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1. Introduction

Let G be an algebraic subgroup of GLm(C) defined over Q, where m � 1. Then for a subring R of C

we set

G(R) = G ∩ GLm(R).

The group G(Z) and any other subgroup Γ of G(Q) commensurable with it are called arithmetic
subgroups of G .

Arithmetic groups occur in many contexts. Examples are: the automorphism group of a finitely
generated nilpotent group (see [10], Chapter 6), the group of units of the ring of integers of a number
field, and the group of units of the group algebra ZG , where G is a finite group. A celebrated theorem
of Borel and Harish-Chandra [3] says that arithmetic groups are finitely generated. In this paper we
consider the problem of computing a finite set of generators of an arithmetic subgroup of a unipotent
group.

This problem was also treated in the paper [9] by Grunewald and Segal, where a general algorithm
for all arithmetic groups was outlined. However, their declared aim was to show that such a computa-
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tion is, at least in principle, feasible, and no attempt was made to make the algorithms efficient. And
unfortunately their algorithm appears to be unsuited for practical computation. Indeed, one step (i.e.,
Algorithm 4.2.2) of the algorithm for the unipotent case requires the enumeration of a set of size at
least (2(m!(1 + Δ)m + 1))m2

, where Δ is a non-negative integer. This is impractical, even for small m.
In this paper we describe a practical algorithm for finding a finite set of generators of G(Z), in

case G is unipotent, that is to say, all its elements are unipotent matrices. As a byproduct this yields
an independent proof of the Borel–Harish-Chandra theorem in this case. Also, we can show that the
groups G(Z) are T-groups of Hirsch length equal to dim G . In order to show that the algorithm can
be used to compute practical examples, we have implemented it in the language of the computer
algebra system GAP4 (cf. [8]). However, we do remark that our algorithm, in the worst case, has a
time complexity that is exponential in m.

We now sketch the main idea of the algorithm. Let V be the vector space on which G acts natu-
rally. Let

0 = V 0 < V 1 < · · · < Vn = V

be a flag of V with respect to the action of G (this means that for v ∈ V i and g ∈ G we have gv ≡
v mod V i−1). Then we can form the G-module V � = Vn−1 ⊕ V

V 1
. In informal terms the matrix of a

g ∈ G acting on V � is formed from the matrix of its action on V by taking the block in the upper
left part of the matrix, and the block in the bottom right part of the matrix, and constructing the
block matrix consisting of these two blocks. Now let Q be the image of G in GL(V �); then we can
recursively compute generators of Q (Z). The recursion works because the Q -flag in V � has smaller
length. Let π : G → Q be the projection. In Section 2 we describe π(G(Z)) (Proposition 2.7). We show
how to find generators of π(G(Z)), and their preimages in G(Z). Let N(Z) ⊂ G(Z) denote the kernel
of π . We find a finite set of generators of N(Z), and joined to the elements of G(Z) found earlier this
solves the problem.

These ideas are detailed in Section 2. In Section 3 we illustrate them with a simple example. The
constructions of Section 2 do not immediately yield an implementable algorithm. In order to obtain
that we need some technical preparation. In Section 4 we describe some results that allow us to work
with the Lie algebra of G rather than with G itself. Section 5 contains some material on T-groups. In
Section 6 we describe some algorithms for lattices that we need. Then in Section 7 we give a detailed
description of the main algorithm, and prove its correctness. The last section describes some practical
experiences with our implementation of this algorithm in GAP4.

2. The derived representation

The goal of this section is to introduce some notation, and to prove the results that underpin the
main algorithm.

Let V be a finite-dimensional vector space over Q, and L a full-dimensional lattice of V . We do
not prove the next lemma here; it will follow from Lemma 6.3.

Lemma 2.1. Let U and W be two subspaces of V with U ⊆ W . Then there exist subspaces U ′ and W ′ of V
such that

W ′ ⊆ U ′

and equalities

U ⊕ U ′ = V = W ⊕ W ′

and

(L ∩ U ) + (L ∩ U ′) = L = (L ∩ W ) + (L ∩ W ′)

hold.
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In the notations of the lemma above, we say that W ′ ⊆ U ′ is a system of L-complements for
U ⊆ W .

Now let

0 = V 0 < V 1 < · · · < Vn = V

be a chain of subspaces of V with n � 1. Then we consider the vector space

V � = Vn−1 ⊕ V

V 1
.

We call it the derived vector space. Also, we have the full-dimensional lattice

L� = (L ∩ Vn−1) + L + V 1

V 1

of V � , which we call the derived lattice, and the chain of subspaces

0 = V �
0 < V �

1 < · · · < V �
n−1 = V �

of V � where

V �
i = V i ⊕ V i+1

V 1

which we call the derived chain. Note that its length is n − 1, which is strictly less than the length of
the chain of V .

Now let Wn−1 ⊆ W1 be a system of L-complements to V 1 ⊆ Vn−1, and let us denote by V
ξ−→ V 1

the projection of V onto V 1 along W1. By Hom(Wn−1, V 1) we denote the space of all linear maps
Wn−1 → V 1. Then we consider the map

ε : End(V ) −→ Hom(Wn−1, V 1), ϕ �→ ξ ◦ ϕ|Wn−1 . (1)

We refer to it as the error map induced by the system Wn−1 ⊆ W1. Further we define

Γ = {
γ ∈ Hom(Wn−1, V 1)

∣∣ γ (L ∩ Wn−1) ⊆ L ∩ V 1
}
. (2)

Since L ∩ Wn−1 is full-dimensional in Wn−1, Γ is a lattice of Hom(Wn−1, V 1), and it is full-
dimensional since L ∩ V 1 is full-dimensional in V 1. We refer to it as the lattice induced by the system
Wn−1 ⊆ W1.

Now let G be a unipotent algebraic group defined over Q acting faithfully on V , and suppose that

0 = V 0 < V 1 < · · · < Vn = V

is a flag of V with respect to G , i.e., for all v ∈ V i we have gv ≡ v mod V i−1 for all g ∈ G . We consider
the subgroup

G L = {
g ∈ G(Q)

∣∣ gL = L
}

of G(Q). We want to find a finite set of generators of this group.
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Since V 1 and Vn−1 are G-stable subspaces of V , G acts on both Vn−1 and V
V 1

, hence on their direct
sum, that is to say, on the derived vector space. We refer to the action of G on V � as the derived
action. Further, we denote by N its kernel, which is of course a unipotent algebraic group over Q

acting faithfully on V , by Q its image, which is a unipotent algebraic group over Q acting faithfully
on V � , and by π the projection of G onto Q . The following lemma is well known; it follows directly
from the commutativity of diagram (3) in Section 4.

Lemma 2.2. The projection π maps G(Q) surjectively onto Q (Q).

Also we set

NL = {
g ∈ N(Q)

∣∣ gL = L
}

and

Q L� = {
q ∈ Q (Q)

∣∣ qL� = L�
}
.

Of course the derived chain is a flag for V � with respect to the action of Q . Since G acts faithfully
on V we can regard elements in G(Q) as automorphisms of V . The same consideration applies to
elements of N(Q). So we can apply the map ε to the elements of these groups.

