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Abstract: A conforming spectral domain decomposition technique is described for the solution of Stokes flow in 
rectangularly decomposable domains. ‘The matrices arising from such a spectral discretization procedure possess a 
block tridiagonal structure where these blocks are full submatrices. Efficient direct solution procedures are proposed to 
rake advantage of the matrix structure. A comparison of the methods in terms of computational efficiency is made. 
Numerical results are presented for the flow through an abruptly contracting channel. 

Kqwordx Spectral methods, collocation, domain decompxi’ion. 

1. Introduction 

The aim of this paper is to compare several direct methods for solving the algebraic equations 
which result from spectral discretizations of the biharmonic ec;uation in rectangularly decom- 
posable domains using domain decomposition techniques. Unlike their finite difference and 
finite element counterparts these systems of equations are not sparse. However, they do possess a 
block tridiagonal structure, with zero entries elsewhere. We seek efficient ways of inverting such 
systems exploiting this fact. Although the techniques in this paper _e described for the solution 
of Stokes flow they can be easily generalized to solve flows with inertia. 

Efficient techniques for the inversion of matrices associated with spectral domain decomposi- 
tion methods have been the subject of papers by Patera [9], who uses a direct fast solver for 
spectral element discretizations of second order separable elliptic equations, and Macaraeg and 
Streett [7], who adapt an influence matrix technique to spectral patching methods. In a recent 
paper, Phillips and Karageorghis [lo] describe an application of the capacitance matrix technique 
[2] to the system resulting from a nonconforming spectral collocation discretization of flow 
through an abruptly contracting channel. In the same paper a coefficient splitting technique 
which partitions the matrix in such a way that the size of the blocks correspond to the number of 
unknown expansion coefficients in each subdomain is described. 
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The present study compares these two techniques and also a NAG library subroutine which 
solves ahnost block diagonal systems [l] on the standard contraction flow problem described in 
detail in Section 2. This latter technique and the capacitance matrix method are comparable in 
terms of computational time and the number of storage locations, and both outperform the 
coefficient splitting method. However, for large numbers of degrees of freedom the capacitance 
matrix method suffers from poor conditioning as a result of almost singular submatrices. This is 
avoided in the NAG subroutine for almost block diagonal systems by the use of global pivoting. 
Therefore we are able to use more degrees of freedom when using this technique and hence 
obtain additional accu acy. 

The governing equations for the planar inertialess flow of an incompressible Newtonian fluid 
assume the mathematical form 

v*o= 0, (2-0 

V-a=o, (2.2) 

where r~ = (u, D) denotes the velocity field and u the Cauchy stress tensor. These statements are 
the conservation of mass and momentum, respectively. For a Newtonian fluid, the extra stress 
tensor T and rate of deformation tensor D are related by 

T = 27@, (2.3) 

where u is a material constant and D = $[ vu + ( VU)~]. For an incompressible fhtid, the motion 
of the continuum determines the stress tensor up to an arbitrary isotropic tensor and thus u and 
T are related as follows 

u= -pIi- T, 

where p is an arbitrary pressure and I is the identity tensor. 
If we define a stream function # by 

W 
u=ay, U= W -- 

ax ’ 

(2.4 

then (2.1) is satisfied identically. Substitution of T from (2.3) into (2.4) and then substitution of 
0 from (2.4) into (2.2) results in the equation 

-vp+2?7v+=o. 42.5) 

The pressure may be eliminated by taking the curl of (2.5) to give a biharmonic equation for the 
stream function 

(2.6) 

We consider Stokes flow through a 1: a contraction shown in Fig. 1. The stream function 
formulation has the advantage that the continuity equation is automatically satisfied and that no 
boundary conditions for the vorticity need to be manufactured. 
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Fig. 1. Contraction geometry. 
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Fig. 2. Three element subdivision of domain. 

Some of the boundary conditions are shown in Fig. 1. Since the flow is symmetric about the 
line y = 0, only the upper half of the channel need be considered. No-slip constraints are 
imposed on the upper channel wall. Along y = 0, the symmetry conditions 

J/=0, $0 
are imposed. On entry and exit Poiseuille flow is assumed, defined by 

#(x, y)+G(y) am+-ao, 0~~1, 

#(x,y)-G(i) =x++oo, Nyo, 

where G(y) = iy(3 -y2) (for details see [lo]). 

(2 3 . 

(2 8) . 

