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When does the root system of a nonselfadjoint operator form a Riesz basis of a 
Hilbert space? This question is discussed in the paper. 

1. INTRODUCTION 

Let A be a linear, densely defined operator on a Hilbert space H, of the 
form A = L + T, where L is a selfadjoint operator with discrete spectrum 
(A,}, d1 <A, < ... D(A) = D(L), D(A) s dom A. We assume that 

II, = cnP(1 + o(n-1)) c, c = const > 0, p > 0. (1) 

This assumption is satisfied by some elliptic differential and pseudo- 
differential operators (PDO). An operator T is said to be subordinate to L if 

I v- < M ILYL a < 1, VfE D(L”); (2) 

M here and in the sequel denotes various constants, and 1 ?“I the norm of 
operator T on H. 

Under assumptions (1 ), (2) the operator A = L + T has a discrete 
spectrum, that is, every point of its spectrum is an eigenvalue of tinite 
algebraic multiplicity. If 1 is an eigenvalue of A, then the linear hull of the 
corresponding eigenvectors is called the eigenspace corresponding to d. Let 
h, be an eigenvector, Ahj = 13.hj. If the equation Ah,!” = A@” + hj is solvable 
then the chain {h. /z(i) ,..., hjSj)}, AhfSj) = A/z,!~‘) + /zjSj-lF is called the Jordan 
chain correspondi& ;o the pair (A, hj). The number sj + 1 is called the length 
of this chain if the equation Ah - Ah = h, tS~) has no solutions. If 1 has a finite 
algebraic multiplicity then sj < 00. The vectors hjrn) are called root vectors 
(or associated vectors). The union of eigen and root vectors is called the root 
system of A. A system { gj}j”, , of vectors is called linearly independent if any 
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finite set of these vectors is linearly independent. Consider a system { gj) of 
linearly independent vectors in H. If for all j the vector gj does not belong to 
the closure of the linear hull of vectors g, ,..., gjPi, gj+ , ,... then the system 
( gj} is called minimal. A minimal system { gj} forms a basis of H if any 
g E H can be uniquely represented as g = x1?, cj gj. We shall write 
A E B(A) (or A E B) if its root system forms a basis for H. 

A minimal system ( gj) forms a Riesz basis of H if there exists a 
homomorphism B (linear bijection of H onto H) which sends an 
orthonormal basis (fj} onto { gj), i.e., Bfi = g,i, V j. A minimal system ( gi) 
forms a Riesz basis with brackets of H if there exists a homomorphism B 
which sends (P,} onto (G,}, i.e., BF,= G,i. Here (F,} is the collection of 
subspaces constructed as follows. Let m, < mz < ... be an infinite increasing 
sequence of integers; then F, is the hull of vectors f, ,..., f,,,, Fi is the hull of 
vectorsf,, ,,,,.f,, ~tZ~...~fm,~ and Gj is defined similarly. Now we can give 
the basic definition in which a new word “basisness” is used. 

DEFINITION. A linear operator A with discrete spectrum possesses the 
basisness property if its root system forms a Riesz basis with brackets for H. 
In this case we write A E R,(H) (or A E Rb). If the root system of A forms a 
Riesz basis we write A E R(H) (or A E R). 

The purpose of this paper is to give some conditions for A E R to be true. 
These conditions will be essentially conditions (1) (2). In the literature there 
are some results related to the question of basisness. In Kato [ 1, Section V.4 ] 
a theorem on basisness for an operator L + T is proved under the following 
assumptions: The eigenvalues of L are simple and Aj - Lip, --) +co as j-, co, 
and T is bounded. In [2] some conditions for completeness of root system of 
some nonselfadjoint operators are given. In (3-71 some conditions for 
A E R, are given and in [6, 71 applications to diffraction and scattering 
theory are presented. One of the main results [4] can be formulated as 
follows: A E R, if p( 1 - a) > 1. The assumption about the selfadjointness of 
L can often be replaced by the assumption of the normality of L, provided 
that it is known a priori that the eigenvalues of L are concentrated near some 
rays in the complex plane. 

In this paper we give a simple method to prove that A E R under the 
assumption ~(1 - a) > 2. The method is based on some estimates of the 
resolvent of A [lo]. 

