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graph with p vertices and q edges can have only slightly more than 297P cycles. The bounds
in this note answer this in the affirmative for all graphs except possibly some that have
Minimal codewords fewer than 2p + 3 log, (3p) edges. We also conclude that an Eulerian (even and connected)
Intersecting codes graph has at most 297P cycles unless the graph is a subdivision of a 4-regular graph that is
Cycle code of graphs the edge-disjoint union of two Hamiltonian cycles, in which case it may have as many as
297P + p cycles.
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1. Introduction

Abinary linear code of length n and dimension k is a k-dimensional subspace of GF}'. The codewords of a binary code form
a poset under support inclusion. The non-zero codewords that dominate only the zero element in that partial order are called
minimal. They include the minimum weight non-zero codewords, but do not coincide, in general, with them. They occur in
decoding studies [1,4], and independently in secret sharing schemes based on codes [3]. What is the maximum number
M (C) of minimal codewords a binary linear code C might have? If C has dimension k, an immediate upper bound, which we
call the trivial upper bound, is M(C) < 2¥ — 1. This bound is met with equality for intersecting codes, i.e. codes any pair of
codewords of which intersect nontrivially [5,6]. Conversely, any code meeting that bound with equality is intersecting.

If Gis a connected graph on p vertices with g edges, then its cycle code C(G) has lengthn = ¢,and dimensionk = g—p+1.
The minimal codewords of C(G) are exactly the incidence vectors of cycles (that is, circuits in the cycle matroid) in G. Thus
the above question restricted to the graphic case asks how many cycles a graph with p vertices and q edges can have. (We
allow graphs to have multiple edges but no loops.) This question was raised in 1981 by Entringer and Slater [8] who observed
that a graph with p vertices and q edges cannot have 297P*1 cycles because of the trivial upper bound. They gave examples
showing that it may have slightly more than 297P cycles and asked if these examples were close to best possible. In this
paper, we verify this for all graphs except possibly some that are sparse.
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We view this in a coding theoretic context as follows. We denote by 1 (R) the asymptotic exponent of the maximum of
M(C) for families of codes C of rate R, where R is the limsup of k/n. Formally, let C[n, k] denote the set of all [n, k] codes, and
let

M(n, k) = max{M(C) : C € C[n, k]}.

We now introduce

1
W(R) = limsup — log, M(n, [Rn]).
n—oo N

If, in this definition, we replace C[n, k] by the cycle codes of graphs with p vertices and q edges (where n = ¢, and
k = q — p + 1) we obtain Mg (n, k), ug (R), respectively.

By the trivial upper bound, «(R) < R.For R € [0, 0.5] random coding shows that the bound is tight. For R > 0.5 the
trivial upper bound can be improved using matroid theory for R > Rq with Ry &~ 0.77.

In this paper, we prove an upper bound for the number of cycles in a graph with p vertices and q edges. That upper bound
implies that

ug(R) =R
for R < 0.5, while for 0.5 < R < 1, g (R) is continuous, piecewise linear, and
pg(R) = —(1—R)log,(1 —R)

for infinitely many values of R.

It also implies that every graph with more than 2p + O(log(p)) edges has fewer than 2977 cycles. The graph 2C, (the cycle
of length p with every edge doubled) is 4-regular, and has therefore 2p edges, and has precisely 2977 + p = 2P + p cycles.
This shows that we cannot omit the O(log(p)) term above.

2. Known bounds on M (n, k), M(C) and u(R)

In this section, we review some known bounds.

If C isan [n, k] code, then we have M(C) < 2* — 1. We call this bound the trivial upper bound. It is easy to see that a binary
linear code C meets the trivial bound with equality if and only if it is intersecting. For, if C is not intersecting, then two of
its codewords, say ¢ and d have disjoint supports. Their sum ¢ + d is nonzero and non-minimal. Hence M(C) < 2k — 1.
Conversely, if C has a non-minimal codeword, then it can be written as a sum of at least two disjoint support minimal
codewords. Therefore C is not intersecting.

Recall that the trivial upper bound implies that «(R) < R.

It is proved in [7] that, for a binary matroid on n points of rank n — k represented by an [n, k] code C say, we have

M(C)f( " )
k—1

This implies that «(R) < H(R), where H is Shannon'’s binary entropy function defined for x € [0, 1] by
H(x) = —xlogy x — (1 — x) log, (1 — x).