3. Conforming spectral coMocation strategy 

The flow region is truncated on entry and exit at finite distances h, and h2 from the origin, 
xpectively. The domain truncation means that fictitious boundary conditions need to be 
imposed on entry and exit; namely: +(-h,, y) = G(y) and @#/ax) (-h,, y) = 0,O <y < 1 on 
entry; and #(h2, y) = G(y/at) and @#/ax) (h2, y) = 0,O <y < cy on exit. The distances h,, h2 
at which the domain is truncated need to be sufficiently large so that the flow is fully developed 
in the entry and exit sections. 

Following [ll], the truncated domain is subsequently divided into three elements, as shown in 
Fig. 2. Three elements are needed in order to achieve conforming approximations. This is in 
contrast to the two-element formulation of 161. 

In each element &he streamfunction 4(x, y ) is approximated by @(x, y), where 

#k(~, y)=Gk(y)+ 5 5 ak,P,k( y) W:(x), k = I, II, III, (3 1) . 
n=Nt m=Mt 

and 

G’(y) = G”(y) = G(Y), G"'(y) = G(f), 
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als (P,k(y)), ( W,k(x)} are modified shifted Chebyshev polynomials which satisfy 
all boundary conditions with the exceptio;l of the boundary conditions on the 

vertical wall CD. For example, 

(x) = T;(x) + a;T;(x) +&T:(x), 2 < m 6 M’, 

where T:(x), 0 6 m < M’, are shifted Chebyshev polynomials on [-hi, O] defined by 

(3 2) . 

anti a:* B: are given by 

af,=(-l)mm2, @A=(-l)“(m’-1), 2<m<M? 

!Smilarly, we can show that 

P,‘(y)=~(y)+ii$ff(y)+~~l(y), 2<n<N’, 

where Tml( y). 0 < n < N’, are the shifted Chebyshev polynomials on [a, l] defined by 
( 3) 3. 

C(Y) = &( “;-‘, *), 
and #,,, @J are given by 

5:~ -n2-1, @i=n’-I_ 

In approximation #n, we take NoI” = 4, because the corresponding modified Chebyshev 
polynomials in the y-direction are chosen to satisfy the boundary conditions on both n,E and 
GF automatical@. Further, for the approximation to be conforming, we require M’ = M” and 

u = :u . 
The coefficients (u&J in the expansions (3.1) are determined by collocating the governing 

equation at certain points in each element. These points are chosen from a subset of the points 
where the Chebyshev polynomials of highest degree used in (3.1) reach their extrema. In region I, 
for example, these points are given by 

xr h*(x, - I) = 
(l-a)yj+l+a 

a 2 9 ui’= 2 -9 

where 

Yj = 

The boundary conditions along CD are satisfied at all points on that segment by collocating the 
boundary conditions at enough points. Finally, across the element interfaces we impose continu- 
ity of # and the normal derivatives il+/ih, if@/Zbz2 and a31Cl/an3. On the interface HD this is 
done by imposing 

=3(x,.), k=0,1,2,3, atthepointsxf, i=2,3 ,..., M’-2. 

(3 4) . 
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The extra boundary conditions 

145 

lpl(o, a) = 1, g(o, cw) =o, $(o, cy) ‘0, Z(o, a[) = 0, (3.5) 

ensure pointwise continuity of 1c, and &J~/ay across HD. The continuity of the second and third 
derivatives in (3.4) is, on the other hand, only imposed at M’ - 4 points. This is so because 
pointwise continuity of these derivatives across HD would be inconsistent due to their singuIar 
behaviour about the corner D. The interface DG is treated in a similar way (for details, see [ll]). 

4. Dii methods of solution 

The global system for the expansion coefficients is 

Ga=r, 

where 

G= I A 0 0 B 1 c 0 0 0 0 D 

1 
I 

0 1 0 1 E 

a= 1 u’ - 

1 
a1I - 
a III 

, r= 

@.l) 

The dimension of the G is + 2n, n3 + 2n, + n5 where 

n,=(N’-3)(M’-3)+2Qv’-l), ?27 = 2( M’ - 3), 

n3 = (iv” - 3)( M” - 3) + 4, n,=2(N”-3), ns = (N”’ - 3)( M”’ - 3). 