The main result is the following: 

THEOREM. Let (1) and (2) hold and ~(1 - a) > 2. Then A E R. 
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2. PROOF 

Let 

(3) 

denote the projector on the root space Lj of the operator A, corresponding to 
the eigenvalue S(A), where Cj is a circle with the center Aj(A) so small that 
there are no other eigenvalues inside the circle. In order to prove that A E B 
it is sufficient to prove that 

as N-rco, vj-Ef& (4) 

where the arrow denotes convergence in H. In order to prove additionally 
that A E R it is necessary and sufficient to prove that (2, p. 3 10, 334 1 

sup 1‘ Pj < 03, 
J I I ,Zf 

(5) 

where J is an arbitrary finite subset of the set (1, 2, 3,...) of all integers. 
We start with the identity 

(27ciA)-If= -(27ci)-’ Rnf + (2d-‘R,Af, 

f E D(A), R, = (A -/II)-’ (6) 

and integrate this identity over the contour r,,, : (/1I = r,,, = (A, + A, + ,)/2. 
Note that the distance d, between {lj} and the circle (J. / = r,,, satisfies the 
inequality 

4, > (L,, - LP (7) 

After integration we get 

where 

a, = (2ni)-’ \ A-‘RALf dl, 
-r, 

(8) 

(9) 
6, = (2ni)- ’ 

I 
A- ‘R,{ Tf M. 

rm 

It is easy to prove Lemma 1. 
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LEMMA 1. Under assumptions (l), (2) operator A = L + T is closed, its 
spectrum is discrete and the eigenvalues of A lie in the set: 

K = ij {k I/I -/IjI < ISI”Mq}, q> 1, 
j=l 

(10) 

where M and a are the constants from (2). 

While this statement can be found in the literature [ 1,4,6] we give its 
proof for the convenience of the reader after the proof of the theorem. 

To prove that A E: B it is sufficient to prove that 

a,+& b,-+O as m+a3. (11) 

Both terms can be considered similarly. Let us consider the first term. If 
R; = (L -A)-‘, then 

R, = {(L - A)(1 + R;LaL-“T)}-’ = (I + RO,L’T&’ R5;, 

T, =L-“T, IIT,I( GM, (1’4 

I%L”I = srp&< syp ,r;j;,, 
J J 

(13) 

Here M denotes various constants, m is assumed to be large, so that from (1) 
and (7) it follows that Am - cmJ’, d, > Mmp- ‘. It is clear now that 
p( 1 - a) > 1 implies the following estimate provided that 111 I is sufficiently 
large and runs through the set (r,}: 

IRO,L”I <M IAl-‘, y=p-‘{p(l-a)-l}=l-a-pp’>O. (14) 

Further we get 

since for large m from A,,, - cm” it follows that m - c,A$J’. 
From (12), (14) (15) it follows that 

(15) 

provided that y > 0, i.e., 1 - p-l > a. All estimates (13~(16) are given 
under the assumptions that ]A ] = rm, and m is suffkiently large. 
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It is well known that the eigensystem of the selfadjoint operator L with 
discrete spectrum forms an orthogonal basis for H. For A = L an identity of 
the type (8) is 

f=?qf+a$, a”, = (2ni)-’ A-‘R;Lf dA, (17) 
j=O i rm 

where 

q = -(27ci)-’ RS; drl, (18) 

and Cy is a small circle with the center ~j. 
For the selfadjoint operator 

f= lim ?Pjf and a;+0 as m-co. (19) m-m j=l 

Thus in order to prove that a,,, + 0 as m --) co it is sufficient to prove that 

a, - a;+0 as m-+03. (20) 

To this end consider 

I(R,-R5;)LfI=IR,TRS;Lfl 

<MIR,I IL’RiI ILfl 

<MlAl- 2(1-P-‘)+a [Lf 1) 

IR, VI< IV, - W Tf I + ~4 I%L’I If I (21) 

<lR~TR,TfI+~I~l-Ylfl 
~~I~~~“II~,~fI+~I~l-Ylfl 
<MI~IPIR.tTfl +Ml~I-Ylfl. 

If y > 0 and I;1 I is sufficiently large we get 

lR,TfIG~l~I-Ylfl. (22) 

If y > 0 and y + 1 - p- ’ > 0, i.e., p( 1 - a) > 1 and ~(2 - a) > 2, then from 
(21), (22) and (9) equalities (11) follow for f E D(L). The idea of the 
following argument is to prove (11) for any f E H and therefore prove that 
A E B. To this end let us first give the proof for a simple case when A = L. 



