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When does the root system of a nonselfadjoint operator form a Riesz basis of a
Hilbert space? This question is discussed in the paper.

1. INTRODUCTION

Let A be a linear, densely defined operator on a Hilbert space H, of the
form A =L + T, where L is a selfadjoint operator with discrete spectrum
Ao A €4, € - D(A)=D(L), D(4)=dom A. We assume that

A,=cn’(l1+o(n 1Y), ¢ =const >0, p>0. (1)

This assumption is satisfied by some elliptic differential and pseudo-
differential operators (PDO). An operator T is said to be subordinate to L if

|TFI<MI|LY|,  a<l, YfEDL?); 2)

M here and in the sequel denotes various constants, and |7T| the norm of
operator T on H.

Under assumptions (1), (2) the operator A =L + T has a discrete
spectrum, that is, every point of its spectrum is an eigenvalue of finite
algebraic multiplicity. If 1 is an eigenvalue of A, then the linear hull of the
corresponding eigenvectors is called the eigenspace corresponding to A. Let
h; be an eigenvector, Ah; = Ah,. If the equation Ah{" = Ah{" + h; is solvable
then the chain {h;, A{V,..., Bi*'}, ARS? = AR + A%~V is called the Jordan
chain corresponding to the pair (4, #;). The number s; + 1 is called the length
of this chain if the equation A4k — Ah = h{* has no solutions. If A has a finite
algebraic multiplicity then s; < 0co. The vectors A{™ are called root vectors
(or associated vectors). The union of eigen and root vectors is called the root
system of 4. A system {g;};2, of vectors is called linearly independent if any
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finite set of these vectors is linearly independent. Consider a system {g;} of
linearly independent vectors in H. If for all j the vector g; does not belong to
the closure of the linear hull of vectors g,..., g;_;, &, then the system
{g;} is called minimal. A minimal system {g;} forms a basis of H if any
g€ H can be uniquely represented as g=3,c;g,. We shall write
A € B(A) (or A € B) if its root system forms a basis for H.

A minimal system {g;} forms a Riesz basis of H if there exists a
homomorphism B (linear bijection of H onto H) which sends an
orthonormal basis {f;} onto {g;}, i.e., Bf;=g;,Vj. A minimal system {g;}
forms a Riesz basis with brackets of H if there exists a homomorphism B
which sends {F;| onto {G,}, i.e., BF;= G;. Here {F,} is the collection of
subspaces constructed as follows. Let m, < m, < --- be an infinite increasing
sequence of integers; then F, is the hull of vectors ..., f,, , F; is the hull of
vectors [, iy [, L+ 20 Sinp» @0d G is defined similarly. Now we can give
the basic definition in which a new word “basisness” is used.

DEFINITION. A linear operator A with discrete spectrum possesses the
basisness property if its root system forms a Riesz basis with brackets for H.
In this case we write 4 € R,(H) (or A € R,). If the root system of 4 forms a
Riesz basis we write 4 € R(H) (or 4 € R).

The purpose of this paper is to give some conditions for 4 € R to be true.
These conditions will be essentially conditions (1), (2). In the literature there
are some results related to the question of basisness. In Kato |1, Section V.4|
a theorem on basisness for an operator L + T is proved under the following
assumptions: The eigenvalues of L are simple and 4, — 4, _, - +00 as j— oo,
and T is bounded. In |2} some conditions for completeness of root system of
some nonselfadjoint operators are given. In [3-7] some conditions for
A € R, are given and in [6, 7| applications to diffraction and scattering
theory are presented. One of the main results [4] can be formulated as
follows: A € R, if p(1 —a) > 1. The assumption about the selfadjointness of
L can often be replaced by the assumption of the normality of L, provided
that it is known a priori that the eigenvalues of L are concentrated near some
rays in the complex plane.

In this paper we give a simple method to prove that 4 € R under the
assumption p(l —a) > 2. The method is based on some estimates of the
resolvent of 4 |10].