Proposition 2.3. For every g ∈ G(Q) and h ∈ N(Q) we have

ε(g · h) = ε(g) + ε(h),

where ε is as in (1).

Proof. Let v ∈ Wn−1. Since h is an automorphism of V acting as the identity on V
V 1

,

h(v) − v ∈ V 1.

Further, g is an automorphism of V acting as the identity on V 1, hence

g
(
h(v) − v

) = h(v) − v.

Since Wn−1 ⊆ W1, we have ξ(v) = 0. Hence applying ξ to both sides of the previous identity and
using linearity we obtain

ξ ◦ g ◦ h(v) = ξ ◦ g(v) + ξ ◦ h(v)

hence the thesis. �
Of course, N(Q) acts on G(Q) by multiplication on the right. Once we endow Hom(Wn−1, V 1) with

the obvious group structure given by addition, the previous proposition implies that the restriction of
ε to N(Q) is a group morphism. Hence N(Q) acts on Hom(Wn−1, V 1) by

Hom(Wn−1, V 1) × N(Q) → Hom(Wn−1, V 1), (x,h) �→ x + ε(h).

With these observations, we can restate the previous proposition saying that the restriction of ε to
G(Q) is a morphism of N(Q)-sets.
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Now let us denote by W the image of N(Q) under ε . Then Proposition 2.3 gives us:

Corollary 2.4. There exists a unique map ε̂ : Q (Q) −→ Hom(Wn−1,V 1)

W such that the diagram

G(Q)
ε

π

Hom(Wn−1, V 1)

Q (Q)
ε̂ Hom(Wn−1,V 1)

W

is commutative.

Proof. By Lemma 2.2, the map π : G(Q) → Q (Q) is surjective. Also, if g, g′ ∈ G(Q) are such that
π(g) = π(g′) then g−1 g′ ∈ N(Q), hence due to Proposition 2.3 we obtain

ε(g′) = ε
(

gg−1 g′) = ε(g) + ε
(

g−1 g′)
thus

ε(g) + W = ε(g′) + W .

These two facts show that the function

ε̂ : Q (Q) −→ Hom(Wn−1, V 1)

W
, q �→ ε(g) + W

where g is any element of G(Q) such that π(g) = q, is well defined and, of course, it makes the
diagram above commutative. If ε̂′ is another such a function, then

ε̂ ◦ π = ε̂′ ◦ π

hence, by surjectivity of π it follows that ε̂′ = ε̂ . �
Also we set

G L� = {
g ∈ G(Q)

∣∣ gL� = L�
}
.

In other words, an element g ∈ G(Q) lies in G L� if and only if π(g) lies in Q L� . Of course, G L� contains
both G L and N(Q).

Lemma 2.5. Let g ∈ G L� . Then g ∈ G L if and only if ε(g) ∈ Γ .

Proof. If g ∈ G L then g(L ∩ Wn−1) ⊆ L, hence

ξ ◦ g(L ∩ Wn−1) ⊆ ξ(L) = ξ
(
(L ∩ V 1) ⊕ (L ∩ W1)

) = L ∩ V 1

hence ε(g) ∈ Γ .
Now let g ∈ G L� such that ε(g) ∈ Γ . Then g is an automorphism of V fixing both L + V 1 and

L ∩ Vn−1, and such that ξ ◦ g sends L ∩ Wn−1 in L ∩ V 1. In particular, since the preimage of L ∩ V 1
under ξ is W1 + (L ∩ V 1), we have that g(L ∩ Wn−1) ⊆ W1 + (L ∩ V 1). Further, since L ∩ Wn−1 ⊆ L + V 1
and g fixes L + V 1, we have that g(L ∩ Wn−1) ⊆ L + V 1. Hence

g(L ∩ Wn−1) ⊆ (L + V 1) ∩ (
W1 + (L ∩ V 1)

)
.
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Since L = (L ∩ V 1) + (L ∩ W1), applying Dedekind’s modular law we obtain equality

L = (L + V 1) ∩ (
W1 + (L ∩ V 1)

)
hence g(L ∩ Wn−1) ⊆ L. Since L = (L ∩ Vn−1) + (L ∩ Wn−1) and g fixes L ∩ Vn−1, this shows that
g(L) ⊆ L. Now let l ∈ L. Since g fixes V 1 + L, there exist l1 ∈ V 1 and l2 ∈ L such that g(l1) + g(l2) = l.
Since g(L) ⊆ L, we have that g(l2) ∈ L, hence in particular that g(l1) = l − g(l2) ∈ L. Since g fixes V 1,
we also have that g(l1) ∈ V 1, hence g(l1) ∈ L ∩ V 1. Since V 1 ⊆ Vn−1, also g(l1) ∈ L ∩ Vn−1 holds. Since
g fixes L ∩ Vn−1, we obtain that l1 ∈ L ∩ Vn−1, hence l1 + l2 ∈ L, hence L ⊆ g(L). So g ∈ G L . �
Proposition 2.6. The map given by the chain

G L�
ε−→ Hom(Wn−1, V 1) −→ Hom(Wn−1, V 1)

Γ

is a group morphism with kernel G L .

Proof. Let f , g ∈ G L� . Then they are automorphisms of V acting as the identity on V 1, fixing Vn−1
and acting as the identity on V

Vn−1
. Further, they fix L ∩ Vn−1 and L + V 1. Now let l ∈ L. Of course,

g(l) − l ∈ Vn−1 ∩ (L + V 1). Since V 1 ⊆ Vn−1, applying Dedekind’s modular law we obtain Vn−1 ∩
(L + V 1) = V 1 + (L ∩ Vn−1), which shows that

f
(

g(l) − l
) − (

g(l) − l
) ∈ L ∩ Vn−1

hence

f ◦ g(l) − f (l) − g(l) ∈ L.

Since ξ(L) = L ∩ V 1, we finally obtain

ξ ◦ f ◦ g(l) − ξ ◦ f (l) − ξ ◦ g(l) ∈ L ∩ V 1

which shows that the map is a group morphism. By Lemma 2.5, its kernel is G L . �
Proposition 2.7. Let ε̂ be as in Corollary 2.4. The map Ψ given by the chain

Q L�
ε̂−→ Hom(Wn−1, V 1)

W
−→ Hom(Wn−1, V 1)

W + Γ

is a group morphism. Its kernel is equal to the image of G L under π .

Proof. Since π : G(Q) → Q (Q) is surjective and g ∈ G(Q) is in G L� if and only if π(g) ∈ Q L� , we
obtain a surjective map π : G L� → Q L� . By commutativity of the diagram in Corollary 2.4, we also
obtain the commutative diagram

G L�
ε

π

Hom(Wn−1, V 1)
Hom(Wn−1,V 1)

Γ

Q L�
Ψ Hom(Wn−1,V 1)

Γ +W
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By Proposition 2.6, the top row is a group morphism, hence also the bottom row is. Again by Propo-
sition 2.6, G L is the kernel of the top row. Hence, since the diagram above is commutative, the image
of G L under π lies in the kernel of Ψ . Now let q be in the kernel of Ψ , and let g ∈ G L� be a preimage
of q under π . By commutativity of the diagram above, we have

ε(g) ∈ Γ + W .