62 A. G. RAMM 

In this case the proof that a”, + 0 as m -+ 0~) for any f E H can be given as 
follows: 

,vm 
ai=f - \‘ qf 

Jr, 

is a linear operator which is a bounded operator since q are orthogonal 
projectors. Thus if a$ = a”,(f) + 0 on a dense set in H this is true on all H. 
To apply this idea to a, we must prove that 1 cjN_m, Pjl 6 M, where M does 
not depend on m. To prove this it is sufficient to prove that 

We have 

<M Inllfl Mlfl 
’ pj1-p-1+; = l~ll-a-2p-” 

Therefore if 

2 
pa----- l-a’ 

a<1 

(23) 

(24) 

the above argument shows that a,(f) + 0 for all f E H, so that A E B. But 
actually inequality (24) shows more: if (25) holds then A E R (i.e., the root 
system of A forms a Riesz basis without brackets of H). Indeed 

for any subset J of integers. This completes the proof of the theorem. 

Remark 1. From (25) both inequalities p(1 - a) > 1 and p(2 - a) > 2 
follow. 

Proof of Lemma 1. From (12) it follows that A 6? a(A) if IRiL”I M < 1. 
From (13) and (10) it follows that if ,A G$ K, then 

lA.1” MIR”,LaI<Msup--l- j IA--fljjl 

so that 1 4 a(A). Thus o(A) c K, where K is defined in (10). Discreteness of 
a(A) and the closedness of A can be proved under weaker assumptions 
[& 101. 
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3. GENERALIZATIONS 

Assumption (1) can be substituted by the following assumption: 

A;+‘(/l,+,-n,)-‘-+o as m-+co, 

where a is defined by formula (2). 

(1’) 

PROPOSITION 1. From (1’) and (2) it follows that A E R. 

Proof Let /A / = (A,+, + ,4,)/2, d, = A,+ i - A,, M be various positive 
constants which do not depend on m. We need to prove that: (i) 

/AI IRA -w-,0 as /;1I--+co, (ii) I(R,-RO,)LI+O as /AI+ co, (iii) 
lR,lTl+O as IlI-+oo. We have: R,-Ri=-R,TRO,, IRi/<Md;‘, 
IR:L”IGMIA,I”d,‘, lR,l~IRO,II(I+R~T)-‘I~Md,‘, lTRO,I+lR;TI< 
M IA, la d; I. Without loss of generality we can assume that L mm1 exists 
(otherwise we can substitute L by L + EI where a is a small number and 
(L + &I)-’ exists; in this case T should be substituted by T -- FI and 
condition (2) holds for T - EI and L + &I). From (1’) it follows that 
lcd;‘+O as m+cO, because ,J,,++co and a < 1. We have: (i) 
//1/jR,-R~I~~~IlR,~TR”I~M~~ad,2~0, rn+oo (ii) I(Rn-RS;)LI= 
1R.,TRO\L1<MA;‘d,* + 0, m + co (iii) IR, T/ < I(R, - Ry) TI + / Ry T/ < 
MAzd,*+MJ”,d;‘-,O, m-co. 

Remark 2. If A,,, - cmp and d, > Mmp-’ then (1’) implies that 
p( 1 - a) > 2. To get the condition p( 1 - a) > 2 as a sufficient condition for 
A E R we add the argument given in the paragraph above Eq. (23). 

Remark 3. If a in (2) can be taken arbitrarily large negative and there 
exists some b E (-co, co) such that 

(1”) 

then (1’) holds. 
Instead of (1) for a wide class of PDO the following estimate is known: 

II, = cnP(1 + O(n-a)), c > 0, p > 0, 6 > 0. (27) 

In this case our arguments lead to 

PROPOSITION 2. Let p( 1 - a) > 2, 0 < 6, < 6, where 6 is defined in (27) 
and c, > 0 be a constant. Then there exists a sequence of integers 
m,-c,n ‘/‘I such that the system of the subspaces {P’“‘H),“=, forms a Riesz 
basis of H, where PC”’ = Cy:;. Pi and Pj is defined by formula (3). It means 
that A E R, and the sequence m, defines the bracketing. 
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The sequence {P(“)H} plays the role of the sequence {G,} of the subspaces 
defined in the Introduction. We need a few lemmas to prove this proposition. 

LEMMA 1. Zf A,, = cnp(l + O(n-“)), 6 > 0 
(/I-‘)“” (1 + O(AVP)). 

then N(A) = CA,<A 1 = 

ProoJ This statement follows from the fact that A = A(n) and N(A) are 
reciprocal functions. 

In what follows we assume that the assumption of Lemma 1 holds. 