The main result is the following:

THEOREM. Let (1) and (2) hold and p{1l —a) > 2. Then A € R.
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2. PROOF
Let

S )
Pj=— Lj(A A~ di (3)

denote the projector on the root space L; of the operator 4, corresponding to
the eigenvalue 1,(4), where C; is a circle with the center 4;(4) so small that
there are no other eigenvalues inside the circle. In order to prove that 4 € B
it is sufficient to prove that

1

H

Pf>f as N-oow, VfEH, 4)
1

J

where the arrow denotes convergence in H. In order to prove additionally
that 4 € R it is necessary and sufficient to prove that {2, p. 310, 334]

sup | N P,
J v

JjeJ

< o, (5)

where J is an arbitrary finite subset of the set (1, 2, 3,...) of all integers.
We start with the identity

Qrid)~'f = —Qni)~' R, f + (nid) "' R A,
fEDA), Ry=A-A)" (6)

and integrate this identity over the contour [, :|A|=r,=, +4,,,)/2.

Note that the distance d,, between {1,} and the circle [A|=r, satisfies the

inequality
dp 2 Ay = An)/2- (M
After integration we get
Npm
f=Y Pf+a,+b,, ®)

J=1

where

a, = (2ni)"~" [ AR LfdA,
i X
)
= (2mi)"" f A" 'R, Tf d).
I'm

It is easy to prove Lemma 1.
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LEMMA 1. Under assumptions (1), (2) operator A =L + T is closed, its
spectrum is discrete and the eigenvalues of A lie in the set:

K=U Qd-4|<|4* Mg}, g> 1, (10)

j=

—

where M and a are the constants from (2).

While this statement can be found in the literature [1,4, 6] we give its
proof for the convenience of the reader after the proof of the theorem.
To prove that A € B it is sufficient to prove that

a, -0, b,-»0 as m- co. (1)

Both terms can be considered similarly. Let us consider the first term. If
RS =(L—2)"", then

Ry ={(L~A)(I +R3LL-T)} ' = (I + R3L°T,) ' RS,
T,=L~T, |T||<M, (12)

|4, 140
ROLa — J S
RALE| = sup 7 <SP
1Am|® M
amlal M (13)

m

Here M denotes various constants, m is assumed to be large, so that from (1)
and (7) it follows that A, ~cmP, d,>MmP='. It is clear now that
p(1—a)> 1 implies the following estimate provided that |1| is sufficiently
large and runs through the set {r,}:

IRRLA| KM, y=p Yp(l—a)—1}=1—a—p '>0. (14)

Further we get

1 M M
RS —— T 1
| Al\m.lax|l—lj|< dm < Illl_pAl ( 5)
since for large m from A,, ~ cm” it follows that m ~ ¢, 4,/7.
From (12), (14), (15) it follows that
M
|RA|< ‘l|1,p—l (16)

provided that y >0, ie, 1—p~'>a. All estimates (13)}-(16) are given
under the assumptions that || =r,, and m is sufficiently large.
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It is well known that the eigensystem of the selfadjoint operator L with
discrete spectrum forms an orthogonal basis for H. For 4 =L an identity of
the type (8) is

N
f=Y Pf+a ay= Q)™ [ A7'R3LSd, (17)
rm

-~
<

where

P2 =—(2ni)” JR"d,l (18)

and CY is a small circle with the center 4;.
For the selfadjoint operator

f= lim S P,f and a3—-0 as m- 0. (19)
m-coj 1

Thus in order to prove that a,, — 0 as m — oo it is sufficient to prove that
a,—a,—~0 as m- oo. (20)
To this end consider
|(Ry— R3) Lf|=|R, TR3 LS|
SM|R,[|LRS|| LS|
M A|720=P LA,
|RyTf| <Ry — RY) TS| + MIR3LE| | f] @n
SIRSTRL TS|+ MI|A[77 S|
SM|RIL| IR TS|+ M|A|77| f]
SMIAITT[RYTIf| + MIAI7Y[f).

If y> 0 and |4] is sufficiently large we get
IRy TFI S MIAITY| S (22)

Ify>0and y+1—p~'>0,ie, p(l —a)>1 and p(2 —a) > 2, then from
(21), (22) and (9) equalities (11) follow for f € D(L). The idea of the
following argument is to prove (11) for any f € H and therefore prove that
A € B. To this end let us first give the proof for a simple case when 4 = L.
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In this case the proof that a2, — 0 as m — oo for any f € H can be given as
follows:

ag=f -

[/?