Now let w ∈ W such that ε(g)+ w ∈ Γ . Since W is the image of N(Q) under ε , there exists h ∈ N(Q)

such that ε(h) = w . Hence by Proposition 2.3 we have

ε(g · h) = ε(g) + ε(h) ∈ Γ

thus by Lemma 2.5 we obtain that g · h ∈ G L . Of course, π(g · h) = q. �
3. An example

Let us consider

G =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1 0 a b
0 1 c 1

2 c2

0 0 1 c
0 0 0 1

⎞
⎟⎟⎠ ∈ GL4(C) such that a,b, c ∈ C

⎫⎪⎪⎬
⎪⎪⎭ .

It is easy to check that G is an algebraic subgroup of GL4(C) defined over Q. Since it is contained
in the set of upper-unitriangular matrices of GL4(C), it is unipotent. In this example it is rather
straightforward to find a set of generators of G(Z) directly. However, in this section we illustrate the
results of the previous section by showing how they help us finding a finite set of generators for G(Z).

G acts faithfully on Q4 by matrix–vector multiplication; also, Z4 is a full-dimensional lattice of Q4.
Thus we can consider the subgroup GZ4 of G , and it is easily seen that

G(Z) = GZ4 .

The chain of subspaces

0 = V 0 < 〈e1, e2〉 = V 1 < 〈e1, e2, e3〉 = V 2 < V 3 = Q4

where e1, e2, e3 and e4 are the standard basis of Q4, is a flag of V with respect to the action of G . The
derived vector space has basis given by (e1,0), (e2,0), (e3,0), (0, e3 + V 1) and (0, e4 + V 1); through
this basis we can identify it with Q5, and under this identification the derived lattice corresponds
to Z5. The kernel of the derived action is

N =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1 0 0 b
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ∈ GL4(C) such that b ∈ C

⎫⎪⎪⎬
⎪⎪⎭ .

In particular,

NZ4 =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1 0 0 b
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ∈ GL4(C) such that b ∈ Z

⎫⎪⎪⎬
⎪⎪⎭
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and it is straightforward to check that it is an infinite cyclic group with generator

n =

⎛
⎜⎜⎝

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

The subgroup

Q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

1 0 a 0 0
0 1 c 0 0
0 0 1 0 0
0 0 0 1 c
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ ∈ GL5(C) such that a, c ∈ C

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

of GL5(C) is the image of the derived action, the projection of G onto Q being

π : G → Q ,

⎛
⎜⎜⎝

1 0 a b
0 1 c 1

2 c2

0 0 1 c
0 0 0 1

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎜⎜⎝

1 0 a 0 0
0 1 c 0 0
0 0 1 0 0
0 0 0 1 c
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

Now Q Z5 is a torsion free abelian group of rank 2 with basis given by

q1 =

⎛
⎜⎜⎜⎜⎝

1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ , q2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

A system of Z4-complements for V 1 ⊆ V 2 is given by W2 ⊆ W1 where

W2 = 〈e4〉, W1 = 〈e3, e4〉.

Using the basis e4 for W2 and the basis e1, e2 for V 1 we can identify Hom(W2, V 1) with M2×1(Q);
under this identification, the induced lattice Γ corresponds to M2×1(Z). Further, using the standard
basis of Q4 we can identify End(Q4) with M4×4(Q). In this way, the error map is

ε : M4×4(Q) → M2×1(Q),

⎛
⎜⎜⎝

a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

⎞
⎟⎟⎠ �→

(
a1,4
a2,4

)
.

The image of the rational points of N under ε is the subspace of M2×1(Q) generated by
(1

0

)
. So

in the notation of Section 2 we have W = 〈(1
0

)〉 and Γ = M2×1(Z). Furthermore, the map Ψ from

Proposition 2.7 goes from the rational points of Q to M2×1(Q)

W +Γ
.
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Now we need two matrices g1 and g2 in G(Q) whose images under π are q1 and q2, respectively.
Their existence is guaranteed by the surjectivity of π . For example, we can take

g1 =

⎛
⎜⎜⎝

1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , g2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 1 1

2

0 0 1 1
0 0 0 1

⎞
⎟⎟⎠ .

This shows in particular that g1 and g2 are in GZ5 . Also, using commutativity of the diagram in
Corollary 2.4, we have that

Ψ (q1) = 0 + W + Γ, Ψ (q2) =
(

0
1
2

)
+ W + Γ.

Now the kernel of Ψ is generated by q1 and q2
2. Therefore, by Proposition 2.7, π(GZ4 ) is generated

by q1 and q2
2. Their preimages, g1 and g2

2 are only guaranteed to lie in GZ5 ; however, here we see
that they are already in GZ4 . Now the kernel of π restricted to GZ4 is NZ4 . So g1NZ4 and g2

2 NZ4

generate
G

Z4

N
Z4

. We conclude that n, g1, g2
2 generate GZ4 .

Of course we could have made a different choice for the preimages of q1 and q2. For example, we
could have taken

g′
1 =

⎛
⎜⎜⎝

1 0 1 1
2

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

instead of g1. Then g′
1 is in GZ5 but it is not in GZ4 . However, since q1 is in the kernel of Ψ , we get

ε̂(q1) ∈ W + Γ and by the commutativity of the diagram in Corollary 2.4, ε(g′
1) ∈ W + Γ . This can of

course also be checked directly as

ε(g′
1) =

( 1
2

0

)
.

Now we note that

n′ =

⎛
⎜⎜⎝

1 0 0 1
2

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ∈ N(Q) with ε(n′) =

(
1
2

0

)
.

The existence of such an n′ is guaranteed by the fact that W is the image of the rational points of N
under ε . Since N is in the kernel of π we have π(g′

1 · (n′)−1) = π(g′
1) = q1. So we can work with

g′
1(n

′)−1 as preimage of q1. This choice of preimage works for us since by Proposition 2.3 we have
that

ε
(

g′
1 · (n′)−1) = ε

(
g′

1

) − ε(n′) =
(

1
2

0

)
−

(
1
2

0

)
=

(
0
0

)
∈ Γ.



W.A. de Graaf, A. Pavan / Journal of Algebra 322 (2009) 3950–3970 3959
Hence g′
1(n

′)−1 ∈ GZ4 and we can apply the same considerations as above to prove that n, g′
1(n

′)−1

and g2
2 are a generating set for GZ4 . As a matter of coincidence, we note that

g′
1 · (n′)−1 = g1.

Finally we note that n commutes with both g1 and g2
2, hence the chain of subgroups

1 < 〈n〉 < 〈n, g1〉 <
〈
n, g1, g2

2

〉 = GZ4

is a central series for GZ4 with infinite cyclic factors.

4. The Lie algebra connection

Let G ⊂ GLm(C) be a unipotent algebraic group. As illustrated in Section 3, the results in Section 2
in principle yield an algorithm for finding a finite set of generators of G(Z). However, to make it work
efficiently in practice we rather work with the Lie algebra of G than with G itself. In this section we
describe the main results that we need for that.