LEMMA 2. For suflciently large n and m, n < m, 0 c q, < nm- ’ < q2 < 1 
there exist eigenvalues A”’ and A”‘, 1, <II”’ < A”’ < ,I,,, such that 
A(‘) - I,(‘) > c, mp-’ and the interval (A (“, A(“) is free from the eigenvalues. 

Proof. There are m - n eigenvalues (counting multiplicity) on the 
segment (A,,, A,]. Thus there exists at least a couple of eigenvalues 
A,, ( A(” < A(*) ,< A, such that there are no eigenvalues in the interval 
(A”‘, A(Z)) and A(‘) - 2”’ > (A, - A,)/(m - n) > c(mp - np)/(m - n) - 
O(mP-“/(m - n)) > c, mp-‘, where c, = c,(q,, q2). By c, we denote various 
positive constants. 

LEMMA 3. Suppose that m = m(n), 1 - d(n) < m-*(n) n < 1 -b(n), 
@)/d(n) 2 c,, b(n) ns -t co as n + co, d(n) -+ 0, n + co. Then the conclusion 
of Lemma 2 holds. 

Proof. It is similar to the proof of Lemma 2. The last step is slightly dif- 
ferent : 

mp - np - O(mpmS) 
C = cmp-’ 1 - (n/m)” - O(m-‘) 

m-n 1 - (n/m) 

> cmp-, 1 - (1 - b(n)Y - W- 
/ 

d(n) 

> cmp-l O.Wn)(l - OWsbpl(n)) 
/ 

d(n) 

>c mp-’ /I . 

Here we used the inequality 1 - (1 - x)” > 0.5~~ which holds for small x. 

Proof of Proposition 2. We can take b(n) = nS1, 0 < 6, < 6, d(n) = b(n). 
In this case (m,+,/m,) = 1 + b/m:’ and m, - (6, b)l161 n”sl. From this and 
Lemmas 3, 2 and the argument given in the proof in Section 2 Proposition 2 
follows. 
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EXAMPLE 1. Let QJ = 1, rS; ’ exp(ikr,,)f(t) dt, where r is a smooth 
closed surface in R3, k>O, r,,=/s---1. Then Q=Q,+Q,, where 
Q,=ReQ, Q,=iImQ, 

QJ =I, r; ' cos@r,,)f(O df, 

QJ =iirr; ’ sin(kr,,)f(t) dt. 

Operators Q,, Q, are pseudo-differential of orders -1 and -co, respec- 
tively [S, 61, A,(Q,) - c, K”~, C, = const. 

Let us assume that L = Q;’ exists (without loss of generality, see [6]). 
Then l,(L) - UZ”~, c = const, so that p = 0.5, where p is defined in ( 1). Since 
in the theorem the unperturbed operator is unbounded we denote A = 
(Q,+Q,)-‘=(Z+LQ,>-lL=L+T, TS -(I t LQ,)-‘LQ,L, we 
assumed that (Q, + Q,))’ exists again without loss of generality; where 
k > 0 and k* is not an eigenvalue of the Laplace operator for the interior 
Dirichlet problem in the domain D with the boundary r it is easy to prove 
that (QO t Q,)-’ exists [6]. Since ord LQ,L = -co we can take the number 
a in (2) negative and large, so that p(1 - a) > 2. Thus Q E R, if (1”) holds, 
and Q E R,. 

For complex k the order of Im Q = -3, a = -1 so that p( 1 - a) = 1 and 
Q E R, but we cannot assert that Q E R [IO]. 

EXAMPLE 2. Let Qf = j exp(ikr,,) r,‘q( Y> f( v) &, k > 0, I= J”,,. 
Operator Q plays the principal role in the potential scattering theory. Let us 
assume that q E C,“(R3), q(x) > 0. Then the operatorQ,f = ( cos(kr,,,) 
r,‘q(y) dy is selfadjoint pseudo-differential operator of order -2 in H = 
L2(R3; q(x)); the operator Q, f = i j sin(kr,,) r&‘q( y) dy has order --co 
because its kernel is infinitely smooth and q(y) is compactly supported; 
UQ,) - cn- . 2/3 Thus in this case p = 213, a can be taken negative and as 
large as we want, inequality p(1 - a) > 2 holds and the root system of Q 
forms a Riesz basis of H if (1”) holds, and Q E R,. If q is not compactly 
supported additional consideration is needed. It is easy to prove the QJ= 0 
implies f = 0, so that Q-’ exists. 

In both examples it is an open question whether Q E R or not. 
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