That upper bound is better than the trivial upper bound for R > Ry & 0.77 where H(Ry) = Ro.
By averaging arguments (random coding) it was shown in [3, Cor. 2.5] that for R < 1/2, we have

u(R) = R,
and for R > 1/2, we have
w(R) > HR) —1+R.
Finally in this section we state, as Theorem 1, a bound for M(n, k) from [1, Theorem 5]. We refer to this bound as the
Agrell upper bound.
Theorem 1. For *-1 > 1 we have

k

Mk < ———— .
an(5 = )2

3. Cycle codes of graphs

It is a long-standing and difficult problem in graph theory to find the maximum number of cycles a connected graph on
p vertices and with g edges can have. This problem was raised by Entringer and Slater [8] who observed that no connected
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graph G can have 297P*1 cycles. This follows from the trivial upper bound because there is a binary [q, ¢ — p + 1] code C(G)
called the cycle code of the graph. Its codewords are defined on the edge set and are the indicator vectors of the edge disjoint
unions of cycles. The minimal codewords of C(G) are the indicator vectors of the cycles of G. Entringer and Slater [8] also
observed that there are graphs having slightly more than 297? cycles and asked if this is (essentially) the maximum. Finally,
Entringer and Slater [8] observed that the maximum is attained for cubic graphs.

The first bound significantly below the trivial bound was obtained by Aldred and Thomassen [2] who proved that no
connected graph G can have more than }—22‘1‘1’“ cycles. This is the best known upper bound for cubic graphs. But, for graphs
of average degree > 4 there are better bounds, and in fact, the question by Entringer and Slater has been answered for all
graphs of average degree slightly greater than 4. The Agrell bound (Theorem 1) immediately implies the following.

Corollary 1. If Gis a connected graph on p vertices and with q edges satisfying q > 2p, then its number of cycles is at most
qzq—p-H
(q—2p?*

We shall here prove the following.

Theorem 2. If G is a connected graph on p vertices and with q edges, and we write
qg—1=pP—-1Dm+r

where m, r are nonnegative integers,and0 <r <p — 1,
then its number of cycles is at most

gnP " T m+ 1. O

If we fix the ratio q/p and let p tend to infinity, then the bounds in Corollary 1 and Theorem 2 are essentially exponential
functions. The exponential function in Theorem 2 is in a sense best possible, as we point out below. Also, both results answer
the question of Entringer and Slater (asking if a graph can have significantly more than 2977 cycles) for graphs of average
degree slightly more than 4. Corollary 1 shows that counterexamples (if any) can have at most 2p+0(,/p) edges. Theorem 2
goes further and says that they must have at most 2p + O(log(p)) edges. It would be interesting to answer the question for
all graphs of average degree at least 4.

Theorem 2 is a consequence of Theorem 3 below.

A path is a graph with vertices vy, v, . . ., vp and edges vyvy, V23, . .., Vp_1vp. A multipath is obtained from a path by
replacing some edges with multiple edges. Let f (q, p) denote the maximal number of paths from v to v, in a multipath with
p vertices and q edges. This maximum is attained if no two edge multiplicities differ by more than 1. So, if p — 1 divides g,
then

f(@,p)=(q/(p— D).

Lemma 1. If x, y are vertices in a graph G with p vertices and q edges, then G has at most f (q, p) paths from x to y.

Proof. The proofis by induction on p. If p = 2 the statement is trivial. So assume p > 2. Let d denote the degree of x, and let
X1, X2, . . ., Xq be the neighbors of x. (Some of these neighbors may be identical.) By induction, G—x has at mostf (q—d, p—1)
paths from x; to y, foreachi = 1,2, ...,d. So G has at most df (g — d,p — 1) paths fromxtoy. As f(q — d,p — 1) is the
number of paths between the ends in a multipath with p — 1 vertices and g — d edges, we may interpret df(q —d,p — 1)
as the number of paths between the ends in a multipath with p vertices and g edges, where the first edge multiplicity in the
multipath is d. By the maximum property of f (g, p), we have

df(q—d,p—1) <f(q.p),
which completes the proof. O
Theorem 3. Let p, q be natural numbers > 2.

There exists a graph with p vertices, q edges, and at least f(q — 1, p) cycles.
If Gis any graph with p vertices and q edges, then G has at most

cycles.