First we review some standard facts on the Lie algebra of an algebraic group; for more details we
refer to [2,5,12,13].

As customary we denote the Lie algebras of the algebraic groups G, H, . . . by g,h, . . . . Let G be
a unipotent algebraic group defined over Q, acting on a vector space V . Then g also acts on V .
Furthermore, G is connected, and hence a subspace U ⊂ V is G-stable if and only if it is g-stable. If
this is the case then we get a G-action and a g-action on U , and those are compatible, in the sense
that the corresponding g-representation is the differential of the G-representation. Similarly we get
compatible G- and g-actions on quotients and direct sums of modules.

An important role in our algorithm is played by the exponential mapping. For a nilpotent x ∈
glm(C) we set

exp(x) =
n−1∑
i=0

xi

i! ,

and for a unipotent u ∈ GLm(C),

log(u) =
n−1∑
i=1

(−1)i−1 (u − 1)i

i
.

Since G is defined over Q we have that g ⊂ glm(C) has a basis such that all elements have coefficients
in Q. The Q-span of such a basis is denoted gQ . Then it is well known that the maps exp : gQ → G(Q)

and log : G(Q) → gQ are mutually inverse. In particular, when we work with the Lie algebra gQ we
keep control over the elements of G(Q) by these mappings.

Now let W be another finite-dimensional vector space over Q, H a unipotent algebraic subgroup
of GL(W ), and ϕ : G → H a morphism of algebraic groups. Then we have the diagram

G(Q)

log

ϕ

g

exp
dϕ

H(Q)

log

h

exp

(3)

and it turns out that it is commutative, i.e., exp(dϕ(x)) = ϕ(exp(x)) for all x ∈ g (cf. [5], Chapter V,
§4, Proposition 15).
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Now we return to the setting of Section 2. A sequence of subspaces

0 = V 0 < V 1 < · · · < Vn = V

is a flag for the action of G if and only if it is a flag for the action of g. (The latter means that
g · V i ⊂ V i−1 for i > 0.) In particular, g acts on the derived vector space V � , and the corresponding
representation of g is the differential of the representation of G on V � . In particular this means that n,
which is the Lie algebra of N , is the kernel of dπ and q = dπ(g), where q is the Lie algebra of Q .

Proposition 4.1. n is central in g.

Proof. Let x ∈ g and y ∈ n. Then x is an endomorphism of V such that x.V ⊆ Vn−1 and x.V 1 = 0,
and y is an endomorphism of V such that y.V ⊆ V 1 and y.Vn−1 = 0. Now let v ∈ V . Then y.v ∈ V 1,
hence x.y.v = 0. Also, y.v ∈ V 1, hence x.y.v = 0. Thus [x, y].v = 0. Since g acts faithfully on V ,
[x, y] = 0. �

Now let L be a full-dimensional lattice of V , Wn−1 ⊆ W1 a system of L-complements to V 1 ⊆
Vn−1, and let us denote by ε and by Γ the induced error map and the induced lattice, respectively.
Since g acts faithfully on V , we can regard its elements as endomorphisms of V . The same consider-
ation applies to n. So we can consider the restriction of the map ε to g and n.

Proposition 4.2. The restriction of the induced map ε to n is injective.

Proof. Let x ∈ n such that ε(x) = 0. Since x(V ) ⊆ V 1, for every v ∈ V we have

x(v) = ξ ◦ x(v).

Since ε(x) = 0, ξ ◦ x(Wn−1) = 0. Hence x(Wn−1) = 0. Since x(Vn−1) = 0, we finally have x(V ) = 0. �
Further, we define

nL = {
x ∈ n

∣∣ ε(x) ∈ Γ
}
.

By the previous proposition, it is a full-dimensional lattice of n. Since n acts faithfully on V and V
admits a flag with respect to this action, then n, regarded as a Lie subalgebra of gl(V ), consists of
nilpotent endomorphisms. Hence we can consider the diagram

n
exp

ε

GL(V )

ε

Hom(Wn−1, V 1)

Proposition 4.3. The diagram above is commutative.

Proof. Let us denote by idV the identity endomorphism of V . Since Wn−1 ⊆ W1, ε(idV ) = 0. Now let
x ∈ n. Then x(V ) ⊆ V 1 and x(Vn−1) = 0, hence x2(V ) = 0, and

exp x = idV + x.

Thus

ε(exp x) = ε(idV + x) = ε(idV ) + ε(x) = ε(x). �
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5. T-groups

The groups G(Z) that we are after are finitely-generated nilpotent and torsion free. Such groups
are called T-groups in the literature (cf. [10]). In this section we review some facts that we need on
T-groups.

It is known that any T-group admits a (proper normal) central series with infinite cyclic factors;
the other way round, every group admitting such a series is clearly a T-group. Now let G be a group,
and let g1, . . . , gn be an (ordered) set of elements of G . Then we can consider the chain of subgroups

G1 � G2 � · · · � Gn � Gn+1 = 1

of G where for every i = 1, . . . ,n,

Gi = 〈gi, . . . , gn〉.

We call it the chain associated to g1, . . . , gn . Further, we say that g1, . . . , gn is a T-sequence for G if
the associated chain is a proper central series for G with infinite cyclic factors. It will be convenient
to extend this terminology saying that the empty set is a T-sequence for the trivial group. Every
T-group G has a T-sequence, and the length of a T-sequence is an invariant of the group, called the
Hirsch-length of G . Furthermore, if g1, . . . , gn is a T-sequence for G then every element g ∈ G can be
written g = ge1

1 · · · gen
n , where ei ∈ Z.

Now let A be an abelian group, and let a1, . . . ,an ∈ A. Then we consider

L = {
(e1, . . . , en) ∈ Zn

∣∣ ae1
1 · · ·aen

n = 1
}

which is of course a subgroup of Zn . We call it the relation lattice of a1, . . . ,an in A. For every
e = (e1, . . . , en) ∈ L, e �= 0, we can define its height as the minimum j = 1, . . . ,n such that e j �= 0, and
its leading coefficient as the integer e j . Now let e(1), . . . , e(m) be a basis of L, where for j = 1, . . . ,m,

e( j) = (
e( j)

1 , . . . , e( j)
n

)
.

We say that the basis is in Hermite normal form if the matrix

⎛
⎜⎜⎝

e(1)
1 · · · e(1)

n
...

...

e(m)
1 · · · e(m)

n

⎞
⎟⎟⎠ ∈ Mm×n(Z)

is. This means that there exists a sequence of integers

1 � i1 < · · · < im � n

such that

e( j)
i = 0

for all j = 1, . . . ,m and all 1 � i < i j , and that

0 � e(k)
i < e( j)

i
j j
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for every 1 � k < j � m. It is known that L admits a unique basis in Hermite normal form. We note
that the height of any non-zero element of L is one of the integers i1, . . . , im . Further, if its height is
i j for some j = 1, . . . ,m, then its leading coefficient is a (non-zero) multiple of e( j)

i j
.