,f

J

is a linear operator which is a bounded operator since P{ are orthogonal
projectors. Thus if a$,=a%(f)— 0 on a dense set in H this is true on all H.
To apply this idea to a, we must prove that |} Y7, P,| < M, where M does

not depend on m. To prove this it is sufficient to prove that

N
I, = (23)
j=1
We have
1 <—l— R, —RS)fdA ! e fdl
n<a |], Ra- RS <o 3
14111 M|f|
<M= = e 24
Therefore if
2
p= —a° a<l (25)

the above argument shows that a,,(f)— 0 for all f € H, so that 4 € B. But
actually inequality (24) shows more: if (25) holds then 4 € R (i.e., the root
system of A forms a Riesz basis without brackets of H). Indeed

AR FEES

J

<M+ My <M (26)

\’Pj}’+
"

for any subset J of integers. This completes the proof of the theorem.

Remark 1. From (25) both inequalities p(1 —a) > 1 and p(2 —a) > 2
follow.

Proof of Lemma 1. From (12) it follows that A &€ o(4) if |RSLYM < L.
From (13) and (10) it follows that if A & K, then

4,1 ML

M[R"L"|<MsupM i|<5u Mg Mla

g ' <,

s0 that A € o(4). Thus 6(4) c K, where K is defined in (10). Discreteness of
0(A) and the closedness of A can be proved under weaker assumptions
(8, 10].
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3. GENERALIZATIONS

Assumption (1) can be substituted by the following assumption:
A2 A1 —Am) 220 as m-— oo, (1)

where a is defined by formula (2).

ProrosiTION 1. From (1') and (2) it follows that A € R.

Proof. Let |A|={(A,, . +4,)/2, d,=Apm,1 —An, M be various positive
constants which do not depend on m. We need to prove that: (i)
A[|R, —R3|=0 as |A|~c0, (i) [(Ry—RYL[>0 as i[> co, (i)
|IR,T|->0 as |i|—> . We have: R, —RS=-R,TRS, |RS|<Md,",
IRSL7| < M2, J%dy" (R, <IRS| | +RST)™ | < Md,", |TRS |+ [RST| <
M|A,|1*d,". Without loss of generality we can assume that L' exists
{otherwise we can substitute L by L + &I where ¢ is a small number and
(L +el)™" exists; in this case T should be substituted by T —e¢l and
condition (2) holds for T—el and L +e&l). From (1) it follows that
A%d;'—>0 as m-— oo, because A,— +oo and a< 1. We have: (i)
A1 [R, — R < [A]|R, TRV K MR dy? » 0, m—w (i) |(Ry—R3)L|=
[R,TRSL|< MA,°d, > >0, m— oo (iii) |R,T|<|[(Ry—R)T|+|RSTI<
MANd, + MASd, 0, m— co.

Remark 2. If A, ,~cm? and d,>Mm’~' then (1') implies that
p(l —a)> 2. To get the condition p(l —a) > 2 as a sufficient condition for
A € R we add the argument given in the paragraph above Eq.(23).

Remark 3. If a in (2) can be taken arbitrarily large negative and there
exists some b € (—o0, 00) such that

d, > M2, (1"

then (17) holds.
Instead of (1) for a wide class of PDO the following estimate is known:

A,=cn’(1+0(n=%), ¢>0, p>0, §>0. 27)

In this case our arguments lead to

ProposITiON 2. Let p(1 —a) > 2, 0< 3, < J, where ¢ is defined in (27)
and ¢, >0 be a constant. Then there exists a sequence of integers
m, ~ ¢ ,n"® such that the system of the subspaces {P'""H\}7_, forms a Riesz
basis of H, where P =37 P, and P, is defined by formula (3). It means

that A € R, and the sequence m, defines the bracketing.

409/80/1-5
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The sequence {P"™H} plays the role of the sequence {G,} of the subspaces
defined in the Introduction. We need a few lemmas to prove this proposition.

LemvMa 1. If A,=cn’(1+0(n"%), 6>0 then NQRA)=3, 1=
(Ae™HY? (1 + O(A~ 7))

Proof. This statement follows from the fact that A = A(n) and N(1) are
reciprocal functions.
In what follows we assume that the assumption of Lemma 1 holds.