The matrix G is a 5 
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The matrix D is of dimension 2n,(n, + n3 + 2n, + n,) and its rows correspond to the 
interface continuity conditions between regions II and III. The vector r4 is of dimension 2n, and 
CO nds to the difference between G”‘(y) and G”(y) at the interface collocation points. 

y, the matrix E is of dimension ns( n4 + ns) and its rows corresponcll to the satisfaction 
equation at ( N”’ - 3)( Mu1 - 3) collocation points in region III. The vector r, 
t-hand sides of the governing equation (in this case all the entries are equal to 

zero). 
The global matrix avier-Stokes equations for the same problem is of exactly the 

same as the matrix G. in the system (4.2) and in the description of each subsequent 
technique we assume the right-hand sides to be nonzero which is the case in the solution of the 

avier-Stokes equations. 

3. I. Capacitawe matrix methd 

The gobal system (4.1) may be rewritten in tht 
Y- 

Xl 

xz 
x3 
x, 
xg 

= 

: 1 
1 
partitioned form 

9 (4 3) . 

where A,, B,, C,, D4 and ES are square matrices of order n,, 2n2, n3, 2n4 and n5, respectively. 
The basic idea is to rewrite system (4.3) into the natural component form suggested by the 
partitioning and eliminate the vectors x1, x3 and x5. This gives rise to a much smaller system 
which may be solved to yield x2 and x4. Back substitution subsequently yields x2, x3 and x5. In 
component form, system (4.3) gives 

AS, + A2x2 =r 1, (4.3.1) 

B,x, + B2x2 + B,x, + B4x4 =r 29 (4.3.2) 

c,x, + c3x3 + c4x4 =r 39 (4.3.3) 

D2x2 + D3x3 + D4x4 + DSxS = 5, (4.3.4) 

E4x4 + ESxs = r,. (4.3.5) 

We wite xl, x3 and x5 in terms of x2 and x4, 3y premultiplying (4.3.lj, (4.3.3) and (4.3.5) by 
A, ‘, CT1 and EC’ respectively: 

xi = Al-b, - A,‘A,x,, (4.3.6) 

x3 = c,-‘r, - c,-‘c2x2 - c,-‘c,x,, (4.3.7) 

x5= E,-‘r,- E,-‘E,x,. (4.3.8) 

Eliminating xl, x3 and x5 from (4.3.2) and (4.3.4), we obtain a system of the form 

B2x2 + B4x4 = F2 (4.3.9) 

(4.3.10) 

where the matrices B2, B4, D2 and b4 are of the same size as B2, B4, D2 and D4, respectively. 
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The solution of (4.3.9), (4.3.10) yields x2 and x4. The remaining coefficients xi, x3 and x5 
may be obtained from (4.3.6)-(4.3.8). 

In th: above calculations advantage is taken of the fact that the matrices A,, B4, C,. Cd, D2 
and E4 are only half full, 

A, = [A; lo], 

c4= [c4* IO], 

Advantage of the fact that 

i.e., onIy half of their columns are nonzero anti they xe of the form 

B4= [B4* IO], c2= [OIc2*], 

02= [Ol&qr E4= [OIE,*]. 

A, is only half full is taken in the calculation of A,*q and AllA by 

solving Alwi I u,l = [AZ I r, 1 , i.e., a system with only n 2 + 1 right-hand sides ra’Lher than 2n2 + 1 
tight-hand sides. Similariy, advantage of the structures of the matrices C2, C, and E4 is taken 
when calculating Cc ‘C2, Cc ‘C, and E; ‘a,, respectively. Further, the presence of zero columns in 
B4 and D, is exploited in the evaluation of B4, B2. &, fi,. 

4.2. Coefficient splitting technique 

The main feature in the coefficient splitting technique is the partition of the global matrix G 
in such a way so that the diagonal blocks correspond to the vector of unknown coefficients in the 
approximations to the stream function in each of the three elements. This natural splitting makes 
the implementation of the algorithm much easier than the implementation of the capacitance 
matrix technique. The global system (4.1) may be rewritten in the form 

0 
P 

Q2 

Q, R 0 

0 s2’ 

0 
Sl 

0 

1 . (4 4 . 

The square matrices P, R, T are of order n, + n2, n2 + n3 + n4 and n4 + n5, respectively and 
are related to the submatrices appearing in (4.2) in the following way: 

P(i, j) =A(& j), 
P(n, i i, j) = B(i, j), 

1 < i < n,, l<j<n,+n,, 

l<i<n,, 1<j<n,+n2, 

R(i, j) = B(n, + i, n, + n2 + j), lb&n,, 1<j<n2+n,+n4, 

R(n, + i, j) = C(i, j), 1 <ibn,, 1<j<n2+n3+n4, 

R(n, + n3 + i, j) = D(i, j), lgi<n,, 1<j<n2+n3+n4, 

T(i, j)=D(n,-t-i, n,+n,+n,+j), l<i<n,, l<jGn4+n5, 

T(n, + i, j) = E(i, j), l<i<n,, 1<jQn4+n5. 