The next lemma is a somewhat stronger version of a result of Eick (cf. [6], Lemma 3.19).

Lemma 5.1. Let G be a T-group, A an abelian group, and let ϕ : G → A be a morphism of groups. Further, let
g1, . . . , gn be a T-sequence for G, and let e(1), . . . , e(m) be the basis in Hermite normal form of the relation
lattice of ϕ(g1), . . . , ϕ(gn) in A. For j = 1, . . . ,m set

k j = g
e( j)

1
1 · · · ge( j)

n
n .

Then k1, . . . ,km is a T-sequence for the kernel of ϕ .

Proof. Let us denote by

K1 � K2 � · · · � Km � Km+1 = 1

the chain of subgroups of G associated to k1, . . . ,km . We want to show that it is a (proper normal)
central series for kerϕ with infinite cyclic factors. Since the basis e(1), . . . , e(m) is in Hermite normal
form, we have the sequence

1 � i1 < i2 < · · · < im � n

defined as above. It is convenient to set i0 = 0 and im+1 = n + 1. Also, let us denote by

G = G1 > G2 > · · · > Gn > Gn+1 = 1

the proper central sequence with infinite cyclic factors for G associated to g1, . . . , gn . Then it is
enough to prove that for every j = 1, . . . ,m + 1 we have

kerϕ ∩ Gi j−1+1 = · · · = kerϕ ∩ Gi j−1 = kerϕ ∩ Gi j = K j .

Indeed, suppose that the previous equalities hold. Then K1 = kerϕ ∩ Gi0+1 = kerϕ ∩ G1 = kerϕ ∩ G =
kerϕ . Also, for every j = 1, . . . ,m +1, Gi j � G , hence K j = kerϕ ∩ Gi j � kerϕ ∩ G = kerϕ . This shows

that the chain is a normal series for kerϕ . Further, for every j = 1, . . . ,m, the map kerϕ → G
Gi j+1

has kernel kerϕ ∩ Gi j+1 = K j+1. Hence it factors through a group monomorphism kerϕ
K j+1

→ G
Gi j+1

. The

image of
K j

K j+1
under it is

K j Gi j+1

Gi j+1
= (kerϕ∩Gi j

)Gi j+1

Gi j+1
= (kerϕGi j+1)∩Gi j

Gi j+1
�

Gi j
Gi j+1

, and the image of k j K j+1

is g
e( j)

i j

i j
Gi j+1. This shows that the series is central and with infinite cyclic factors.

So we have to prove the previous equalities. It is clear that for every j = 1, . . . ,m + 1,

kerϕ ∩ Gi j−1+1 ⊇ · · · ⊇ kerϕ ∩ Gi j−1 ⊇ kerϕ ∩ Gi j ⊇ K j

and it remains to prove the reverse inclusions. We proceed by induction on j. Let us consider the
base case j = m + 1. Then K j is trivial, and all we have to show is that for every l = im + 1, . . . ,n + 1,
kerϕ ∩ Gl is trivial, too. Again, we proceed by induction on l. In the base case l = n + 1, it is obviously
true. Now let l = im + 1, . . . ,n and suppose that kerϕ ∩ Gl+1 is trivial. Let g ∈ kerϕ ∩ Gl . Then g = ge

l h
for some e ∈ Z and h ∈ Gl+1, and
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ϕ(gl)
e + ϕ(h) = 0.

Since h ∈ 〈gl+1, . . . , gn〉, then ϕ(h) ∈ 〈ϕ(gl+1), . . . ,ϕ(gn)〉. Thus if e �= 0, then there would exist an ele-
ment in the relation lattice with height l, which is impossible. Hence e = 0, hence g = h ∈ kerϕ∩Gl+1,
hence g = 1 by the inductive hypothesis. This concludes the case j = m + 1. Now let j = 1, . . . ,m, and
suppose that

kerϕ ∩ Gi j+1 = · · · = kerϕ ∩ Gi j+1−1 = kerϕ ∩ Gi j+1 = K j+1.

In this case we have to show that for every l = i j−1 + 1, . . . , i j ,

kerϕ ∩ Gl = K j

and again we proceed by induction on l. Let us just consider the base case l = i j , the inductive step
being similar to the one in the case j = m + 1. Let g ∈ kerϕ ∩ Gi j . Then g = ge

i j
h for some e ∈ Z

and some h ∈ Gi j+1. If e = 0 then g ∈ Gi j+1 and we conclude by inductive hypothesis that g ∈ K j+1.
Now let us suppose e �= 0. Arguing as before, the relation lattice contains an element of height i j and

leading coefficient e. Thus e( j)
i j

divides e. Let us denote by f the quotient. Then gGi j+1 = k f
i Gi j+1,

hence by inductive hypothesis gk− f
j ∈ kerϕ ∩ Gi j+1 = K j+1, hence finally g ∈ K j . �

6. Some algorithms for lattices

In this section we describe some algorithms that solve several problems related to lattices. We
mainly work with matrices whose rows span lattices or subspaces in Qn . We say that a matrix is
integral if it has integer entries.

A basic algorithm that we use is the Smith normal form: given an m × n integral matrix A this
algorithm finds an m × n integral matrix S , and integral unimodular square matrices P and Q with:

1. S is in Smith normal form (this means that there is an r such that di = S(i, i) is positive for
1 � i � r, S has no other non-zero entries, and di divides di+1 for 1 � i < r),

2. S = P A Q .

For details on this algorithm we refer to [11], §8.3. One property that we note is the following (cf.
[11], Chapter 8, Corollary 3.4).

Lemma 6.1. Let q1, . . . ,qn denote the rows of Q −1 . They form a basis of Zn, and di is the smallest non-negative
integer such that diqi lies in the span of the rows of A for 1 � i � r.

We also need an algorithm that appears to be well known: in the computer algebra system Magma

[4] it is implemented under the name of “saturation.” However, we have not been able to find a
reference for it in the literature. For this reason we sketch a solution here. Let A be an m × n-matrix
with integer entries. Let V ⊂ Qn be the Q-space spanned by the rows of A. The problem is to find a
Z-basis for the lattice Zn ∩ V . Without loss of generality we assume that the rows of A are linearly
independent. The key observation is the following. Let B be an m × n integral matrix whose rows
span V . Then its rows span Zn ∩ V if and only if the Smith normal form of B has diagonal entries
that are all equal to 1. This follows from Lemma 6.1. This implies the correctness of the following
algorithm.

Algorithm 1 (Saturation).
Input: an m × n integral matrix A with linearly independent rows.
Output: an m × n integral matrix B whose rows span Zn ∩ V , where V ⊂ Qn is the Q-space spanned
by the rows of A.
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(1) Let S , P , Q be the output of the Smith normal form algorithm with input A.
(2) Let S ′ be the matrix obtained from S by setting the diagonal entries equal to 1.
(3) Return B = P−1 S ′ Q −1.

Algorithm 2 (Intersection of lattice and subspace).
Input: an n ×n integral matrix A whose rows span the full-dimensional lattice L in Qn , and an m ×n
matrix B whose rows span an m-dimensional Q-subspace W of Qn .
Output: an n × n integral matrix whose rows span L, and whose first m rows span the lattice W ∩ L.