LeEMMA 2. For sufficiently large nand m,n <m,0< g, <nm '<q, < 1
there exist eigenvalues AV and A®, A, <AV <A® A, such that
AD AW 5 0 mP~! and the interval (AP AV) is free from the eigenvalues.

Proof. There are m —n eigenvalues (counting multiplicity) on the
segment (1,,4,] Thus there exists at least a couple of eigenvalues
Ay <A < AP L, such that there are no eigenvalues in the interval
AW, A®)y  and AP —AD > (4, —4,)/(m—n) > c(mP —nP)/(m—n)—
O(m*~%/(m — n)) > c,m’~", where ¢, =c,(q,,4,). By ¢, we denote various
positive constants.

LEMMA 3. Suppose that m=m(n), 1—dn)<m '(n)n<1—bn),
b(n)/d(n) > c¢,, b(n) n® > 00 as n— oo, d(n)— 0, n— 0. Then the conclusion
of Lemma 2 holds.

Proof. It is similar to the proof of Lemma 2. The last step is slightly dif-
ferent:

m? — n? — O(mP~?%) o 1 — (n/m)f — O(m~?%)

c

m—n 1 — (n/m)
o 1= (1 =b(m) —O(m™°)
>em dtn)
1 0.5pb(n)(1 — O(n*b"'(n))
cm a0
>cymf

Here we used the inequality 1 — (1 — x)” > 0.5px which holds for small x.

Proof of Proposition 2. We can take b(n) =n"%, 0 < 8, < 4, d(n) = b(n).
In this case (m,,,/m,)=1+b/mé and m,~ (6,b)"® n"%. From this and
Lemmas 3, 2 and the argument given in the proof in Section 2 Proposition 2
foliows.
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ExaMPLE 1. Let QOf = [, r;'exp(ikr,)f(t)dt, where I' is a smooth
closed surface in R’ k>0, r,=|s—t|. Then Q=0Q,+Q,, where

O,=ReQ, Q,=iImQ,

0./ = j ro! cos(kr,,) f(?) dt,

Q.S =1| rg'sinkry,) f(2) dt.
r

Operators Q,, O, are pseudo-differential of orders —1 and —oc, respec-
tively {5, 6], 4,(Qy) ~ ¢, n™ "2, ¢, = const.

Let us assume that L = Qg exists (without loss of generality, see [6]).
Then 4,(L) ~ cn"?, ¢ = const, so that p = 0.5, where p is defined in (1). Since
in the theorem the unperturbed operator is unbounded we denote A4 =
(Qo+ Q) '=U+LQ) 'L=L+T, T=—-(I+LQ,) 'LQ,L, we
assumed that (Q,+ Q,) ' exists again without loss of generality; where
k>0 and k? is not an eigenvalue of the Laplace operator for the interior
Dirichlet problem in the domain D with the boundary I it is easy to prove
that (Q, + Q,) " exists [6]. Since ord LQ,L = —oo we can take the number
a in (2) negative and large, so that p(1 —a) > 2. Thus Q € R, if (1”) holds,
and QER,.

For complex k the order of Im Q = -3, a=—1 so that p(1 —a)=1 and
0 € R, but we cannot assert that Q € R |10].

EXAMPLE 2. Let Qf = [exp(ikr,,) r,lq() f(»)dy, k>0, [=p.
Operator Q plays the principal role in the potential scattering theory. Let us
assume that g€ CP(R’), q(x)>0. Then the operatorQ,f = [ cos(kr,,)
roq(y)dy is selfadjoint pseudo-differential operator of order —2 in H =
L*(R%; q(x)); the operator Q,f =i [sin(kr,,)r;'q(y)dy has order —oo
because its kernel is infinitely smooth and ¢(y) is compactly supported;
A,(Q)) ~cn~%3. Thus in this case p=2/3, a can be taken negative and as
large as we want, inequality p(1 —a) > 2 holds and the root system of Q
forms a Riesz basis of H if (1”) holds, and Q € R,. If g is not compactly
supported additional consideration is needed. It is easy to prove the Qf =0
implies /= 0, so that Q! exists.

In both examples it is an open question whether Q € R or not.
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