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Summary

Objective: To investigate the effects of glucosamine (GlcN) on chondrocyte proliferation, matrix production, and gene expression for providing
insights into the biochemical basis of its reported beneficial effects in osteoarthritis (OA).

Methods: Dose-dependent effect of GlcN on cell morphology, proliferation, cartilage matrix production and gene expression was examined by
incubating primary bovine chondrocytes with various amounts of GlcN in monolayers (2D) and in cell-laden hydrogels (3D constructs).
Histology, immunofluorescent staining and biochemical analyses were used to determine the effect of GlcN on cartilage matrix production
in 3D constructs. The impact of GlcN on gene expression was evaluated with real-time polymerase chain reaction (PCR).

Results: GlcN concentration and culture conditions significantly affected the cell behavior. Quantitative detection of matrix production in cell-
laden hydrogels indicated a relatively narrow window of GlcN concentration that promotes matrix production (while limiting cellular prolifera-
tion, but not cell viability). Notably, GlcN enhanced cartilage specific matrix components, aggrecan and collagen type II, in a dose-dependent
manner up to 2 mM but the effect was lost by 15 mM. Additionally, GlcN treatment up-regulated transforming growth factor-b1 (TGF-b1) mRNA
levels.

Conclusion: Results indicate that culture conditions play a significant role in determining the effect of GlcN on chondrocytes, explaining both
the previously reported beneficial and deleterious effects of this sugar. The ability of GlcN to alter TGF-b1 signaling provides a biochemical
mechanism for GlcN activity on chondrocytes that up to now has remained elusive. The observed anabolic effect of optimal GlcN concentra-
tions on chondrocytes may be useful in formulating effective cartilage repair strategies.
ª 2006 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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The degenerative disease osteoarthritis (OA) is a manifesta-
tion of an imbalanced synthesis of articular cartilage (AC)
matrix and the associated growth factors1,2. Currently avail-
able therapies for improving joint health and OA include the
use of anti-inflammatory and pain relieving drugs for symp-
tomatic relief. The use of potentially chondro-protective
agents such as glucosamine (GlcN) and chondroitin sulfate
(CS) has also been explored to treat OA3,4. These com-
pounds are sold in the US as food supplements, while
they are prescribed as drugs in Europe. CS is a major com-
ponent of glycosaminoglycan (GAG) while GlcN is a constit-
uent of the disaccharide building blocks of CS. It has been
hypothesized that the dietary supplementation of these
components stimulates cartilage regeneration. However,
various studies that have investigated the effect of these
components on cartilage regeneration report mixed results;
some promising, and others not, making this subject highly
controversial. Nonetheless, most of the in vivo clinical stud-
ies have demonstrated the efficacy of GlcN in alleviating
symptoms of OA5e7. For instance, McAlindon et al., have
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carried out a meta-analysis combined with systematic qual-
ity assessment of clinical trials treating knee and hip OA us-
ing GlcN and CS to evaluate their beneficiary effect on OA3.
Their analyses indicate a moderate to large beneficial effect
of these nutrients on OA. Other double-blind and placebo-
controlled randomized clinical trials also show that GlcN is
capable of relieving osteoarthritic pain5,7e10.

Although the oral administration of GlcN is considered to
be promising in the treatment of OA, its structure-modifying
effect on human AC is not understood at the cellular
(chondrocyte) and tissue (cartilage explants) levels11. Fur-
thermore, in vitro studies of chondrocytes or cartilage
explants treated with GlcN are conflicting; some studies
indicating the inhibition of cartilage destruction in the pres-
ence of GlcN12, while other studies finding an adverse
effect of GlcN on the biomechanical properties of cartilage
explants or cell viability13. Investigations on the serum
and synovial pharmacokinetics of dietary GlcN demon-
strated that only low levels of GlcN reach into the joint14e16.
For instance, Laverty et al. have shown that the concentra-
tion of GlcN in serum and synovial fluid reached only 6 mM
and 0.3e0.7 mM, respectively, after nasogastric intake of
20 mg/kg/day of GlcN in equine model14.