(1) Let e1, . . . , en and b1, . . . ,bm denote the rows of A and B , respectively. Write bi = ∑n
j=1 βi je j , and

let B ′ = (βi j); if necessary multiply the rows of B ′ by integers in order to get integral entries.
(2) Let C be the output of Algorithm 1 with input B ′ .
(3) Let S , P , Q be the output of the Smith normal form algorithm with input C .
(4) Return Q −1 A.

Lemma 6.2. Algorithm 2 is correct.

Proof. The idea is to use the given basis of L as a basis of Qn . Let ψ : Qn → Qn be the corresponding
isomorphism. So if v ∈ Qn then ψ(v) is the vector that contains the coefficients of v with respect to
the basis of L. So after the first step the rows of B ′ form a basis of ψ(W ). Of course ψ(L) = Zn ⊂ Qn .

So the rows of C form a basis of ψ(W ) ∩ ψ(L) = ψ(W ∩ L). Furthermore, the Smith normal form
S of C has diagonal entries equal to 1. Therefore the rows of Q −1 form a basis of Zn and the first m
rows form a Z-basis of ψ(W ∩ L). Note that for v ∈ Qn we have ψ−1(v) = ψ(v)A. Therefore the rows
of Q −1 A form a basis of L, and the first m are a Z-basis of W ∩ L. �
Algorithm 3 (L-complements).
Input: an n × n integral matrix A whose rows span a full-dimensional lattice L in V = Qn; and bases
of subspaces V 1 ⊆ Vn−1 ⊂ V .
Output: an n × n integral matrix C with the following properties:

– The rows of C span L.
– The first s rows of C span L ∩ V 1 (s = dim V 1).
– The first t rows of C span L ∩ Vn−1 (t = dim Vn−1).

(1) Execute Algorithm 2 with input A and a matrix whose rows span Vn−1. Let w1, . . . , wn denote
the rows of the output.

(2) Let v1, . . . , vs be the given basis of V 1, and write vi = ∑t
j=1 αi j w j . Let A′ = (αi j).

(3) Execute Algorithm 2 with input the t × t-identity matrix, and A′ . Let B denote the output.
(4) Let C ′ be the product of B and the t × n matrix whose rows are w1, . . . , wt . Let C be the matrix

obtained from C ′ by appending wt+1, . . . , wn .

Lemma 6.3. Algorithm 3 is correct. Let u1, . . . , un denote the rows of its output matrix B. Let W1, Wn−1 ⊂ Qn

be the subspaces spanned by us+1, . . . , un and ut+1, . . . , un, respectively. Then W1 ⊂ Wn−1 are a system of
L-complements to V 1 ⊂ Vn−1 .

Proof. After the first step w1, . . . , wn span L and w1, . . . , wt span L ∩ Vn−1. Next we work in Vn−1
using the basis w1, . . . , wt . We rewrite the basis elements of V 1 with respect to this basis. We note
that multiplying a v ∈ Qt with the matrix with rows w1, . . . , wt is the reverse transformation. So the
rows of C ′ span L ∩ Vn−1 and the first s rows of C ′ span L ∩ V 1. Therefore the output is correct.

The last statement follows directly from the definition of L-complements. �



W.A. de Graaf, A. Pavan / Journal of Algebra 322 (2009) 3950–3970 3965
Remark 6.4. The output of Algorithm 3 has one more useful property. Let W1, Wn−1 be as in Lem-
ma 6.3. The bases of the spaces W1 and Wn−1 that are produced by this algorithm are bases of
L ∩ W1 and L ∩ Wn−1, respectively.

Algorithm 4 (Integral relations).
Input: An m × n-matrix A with rational coefficients.
Output: an m × n integral matrix whose rows are a basis of the lattice

Λ =
{

(e1, . . . , em) ∈ Zm
∣∣∣ m∑

i=1

eiai ∈ Zn

}
,

where a1, . . . ,am are the rows of A.

(1) Let M be the matrix obtained by appending the n × n-identity matrix at the bottom of A.
(2) Let v1, . . . , vm be a basis of the space {v ∈ Qm+n | vM = 0}. If necessary multiply each vi by an

integer to ensure that it has integral coefficients.
(3) Let B be the output of the saturation algorithm (Algorithm 1) applied to the matrix with the vi

as rows.
(4) Output the rows of B with the last n coefficients deleted.

Lemma 6.5. Algorithm 4 is correct.

Proof. Note that the matrix M has rank n; therefore in step (2) we find m linearly independent basis
vectors. Now set

Λ′ = {
e = (e1, . . . , em+n) ∈ Zm+n

∣∣ eM = 0
}
.

Then (e1, . . . , em+n) �→ (e1, . . . , em) is a bijection Λ → Λ′ . Now after step (3) B is a basis of Λ′ . We
conclude that the output is a basis of Λ. �
7. The main algorithm

Now we return to our initial problem. Let G ⊂ GLm(C) be a unipotent algebraic group defined
over Q. Set V = Qm and let L be a full-dimensional lattice in V . The problem is to compute a finite
set of generators of the group G L = {g ∈ G(Q) | g(L) = L}.

We assume that G is defined as subset of GLm(C) by polynomial equations that have coefficients
in Q. Then as a first step we find the Lie algebra g of G as follows. First we compute a set S of
generators for the radical of the ideal generated by the polynomials that define G (cf. [1]). Then we
obtain the Lie algebra by differentiating the elements of S .

The second step will be to compute a flag 0 = V 0 < V 1 < · · · < Vn = V of V for the action of g.
This is done by straightforward linear algebra: V 1 is the space killed by all elements of g; V 2/V 1 is
the subspace of V /V 1 that is killed by all elements of g, and so on.

Now we have the input for our main algorithm which we now state. We use the notation of
Sections 2, 4.

Algorithm 5 (Main algorithm).
Input: a non-zero finite-dimensional vector space V over Q, a full-dimensional lattice L of V , a Lie
subalgebra g ⊂ gl(V ) that is the Lie algebra of a unipotent algebraic group G , and a flag

0 = V 0 < V 1 < · · · < Vn = V

of V with respect to the action of g.
Output: a T-sequence for G L .
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(1) If n = 1 then return the empty set, else go to step (2).
(2) Compute the derived vector space V � , the derived lattice L� , the derived flag 0 = V �

0 < V �
1 <

· · · < V �
n−1 = V � .

(3) Compute the kernel n and the image q of the derived action of g on V � , together with the
projection dπ : g → q.

(4) Apply the algorithm recursively to the vector space V � , the lattice L� , the Lie algebra q and the
derived flag. Denote by q1, . . . ,qk the result.

(5) Compute a system Wn−1 ⊆ W1 of L-complements to V 1 ⊆ Vn−1 (Algorithm 3), the induced lat-
tice Γ and the induced error map ε : End(V ) → Hom(Wn−1, V 1).