The matrices Q,, Q2, SI and S, have dimensions n2(n1 + n2j, n2(n2 + n3 + n4), n4(n2 + n3 + 
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P$ and nlr(nd + n,), respectively, and are related to B and D in (4.2) as follows: 

Qz(i, j) = B( n2 + i, j), 1 <i<n2, 1 <j<n, +I$, 

&(i, j) = B(& n1 + n2 +j), 1 <i<n,, 1 dj<n,+n,+n,, 

&(i, j) = D(n, + i, j), 1 <iinn,, 1<j<tz2+n,+n,, 

qfi, j)=D(i, n2+n3+n4+j), l,(ifn,, l<j,<n,+n,. 

l%e vectors tI, r2 and tg are related to tl, r,, r,, Q and r, in the following way: 

tI(i) = &), 1 GiGrt,, 

tr(n, f i) =r,(i), 1 <ign2, 

t2(i) = r2(n, + i), 1 gi<n2, 

t2(n2fi)=3(i), 1 <ign3, 

t2(n2+n3+i)=r,fi), l<igq, 

t3(i) =t,(n,+i), 1 Gign,, 

t3( n4 + i) = 3(i), 1 <ii?Q. 

The system (4.4) may be written in component form as 

Pa’ + Qta” = tl, 

Q~a’+Ran+&*a”=t2, 

S,*an + Tam = f3, 

where 

(4-5) 
(4.6) 
P-7) 

Q:=(k), Q-F=(+)* 

q_l$), s+(+j)_ 
The vectors a’ and am may be expressed in terms of aI1 from (4.5) and (4.7): 

q1 = p-$ - p-lQ~a’l, (4-g) 
pnl = T_‘t3 - T1sFan_ (4.9) 

Substitution of (4.3) and (4.9) in (4.6) yields 

(R - QTP-‘Qc - S~T-‘S~)a” = 1, - Q~P-‘tl - SCT-‘2,. (4.10) 

The solution of the above system gives ZZ”. 
and a*, 

Subsequent substitution into (4.8) and (4.9) yields a’ 
respectively_ 

The global system may be solved efficiently using the following algorithm. 

(1) Calculate P-IQ,* and P-‘t, by solving a system of the form 

PEJ, I WI1 = 4, 
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11 I 1 

-4 
Fig. 3. Almost block diagonal form. 

where HI is a (ni + n2)(n2 + n3 + n4 + 1) matrix containing Q; and t,. 
Similarly calculate T-is,* and T-l?, by solving a system of the form 

T[Jz I%]= Hz, 

where H, is a (n4 + ns)(nz + n3 + n4 + 1) matrix containing St* and t3. 
(2) Ev Au ate 

~?=R--Q;*J,-S;+, i2 = t, - Q: Y - s,* wt 

by exploiting the structures of QT and S,*. 
(3) Solve Run = i2. 
(4) Evaluate ut = w, - J,a”, a’I1 = w, -Aa”. 

4.3. Algorithms for almost biock diagonal systems 

In this section we examine the application of a production standard code for the solution of 
almost block diagonal systems [l] to the global system (4.1). This code uses a modified column 
elimination procedure with alternate row and column pivoting based on an algorithm originally 
described in [12] and [3] and is intended to solve systems of the form shown in Fig. 3, that is, 
systems which consist of rectangular blocks along the diagonal and for which no three successive 
blocks have columns in common. These systems arise naturally in the solution of ordinary 
differential equation boundary value problems with separated boundary conditions when using 
finite differences and spliue collocation methods. 

The global spectral collocation matrix G in (4.1) may be written in almost block diagonal form 
from its decomposed form (4.4) in the obvious way: 

G= (4.11) 
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G has five nonzero blocks, namely 

Unfortunately, the form (4.11) is not that required for the almost block diagonal code due to too 
much owrlap between blocks 2 and 3 and 3 and 4. More specifically the sum of the overlapping 
eohuuns between the second and third and third and fourth blocks exceeds the number of blocks 
in the third block (see [81). 

However the transpose of G, from (4.4) yields 

G%[[], 

which is of the required almost block diagonal form, with three blocks, namely: 

[P”IQ;r]* [Q:IR’ls,T] and [$V=]. 