Proof. By the definition of f, there exists a multipath with p vertices, g — 1 edges, and precisely f(q — 1, p) paths between
the ends. If we add an edge between the ends we get a graph with p vertices, q edges, and at least f(q — 1, p) cycles.
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To prove the last statement, consider any edge e = xy in G. The number of cycles in G containing e is the number of paths
in G — e from x to y. By Lemma 1, this number is at most

This completes the proof. O

Because of the logarithm in the definition of 1, Theorem 3 gives the right «-value for the graphs of a fixed average degree.
It is still interesting, though, to decide if the bound qf (g — 1, p) can be lowered to about (q/p)”. Does the maximum number
of cycles occur in graphs similar to tC,? Are there graphs of average degree 2t without multiple edges that have the same
number or a larger number of cycles? These questions are open even for cubic graphs. As mentioned earlier, Entringer and
Slater [8] observed that a cubic graph on p vertices may have as many as 2?/2 cycles. It has been open for several years if
this is close to the right number. For planar cubic graphs this was verified by Aldred and Thomassen [2]. For general cubic
graphs they lowered the trivial upper bound 2P/%*1 to (15/16) - 2P/?+1,

We can now answer the question by Entringer and Slater [8] for all graphs with average degree slightly more than 4.

Theorem 4. Let G be a graph with p vertices and q edges. If q > 2p + 3 log,(3p), then G has at most 2977 cycles.

Proof. Consider first the case where ¢ = 2p. The upper bound on the number of cycles provided by Theorem 2 is (2p)-3-2P~2,
which is more than 2977 = 2P, However, if we increase q to 2p+r, then the upper bound increases to (2p+r)-3-2P=2.(3/2)".
This number is < 2P*" for r > 31log,(3p).

This completes the proof. O

4. Applications to u, (R)
We can now determine ug (R) completely.

Theorem 5. For 0 < R < 0.5,

g (R) =R
If Ris of the form 1 — 1/t where t is a natural number > 2, then

1g(R) = —(1—R) logy(1 — R).

The function g (R) is continuous and linear in each closed interval from 1 — 1/t to 1 — 1/(t 4 1), where ¢ is a natural
number > 2.

Proof. Assume first that 0 < R < 0.5. For any two natural numbers p, r we let G,  be obtained from 2C, by subdividing
one edge r times. Then G, , has p + r vertices and n = 2p 4 r edges. Thus the dimension of the cycle code is k = p + 1, and
the rate of the cycle code is k/n = (p + 1)/(2p + r). For each natural number p we let r be the largest natural number such
thatk/n = (p +1)/(2p +r) > R.Then k = [Rn]. Also,r = [(p + 1)/R — 2p]. Recall that the number of cycles in 2C, and
hence also in G, ; is > 2P. Substituting these values in the definition of u, and letting p tends to infinity, we conclude that
Hg(R) = R.
‘ The trivial upper bound shows that this inequality is, in fact, an equality.

Consider next the case where R = 1 — 1/t for where t is the natural number > 2. Let tC, be the cycle of length p where

each edge has been duplicated t times. This graph has p vertices and q = pt edges. The number of cycles in this graph is

t
tP ,
#(3)

the first term counting cycles of length p and the second cycles of length 2. The graph is regular of degree 2t. Hence it has
n = pt edges and has rate (pt —p + 1)/pt = 1 — 1/t + 1/pt. Hence its cycle code is an [n, Rn + 1]-code. If we delete an
edge, then we get an [n — 1, [R(n — 1)]]-code. Deleting an edge reduces the number of cycles only slightly. Letting p and
hence also n tend to infinity, we conclude that

1g(R) = —(1—R) log,(1— R).

Now assume that 1—1/t < R < 1—1/(t+ 1), where t is a (fixed) natural number > 2. Then we let G(p, R, r) denote the
graph obtained from tC, by adding r edges between neighboring vertices such that all edge multiplicities are t or t 4 1. The
resulting graph G(p, R, r) has p vertices and n = pt + r edges. Thus the dimension of the cycle codeisk = p(t — 1) +r +1,
and the rate of the cycle codeisk/n = (p(t — 1) +r + 1) /(pt + ).

We first choose any p so large that the rate of tCp,, whichis (pt —p + 1)/pt = 1 — 1/t 4 1/pt, is smaller than R. Then
we let r be the largest natural number such that the rate of G(p, R, r), which is (p(t — 1) 4+ r 4+ 1)/(pt + 1), is smaller
than or equal to R. Thatis,r = —pt + |[(p — 1)/(1 — R)]. Then the cycle code of G(p, R, r) is an [n, [Rn]]-code, where
n=pt+r=1[(p—1)/(1 —R)] is the number of edges of G(p, R, r).
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The number of cycles in G(p, R, ) is > tP7"(t + 1)".
If we substitute these values in the definition of g and let p tend to infinity, then we conclude that

ug(R) = (1 —=R)(1 +1t) — 1 log(t) + (—t(1 —R) + D log(t + 1).