(6) Compute a basis x1, . . . , xl of nL and set ni = exp(xi) for 1 � i � l.
(7) For 1 � i � k compute a preimage x of log(qi) under dπ and set gqi = exp(x).
(8) Compute the image W ′ of n under ε .
(9) Compute a basis W = {w1, . . . , wk} in Hermite normal form of the relation lattice of the ele-

ments ε(gqi ) + Γ + W ′ in Hom(Wn−1,V 1)

Γ +W ′ for i = 1, . . . ,k.
(10) For each wi in W do the following

(a) Write wi = (e(i)
1 , . . . , e(i)

k ) and set

gwi = g
e(i)

1
q1 · · · g

e(i)
k

qk
.

(b) Compute v wi ∈ W ′ and γwi ∈ Γ such that v wi + γwi = ε(gwi ).
(c) Compute the preimage nwi of −v wi under ε : n → Hom(Wn−1, V 1).
(d) Compute gi = gwi · exp(nwi ).

(11) Return g1, . . . , gk,n1, . . . ,nl .

We start by commenting on the computability of various steps.

5. We note that Algorithm 3 produces bases of L ∩ Wn−1 and L ∩ V 1. We use these bases to represent
an element of Hom(Wn−1, V 1) as an s × t-matrix (where s = dim(V 1), t = dim(Wn−1)). Then a
Z-basis of Γ is the set of elementary s × t-matrices, which have one coefficient equal to 1, and
all other coefficients equal to 0. Computing ε(a) for an a ∈ End(V ) is standard linear algebra.
Indeed, for a ∈ End(V ) and w ∈ Wn−1 write aw = v1 + w1, where v1 ∈ V 1 and w1 ∈ W1. Then
ε(a)w = v1.

6. Here we first compute a basis of the space ε(n) ⊂ Hom(Wn−1, V 1). Using Algorithm 2 we find
a Z-basis of Γ ∩ ε(n). The inverse images of the basis elements under ε are then a basis of nL

(Proposition 4.2).
8. In step (6) we already obtained a basis of W ′ , and a basis γ1, . . . , γst of Γ such that γ1, . . . , γm

are a basis of W ′ ∩ Γ . Let N = st − m and for γ ∈ Hom(Wn−1, V 1) set ψ(γ ) = (cm+1, . . . , cst),
where the ci are defined by γ = ∑

i ciγi . Then ψ : Hom(Wn−1, V 1) → QN is a linear map and
γ ∈ Γ + W ′ if and only if ψ(γ ) ∈ ZN . Set ui = ε(gqi ) for 1 � i � k. We want to compute a
Z-basis of the lattice

Λ =
{

(e1, . . . , ek) ∈ Zk
∣∣∣ k∑

i=1

eiui ∈ W ′ + Γ

}
.

Now (e1, . . . , ek) lies in Λ if and only if
∑

i eiψ(ui) ∈ ZN . So we get a basis of Λ by applying
Algorithm 4 with input the matrix with rows ψ(ui). Then we compute the Hermite normal form
(cf. [11], §8.1) of the basis of Λ obtained.

The other steps are straightforward. We now prove the correctness of the algorithm.



W.A. de Graaf, A. Pavan / Journal of Algebra 322 (2009) 3950–3970 3967
Theorem 7.1 (Correctness of the main algorithm). Let V be a non-zero finite-dimensional vector space over Q,
L a full-dimensional lattice of V , and G a unipotent algebraic subgroup of GL(V ). Further, let g ⊂ gl(V ) be the
Lie algebra of G. Then Algorithm 5, with input V , L and g and a flag

0 = V 0 < V 1 < · · · < Vn = V

of V with respect to the action of g, returns a T-sequence for the subgroup G L of GL(V ).

Proof. As a first thing we notice that, since g is the Lie algebra of G , as seen in Section 4 the given
flag is also a flag of V with respect to the action of G . Hence the hypothesis of Section 2 is satisfied,
and we can consider all the constructions described there. As seen in Section 4, n ⊂ gl(V ) is the Lie
algebra of N and q ⊂ gl(V �) is the Lie algebra of Q . Now we proceed by induction on the length n of
the flag.

If n = 1, then every vector of V is G-fixed, hence G is the trivial subgroup of GL(V ) and G L is the
trivial subgroup of GL(V ), hence the empty set is a T-sequence for G L .

Now suppose that n � 2. By the inductive hypothesis, q1, . . . ,qk is a T-sequence for the subgroup
Q L� of GL(V �). By results in Section 4, the exponential map gives a bijection from n to N(Q) and,
since by Proposition 4.1 the Lie algebra n is abelian, it is also a group morphism. Further, using
Proposition 4.3 and Lemma 2.5, it is easily seen that the image of nL under the exponential map
is NL . Hence n1, . . . ,ns is a T-sequence for NL , regardless of their order. As seen in Section 4, we
have exp(dπ(x)) = π(exp(x)) for all x ∈ g. So for i = 1, . . . ,k we get

π(gqi ) = qi . (4)

In particular, gqi ∈ G L� . By commutativity of the diagram in Corollary 2.4,

Ψ (qi) = ε(gqi ) + Γ + W

and, due to Proposition 4.3, W ′ is equal to the image W of N(Q) under ε . Hence W is a basis in
Hermite normal form for the relation lattice of Ψ (qi), i = 1, . . . ,k, in Hom(Wn−1,V 1)

Γ +W . For 1 � i � k set

hi = q
e(i)

1
1 · · ·q

e(i)
k

k ,

where wi = (e(i)
1 , . . . , e(i)

k ) is as in the algorithm. By Lemma 5.1, the ordered set h1, . . . ,hk is a T-
sequence for the kernel of Ψ . Owing to (4) we have that gwi is an element of G L� satisfying

π(gwi ) = hi

for 1 � i � k. Again by commutativity of the diagram in Corollary 2.4, we have that ε(gwi ) ∈ Γ + W =
Γ + W ′ (hence step (b) makes sense). Since exp(nwi ) ∈ N(Q), we have gi ∈ G L� and

π(gi) = hi .

Further, using Propositions 2.3 and 4.3, we obtain that

ε(gi) = ε(gwi ) + ε(nwi ) = v wi − v wi + γwi ∈ Γ.

Hence by Lemma 2.5 we have that gi ∈ G L . Thus by Proposition 2.7 the ordered set g1NL, . . . , gk NL is
a T-sequence for G L

NL
. Using Proposition 4.1 we get that N is central in G , hence NL is central in G L .

Therefore we finally obtain that g1, . . . , gk,n1, . . . ,nl is a T-sequence for G L . �
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Corollary 7.2. Let the notation be as in Theorem 7.1. Let H denote the T-group generated by the output of
Algorithm 5. Then the Hirsch length of H is equal to the dimension of G. Moreover, the Lie algebra of the
radicable hull of H is isomorphic over Q to g.

Proof. We use the notation of the proof of Theorem 7.1. By induction, q1, . . . ,qk is a T-sequence
for Q L� . This group has dimension equal to dim G − dim N = dim G − l. Therefore the T-sequence
output by the algorithm is of length equal to dim G .