(4.12) 

One may, therefore, decompose the transpose of the global matrix, GT using the existing NAG 
routine FOlLHF [8] and subsequently solve for the transpose of the decomposed form of GT, say 
C?, the system 

(dr)TX=r (4.13) 

with the NAG code FO4LHF [8]. 
One is required to provide the routine FOlLHF with a vector form of the matrix G*, read in 

block by block, c&mm by column. 
By defining 

ml =n,+n,, m2=n2, 
m,=n,+n,+n,, m4 = n4, m5 =n4+n5, 

from (4.12) the vector form a of GT required by FOlLHF is defined as: 

a(mf(i- 1) +j) =P(i, j), 

a( rnf + m,(i - 1) +j) = Q,( i, j), l<i<m,, lgjdm,, 

a(mf+m*m 2 -:- m,(i - 1) + j) = Q,(i, j), 16iimm,, lfjsm,, 

a(mf + mlm2 + m2m3 + m,(i - 1) + j) = A(i, j), ldi<m,, 1<j<m3, 

rr(m~+m,m2+m2m3+m~+m3(i-l)+j)=S,(i, j), 1<iim4, lfjdm,, 

a(m~+mlm,+m2m3fm~+m3m,+m,(i-1)+j)=S2(i, j), 

l,(igm4, l<jfm,, 

a( rnf + mImZ + m2m3 + rnz + m3m4 + m4m5 + m,(i - 1) + j) = T(i, j), 

l<i<mm,, ldjdm,. 
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4.4. Computational cost 

The solution of the fulI system (4.1) requires kN3 + N2 operations where N = n1 + n3 + n5 + 

2(n2 + n4). 
In the solution of (4.3) by a capacitance matrix technique most of the work lies in solving four 

systems of equations of orders n,, n3, n5 and 2( n2 + n4) with multiple right-hand sides (see [llD 
requiring k(Q3 + n2ni, k(n,)3 + (n2 + n4)n i, 
operations, respectively. Since nl, 

k(n5)3 + n4n$ and 8k(n, + n4)3 + 4(n2 + n4)2 
n3 and nS are in practice much larger than n,+ n4, this 

technique produces savings of 0(nf(n3 + ns) + n$(n, + ns) + n~(n, + n3)) over the solution of 
the full system. 

In the algorithm for the solution of system (4.4) most of the work is expended in steps (1) and 
(3). Step (1) requires k(n, + n2)3 + (n2 + n3 + n4 + l)(n, + n2)2 + k(n, + n5)3 + (n2 + n3 + n4 
+ l)(n, + n5)2 operations and step (3) requires k(n, i- n3 + n4)3 + (n2 + n3 + 31~)~ operations. 
This totals approximately O(n,(nf + ni)) more operations than the capacitance matrix tech- 
nique. 

Most of the work in the solution of the system (4.13) is expended in the decomposition of the 
almost block diagonal matrix (4.12) with the routine FOlLHF. This requires (see [Sj): 

; (n,+2n,-j)(n,+n,-j)+ z (2n2+n3+n4-j)(2n2-j) 
j=l j=l 

n2+n3 

+ C (n2+n3+2n4-j)(n2+n3+n4-j)+ 2 (2n,+n,-j)(2n4-j) 
j=l j=l 

n4+ns 

+ C b4+n5-.d2 
j=l 

flops. Taking into consideration that n2 and n4 are much smaller than n,, n3 and n5 this gives 
approximately 

k( n: + nz + n:) + $nfn2 + n$($n4 + n2) + n$z4, 

which is almost the same as the number of operations required by the capacitance matrix 
technique. 

5. Numerical results 

Apart from the obvious savings in storage provided by the three techniques described in 
Section 4 over solving the full system they also provide considerable savings in the computational 
cost of solving the problem in question. We examine five cases involving different numbers of 
degrees of freedom. In each case we choose the highest degrees of the Chebyshev polynomials in 
each direction and each element to be equal to N. Table 1 contains the CPU-times in seconds for 
each of the cases N = 9,11,13,15 and 17 for the solution of the full system without taking into 
account the sparsity of the matrix, the coefficient splitting technique, the capacitance matrix 
technique and the application of the NAG routine FOlLHF in decomposing the transpose of the 
original system. The capacitance matrix technique and FOlLHF always perform better than the 
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l-D32) times (in seconds) required to solve the 2: 1 contraction problem for different numbers of 

Total degrees Full system Coefficient FOlLHF Capacitance 
of freedom splitting technique 