The right hand side is clearly a linear function. For Requalto 1 — 1/t or 1 — 1/(t + 1) the right hand side has the same
values as the lower bounds we obtained for those two values of R. So we have obtained a lower bound for g (R) which is
continuous and piecewise linear.

We claim that this lower bound is also an upper bound. We used the graph G(p, R, r) above. If we putq = n = pt +r,
then G(p, R, r) has the maximum number of cycles among those graphs with q edges which are obtained from a cycle of
length p by duplicating edges. The graphs used to give the lower bound f(q — 1, p) in Theorem 3 are also graphs of this type.
Hence G(p, R, r) has atleast f (g — 1, p) cycles. On the other hand, Theorem 3 says that any graph with p vertices and q edges
has at most gf (g — 1, p) cycles. So no graph with p vertices and q edges has more than q times as many cycles as G(p, R, ).
Hence the lower bound for g (R) obtained from the graphs G(p, R, r) is also an upper bound. O

The function wg (R) is less than the matroid upper bound for all R and also less than the random upper bound for R > 0.5.
The Agrell upper bound gives the same upper bound on u as the trivial upper bound. Fig. 1 shows these bounds.

5. Cycle codes of 4-regular graphs

Cycle codes of cubic (that is, 3-regular) graphs have enjoyed particular attention because in order to answer the afore-
mentioned question by Entringer and Slater [8], it suffices to consider cubic graphs. The investigations in this paper indicate
that the 4-regular graphs also deserve attention. First of all, their cycle codes have rate R & 0.5, and this is the smallest value
of R for which the function ug (R) changes shape. Here we shall provide another reason. Although it is merely an observation
we call it a theorem because of the striking exceptions that appear in the statement. A graph is Eulerian if it is connected and
all vertices have even degree. These graphs are particularly interesting in the present context because the vector 1 consisting
of ones is a code word. Recall that a Hamiltonian cycle in a graph is a cycle containing all vertices.

Theorem 6. If G is an Eulerian graph with p vertices and q edges, then G has at most 297P cycles unless G is a subdivision of a
4-regular graph which is a union of two Hamiltonian cycles.

Proof. The map sending a codeword x into the codeword x + 1 is a map from the cycle code into itself. If the codeword of
every cycle is mapped into a codeword which does not correspond to a cycle, then at most half of the 297P*! codewords
correspond to cycles, and the result follows. So we may assume that G has a cycle C such that both its codeword x and also
the codeword x + 1 correspond to cycles, say C, C’. Hence G cannot have a vertex of degree 6 or more. Each of C, C’ contains
precisely two edges incident with each vertex of degree 4. And each edge of G belongs to precisely one of C, C’.So C, C’ isa
partition of G into two Hamiltonian cycles after ‘suppressing’ the vertices of degree 2 (i.e. for each vertex v of degree 2 and
neighbors u, w, delete the vertex v and add the edge uw). O

6. Conclusion and open problems

The function g (R) is known exactly. The function & seems more problematic. Thus u(R) = R for R < 0.5, while for
R > 0.5 we only have the bounds
HR) — 14+ R < p(R) < min(R, H(R))

the best known upper bound for R > 0.5. These bounds can be generalized to linear codes over a non-binary alphabet.
By Cohen and Lempel [5] long linear intersecting codes can exist only for R < 0.283. Thus the codes of rate between that
value and 0.5 provided by random coding are “almost” intersecting.

Open problem 1. Is ;. (R) a continuous function of R? Is it concave? For which R is it maximum?

Analogous questions have been considered by Manin [9].

We have answered Open problem 1 for pi, (R). This function has maximum for R = 2/3. The 6-regular graphs have rate
~ 2/3, so maybe also the 6-regular graphs are worth studying in more detail.

As mentioned earlier, the 4-regular graph 2C, has 2P + p cycles, and no 4-regular graph has more than 2°*! cycles, by
the trivial upper bound.

Open problem 2. Does there exist a 4-regular graph with p vertices and more than 2P + p cycles?
In case the answer is negative, then it seems that the 4-regular graphs are the only regular graphs for which there is a
simple expression for the maximum number of cycles.

Open problem 3. Does there exist a real number ¢ < 2 such that every 4-regular graphs with p vertices and no multiple edges
has less than cP*1 cycles?

As mentioned above, tC, has p vertices, ¢ = pt edges, and t? + p () cycles.
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Fig. 1. w(R) versusR.

Open problem 4. Does there exist a graph with p vertices, ¢ = pt edges (where t is a natural number), and more than t? +p ( ;)
cycles?
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