Let h1, . . . ,hr denote the T-sequence output by the algorithm. From [10], Chapter 6, we get that
the Lie algebra of the radicable hull of H is isomorphic to the Lie algebra spanned by log(hi). But the
latter one is g. �
Remark 7.3. The algorithm can be slightly modified in order to compute even a finite presentation
of G L . To show how this can be done, we need to introduce some further notation.

Let G be a T-group and g1, . . . , gn a T-sequence for G . We say that a word w in g1, . . . , gn is
normal if it is of the form ge1

1 · · · gen
n for some ei ∈ Z. If this is the case, the depth of w is the

minimum i such that ei is non-zero. It is an easy induction to prove that every element g of G can
be written in a unique way as a normal word w in g1, . . . , gn . Also, g ∈ Gi = 〈gi, . . . , gn〉 if and only
if w has depth at least i. Since g1, . . . , gn is a T-sequence, for every 1 � i < j � n we have that
[gi, g j] ∈ G j+1. Hence there exist a unique normal word w[gi ,g j ] (of depth at least j + 1) such that

[gi, g j] = w[gi ,g j ].

It is well known that

〈
g1, . . . , gn

∣∣ [gi, g j] = w[gi ,g j ] for 1 � i < j � n
〉

is a finite presentation for G . We call it the standard presentation for G with respect to g1, . . . , gn .
Recall that the algorithm as it stands computes a T-sequence g1, . . . , gk,n1, . . . ,nl for G L . Now we

want to sketch how it can be modified in order to compute the standard presentation for G L with
respect to such a T-sequence. Of course it will be enough to show how to compute the normal words
of the forms w[gi ,g j ] , w[gi ,n j ] and w[ni ,n j ] (for any suitable choice of the indexes i and j). The proof
of Theorem 7.1 shows that NL is central in G L . Hence it follows at once that

w[gi ,n j ] = w[ni ,n j ] = 1.

So the only hard part is to compute the words of the form w[gi ,g j ] . To this end we can suppose
by inductive hypothesis that step (4) of the algorithm, along with a T-sequence q1, . . . ,qk for Q L� ,
produces also the standard presentation

〈
q1, . . . ,qk

∣∣ [qi,q j] = w[qi ,q j] for 1 � i < j � k
〉

of Q L� with respect to q1, . . . ,qk . Recall that, using the notations of the proof of Theorem 7.1,
h1, . . . ,hk is a T-sequence for the kernel of Ψ . Furthermore, the proof even shows that we can ef-
fectively write its elements as normal words in q1, . . . ,qk (of increasing depth). There are algorithms
known for computing a standard presentation of a subgroup of a T-group (cf. [11]; an implementa-
tion of the algorithms for this purpose is available in the GAP4 package “polycyclic,” [7]). So we can
compute the standard presentation

〈
h1, . . . ,hk

∣∣ [hi,h j] = w[hi ,h j] for 1 � i < j � k
〉

for the kernel of Ψ with respect to h1, . . . ,hk . Since every w[hi ,h j ] is a normal word in h1, . . . ,hk , we
can evaluate it in g1, . . . , gk (that it to say, substituting every hi with gi). In this way we obtain a
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normal word u[gi ,g j ] in g1, . . . , gn . Since π : G L → K sends gi in hi and has kernel NL , we obtain that

n = [gi, g j]u−1
[gi ,g j ] ∈ NL .

Since n1, . . . ,ns is a T-sequence for NL , we can write n as a normal word v in n1, . . . ,ns . This can be
done effectively, being equivalent to write an element of a lattice in terms of a (ordered) basis. Since
u[gi ,g j ]v is a normal word in g1, . . . , gk,n1, . . . ,nl , it now follows easily that

w[gi ,g j ] = u[gi ,g j ]v.

8. Practical performance

It is rather straightforward to see that the complexity of Algorithm 5 is exponential in the length
of the flag of V . Indeed, if the flag has maximal length, or in other words, dim V i = i, then dim V � =
2n − 2. So in the worst case the dimension of the ambient vector space is roughly doubled in each
step of the recursion.

It turns out that the dimension of the spaces Hom(Wn−1, V 1) increases even faster (in the worst
case by about a factor of 4 each step of the recursion). For this reason we avoid working with the
entire space Hom(Wn−1, V 1). Instead we consider the associative algebra with one A ⊂ End(V ) gen-
erated by the elements of the Lie algebra g. Let U = ε(A) ⊂ Hom(Wn−1, V 1). Then ε(G) ⊂ U , so we
can work with the space U instead of Hom(Wn−1, V 1). In fact we choose to work with a potentially
somewhat bigger space, namely the subspace of Hom(Wn−1, V 1) consisting of the matrices that have
non-zero entries only in those positions for which there are elements in U that have non-zero en-
tries in those positions. This space has the advantage that its intersection with the lattice Γ is easily
computed. Furthermore, in practice it is only slightly bigger than U .

We have implemented the algorithm in the language of GAP4 [8]. We use three series of Lie
algebras in gln(Q) to generate test inputs to the algorithm. The terms of the first series are denoted gn ,
which is spanned by

xi = e1,i+1 for 1 � i � n − 1,

xn =
n−1∑
j=2

e j, j+1

(here ei, j is the n × n-matrix with a 1 on position (i, j) and zeros elsewhere). The only non-zero
commutators are [xi, xn] = xi+1 for 1 � i � n − 2. So gn is of dimension n and of nilpotency class
n − 1.

The second series of Lie algebras is denoted hn , which is spanned by

y1 =
n−1∑
i=1

iei,i+1,

yk =
n−k∑
i=1

ei,i+k for 2 � k � n − 1.

Here the only non-zero commutators are [y1, yk] = −kyk+1 for 2 � k � n − 2. So hn is of dimension
n − 1 and of nilpotency class n − 2. In fact, as abstract Lie algebras, hn ∼= gn−1. We note that both Lie
algebras have a flag of maximal length.
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Table 1
Time (in seconds) for the main algorithm with input gn , hn and un .

n time gn time hn time un

6 0.7 0.4 1.8
7 3 3 11
8 24 16 95
9 204 133 963

The terms of the third series, denoted un , are spanned by all matrices ei, j for 1 � i < j � n. In
other words, un is the full upper triangular Lie algebra. Also this Lie algebra has a flag of maximal
length.

In Table 1 we list the running times2 of the algorithm with input the Lie algebras gn , hn and un ,
for n = 6,7,8,9. In all cases for the lattice L we have taken Zn ⊂ Qn .

On Table 1 we make the following comments:

• We see that the algorithm is efficient enough to tackle nontrivial examples.
• However, the running times do confirm the analysis above that the complexity of the algorithm

is exponential in the length of the flag.
• Also we see that the length of the flag has a great bearing on the running time, as hn ∼= gn−1, but

the algorithm needs markedly longer for hn than for gn−1.
• Of course, for groups of higher dimension, but equal flag length, the algorithm also has to work

harder, as is shown by comparing gn and hn on the one hand, and un on the other hand.
• Finally we remark that it turned out that for n � 10 our program was not able to complete the

computation within 1 GB of memory. So for higher flag lengths a more memory efficient imple-
mentation would be needed, for example using sparse matrices (that are not currently available
in GAP).
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