9 176 3.92 4.16 3.12 2.38 
11 280 9.36 9.44 5.57 4.70 
13 408 22.70 21.73 10.51 10.12 
15 560 51.90 47.12 19.91 20.27 
17 736 109.33 92.01 36.34 38.76 

Table 2 
Condition numbers for the three types of system matrices for different numbers of degrees of freedom 

WV 

9 
11 
13 

Total degrees Full system Coefficient Capacitance 

of kedom (G) splitting(R) technique (P) 

176 0.1175(g) 0.1604(6) 0.4146(11) 
280 0.6903(g) 0.6517(6) 0.3686(12) 
408 0.2981(S) 0.2051(7) 0.2036(14) 

coefficient splitting technique and their efficiency grows with the number of degrees of freedom 
used. As the number of degrees of freedom grows, FOlLHF performs slightly better than the 
capacitance matrix technique. These savings become greater when solving nonlinear problems, 

(a) (b) 

Fig. 4(a). Streamfunction contours for a = f on 
- 0.75 Q x Q 0.25. 

Fig. 4(b). Streamfunction contours in salient comer for 
a=i_on -0.25<x<O,O.75<ygl. 
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Fig. 5(a). Streamfunction contours for a = 4 on 
- 0.75 Q x Q 0.25. 

I ---, lb1 
‘0 

% 

Fig. 5(b). Streamfunction contours in salient comer for 
a= fan -0.4<~<0,0.6<ygl. 

such as the Navier-Stokes equations where similar systems need to be solved at each step of an 
iterative process. 

The conditioning of the systems in each case was also investigated. In Table 2, we present the 
condition numbers (infinity norm) of the matrices G (full system and FOlLHF), R (coefficient 

Fig. 6(a). Streamfunction contours for a = k on 
- 0.75 < x Q 0.25. 

Fig. 6(b). Streamfunction contours in salient comef for 
a=ion -0.5gx<O,O.5Gydl. 
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splitting technique) and 1;; jcapacitance matrix) for various numbers of degrees of freedom. It is 
&ar *at the systems resulting from the capacitance matrix technique are very poorly condi- 
tioned in ccmparksm to the systems involved in the coefficient splitting technique or the global 
matrix. In some instances, the capacitance matrix technique produced numerically singular 
matrices for large numbers of degrees of freedom. The poor conditioning of Chebyshev systems 
[4] is evidently magnified when global pivoting is not performed. The NAG routine FOlLHF on 
the other hand performs alternate global row and column pivoting and irfter extensive experi- 
mentation no singular cases were encountered. 

Further, contour plots for the solution for different values of the contraction ratio QI, are given. 
In Fig. 4, we present contours of the stream function for (Y = 3. In this case h, = 1, h2 = 0.5, 
&I’ = &fn = 20, &f”* = 8, N’ = 10, N” = N”’ = 14 giving a total of 495 degrees at freedom. In 
Fii. 5 we present contours of the stream function for (Y = 4 obtained with hl = 1.5, h2 = 1.0, 

=26, Mm = 14, N’ = 20, N” = N”’ = 8, totalling 715 degrees of freedom. Finally in 
present contours of the stream function for at = 4 obtained with hl = 1.5, h2 = 1.0, 
= 26, j@u = 14, N’ = 20, jj/” = Nnl = 8, totalling 715 degrees of freedom. 

Spectral domain decomposition methods for solving the biharmonic equation in rectangularly 
decomposable domains results in a linear system of equations with a coefficient matrix that is 
block tridiagonal. Direct methods which exploit this matrix structure are descriihed. The 
following methods are compared with respect to computational cost, storage and conditioning: 
the capacitance matrix method, the coefficient splitting method and a NAG routine for almost 
block diagonal systems. The coefficient matrix of the transposed system is in this form and so is 
amenable to solution by this technique. 

For fairly moderate numbers of degrees of freedom the capacitance matrix method and the 
NAG routine are comparable in terms of computational cost and storage. Both of these methods 
perform better than the coefficient splitting method. For problems in which a large number of 
degrees of freedom are required to compute the solution accurately, the capacitance matrix 
method suffers from poor conditioning and, in some cases, produces numerically singular 
submatrices. No such problems are found for the NAG routine. 

All the techniques described in this paper are applicable to the solution of nonlinear partial 
differential equations, such as the Navier-Stokes equations, using spectral domain decomposi- 
tion techniques. The coefficient matrix of the linearized equations has the same structure as those 
considered in this paper. The savings in CPU-time are even greater for nonlinear problems since 
such systems of equations need to be solved at each stage of a linearization process. 
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