx − 2, depend
only on the above 7 derivatives, and the rank of vxxx − 2 is equal to vxxx for any ranking. Thus,
we have obtained a universal characteristic set of I .

A rather strange phenomenon has been observed during this computation. Our algorithm,
implemented in Maple 9.01 on a Celeron 900 MHz under Red Hat Linux 9, computes the above
universal characteristic set in 9 seconds. As mentioned above, the algorithm proceeds by calling
the Rosenfeld Gröbner function from the diffalg package for 37 different rankings; each time
the Rosenfeld–Gröbner algorithm is called, all previously constructed polynomials are used as
its input. However, when the Rosenfeld–Gröbner algorithm was applied directly to the initial
set of generators of the ideal I for one of these rankings,3 the computation took more than 5 h
and 1 GB of memory, after which it was interrupted. Thus, the computation of the universal

3 The following ranking was used: the derivatives of u and v are ordered by weights u = 6, v = 0, x = 4, y = 1;
θ1u1 > θ2u2 when weight(θ1u1)>weight(θ2u2), or weights are equal and u1 = v, u2 = u, or weights and
indeterminates are equal and θ1 > θ2 for the lexicographic order x > y.



1102 O. Golubitsky / Journal of Symbolic Computation 41 (2006) 1091–1104

characteristic set turned out to be faster than the direct computation of a characteristic set for a
particular ranking!

The above universal characteristic set is not minimal, since some polynomials can be removed
from it. Applying a greedy minimization algorithm, we reduce the set to 11 polynomials:

v4
xx − 32v2

y − 8v2
xx + 16, −2v2

y + u2
− 2u + 1,

v4
yy − 2v2

y − 2v2
yy + 1, −ux + vxx , −2u yvy + vxx u − vxx ,

−v2
xx + 4u, u2

y − 2u, −v2
yy + u, vyvxy − vyyu + vyy, vxxx − 2, u2

x − 4u.

This universal characteristic set turns out to be minimal. To prove it, we write down the ranks of
all characteristic sets w.r.t. different rankings; in total, there are 9 different sets of ranks, each of
which corresponds to a cone in the differential Gröbner fan:

{vxx , vxy, u2, v2
yy} {vxy, vyy, u2, v2

xx } {ux , vxx , v
2
y, u2

y}

{u y, vxx , v
2
y, u2

x } {vxy, vyy, u, v4
xx } {vy, vxx , u2

x , u2
y}

{vxx , vxy, u, v4
yy} {ux , u y, v

2
y, v

2
xx } {u, v2

y, vxxx }.

Now we show that at least 11 polynomials are necessary to produce the above sets of ranks.
Indeed, 4 polynomials are necessary to produce the characteristic set w.r.t. a ranking ≤ with ranks
{ux , u y, v

2
y, v

2
xx }. Since these 4 polynomials must form an autoreduced set w.r.t. ≤, they cannot

contain any of the following ranks:

vyy, v2
yy, v4

yy, v4
xx , vxxx , u2

x , u2
y .

The first three of the above ranks require at least 3 different polynomials to produce them.
Again, if one of these 3 polynomials contained at least one of the remaining 4 ranks, then the
characteristic set containing this polynomial would not be autoreduced (this can be verified by
considering all possibilities for these 3 polynomials to participate in the 9 characteristic sets).
Applying the same considerations to the remaining 4 polynomials, we obtain that each of the
presented 11 ranks requires a separate polynomial to produce it.

Note also that, in this particular example, the universal characteristic set allows us to obtain
the general solution of the original PDE system4:

vxxx − 2 = 0 ⇒ v =
1
3 x3

+ x2 f1(y) + x f2(y) + f3(y)

vxx − 2vyy = 0 ⇒

2x + 2 f1(y) − 2x2 f ′′

1 (y) − 2x f ′′

2 (y) − 2 f ′′

3 (y) = 0
f ′′

1 (y) = 0 ⇒ f1(y) = c1 y + c2

f ′′

2 (y) = 1 ⇒ f2(y) =
1
2 y2

+ c3 y + c4

f ′′

3 (y) = f1(y) ⇒ f3(y) =
c1
6 y3

+
c2
2 y2

+ c5 y + c6

v2
xx − 4u = 0 ⇒ u = (x + c1 y + c2)

2.

Substitute this solution in the original system

u2
x − 4u, uxyvy − u + 1, vxx − ux .

Observe that the first and last equations are fulfilled automatically, and the second one implies

c1 = ±
1

√
2
, c2 = c1c3, c5 =

c2
2 − 1

c1

(the solution depends on three parameters: c3, c4, c6).

4 This observation was pointed out to the author by Vladimir Gerdt.
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7. Conclusion

The concepts of differential Gröbner fan and universal characteristic set introduced in this
paper raise several further questions about the algorithmic properties of differential ideals:

(1) How efficiently can a universal characteristic set be constructed?
It seems obvious that since the universal characteristic set includes characteristic sets for all

rankings, the complexity of its construction cannot be less than the complexity of construction
of a particular characteristic set. Oddly enough, for the above example we have observed just
the opposite! Our program computes the universal characteristic in several seconds, while
there exists a particular ranking, for which the direct application of the Rosenfeld–Gröbner
algorithm takes much longer.

This suggests that not only the complexity of computation of the universal characteristic set
is much less than the sum of complexities of computations of all particular characteristic sets
(because many polynomials are shared by several characteristic sets), but there is another
mechanism involved. It may well be the case that if a polynomial participates in several
characteristic sets corresponding to several different rankings, the cost of its computation
depends on the ranking. Thus, an algorithm which computes several characteristic sets
simultaneously (possibly in parallel) and uses intermediate polynomials obtained for one
ranking to perform reductions w.r.t. another ranking, may perform better than the direct
computation of a single characteristic set.

The same idea can be applied in the algebraic case to compute characteristic sets or
Gröbner bases of algebraic ideals more efficiently, especially when no monomial ordering
is given a priori.

(2) Can universal characteristic sets be used to solve PDE systems?
It has been the case in our example that the universal characteristic set happened to contain

a linear polynomial vxxx −2, which has played a key role for the solution of the system. Since
a priori it is not clear whether there exists a ranking which would yield a linear polynomial
in the characteristic set and, if so, which ranking it is, it seems reasonable to compute the
universal characteristic set, in order to look for the polynomials that facilitate the solution of
the system.

(3) How to find the minimal universal characteristic set?
It has been just a matter of chance that we succeeded at obtaining a minimal characteristic

set for our example, as well as at proving the minimality. However, the following general
approach seems feasible: one can consider the sum of algebraic ideals corresponding to
particular characteristic sets, compute the universal Gröbner basis of this ideal, and try to
obtain a universal characteristic set from this basis.

(4) Do arbitrary (radical) differential ideals always have strong characteristic sets?
If this turns out to be true, the differential Gröbner fan is finite for these ideals as well.

However, the role of characteristic sets for arbitrary (as opposed to prime) ideals is not as
important, since, in general, the ideal that has a given characteristic set may not be unique.

(5) Can one efficiently construct a universal regular (Boulier et al., 1995)/characterizable
(Hubert, 2000) decomposition of a radical differential ideal?
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