Oral as well as intravenous administration of GlcN has
also been shown to be effective in various animal
models17,18. Noyszewski et al. have reported that exo-
genously supplied GlcN facilitates the production of CS
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moieties of GAG in AC explants19. Fenton et al., demon-
strated that GlcN can prevent the experimentally induced
equine cartilage degradation20. These studies indicate
that exogenous GlcN may be a good precursor for GAG
synthesis, whereas, other studies suggest that GlcN pre-
vents the degradation of proteoglycans by inhibiting the ni-
tric oxide synthesis in the presence of externally introduced
inflammatory cytokines such as interleukin-1b (IL-1b)21e24.

In this study, we aim to identify the amount of GlcN that
has significant effect on chondrocytes’ biosynthetic activity
and hence the matrix production. We provide a systematic
evaluation of the effects of GlcN on primary bovine articular
chondrocytes (BAC), both in monolayer (2D) and three-
dimensional (3D) culture conditions and demonstrate that
the response of the cells is dramatically different in the
two culture conditions. Our findings emphasize the need
for a realistic cell culture model system and the use of
an optimal GlcN concentration to obtain physiologically-
relevant results. Additionally, the GlcN mediated up-
regulation of transforming growth factor-b1 (TGF-b1)
provides an explanation for previously-failed attempts to ac-
count for the effects of this sugar through metabolic flux
considerations25.

Materials and methods

MATERIALS

GlcNeHCl was obtained form SigmaeAldrich (St. Louis,
MO). Culture medium (chondrocyte medium) was prepared
by dissolving the desired amount of GlcN in chondrocyte
medium so as to attain the required final concentrations of
GlcN in millimoles (mM).

ISOLATION OF BACs

Cartilage slices were surgically dissected from the patel-
lofemoral groove and femoral condyles of bovine legs from
5e8 week old calves (Research 87, Marlboro, MA) as
described earlier26. Small pieces of cartilage tissues were
incubated at 37(C and 5% CO2 in Dulbecco’s modified
eagle medium (DMEM, Gibco, Grand Island, NY, USA) con-
taining 0.2% collagenase (Worthington Biochemical Corpo-
ration, Lakewood, NJ, USA) and 5% fetal bovine serum
(Gibco) for 16 h using an orbital shaker at 120 rpm. The re-
sulting cell suspensions were then filtered through 70 mm
nylon filters (Cell Strainer; Falcon, Franklin Lakes, NJ,
USA) and washed with phosphate buffered saline (PBS)
containing 1% penicillin streptomycin. The cell number
was measured using a Z2 coulter counter and Size
analyzer (Beckman Coulter Inc., Palo Alto, CA, USA).

PHOTOENCAPSULATION OF BACs IN HYDROGELS

(3D CULTURE)

Poly(ethyleneglycol)-diacrylate (PEGDA; procured from
Nectar, Huntsville, AL) was dissolved in sterile PBS, con-
taining 1% penicillin streptomycin, to achieve 10% (w/v)
precursor solution. The photoinitiator Irgacure D2959
(Ciba Specialty Chemicals, Tarytown, NY) was added to
the PEGDA solution and mixed thoroughly to achieve a final
0.05% w/v of photoinitiator concentration. Chondrocytes
were suspended within the precursor solution (20 million
cells/ml) and then transferred into a sterile cylindrical mold
followed by exposing them to long wavelength 365 nm light
at 4.5 mW/cm2 (Glowmark Systems, Upper Saddle River,
NJ), for 5 min to achieve complete gelation. The cell-laden
hydrogels (3D constructs) were then transferred into dishes
and cultured in the presence of varying GlcN concentra-
tions. The 3D constructs were harvested at different time
intervals and analyzed to evaluate cell proliferation, matrix
production, gene expression and phenotypic stability.

GROWTH KINETICS

Primary chondrocytes were plated in cell culture dishes at
an initial cell density of 5000 cells/cm2 and simultaneously
exposed to chondrocyte medium [DMEM (Gibco, Invitro-
gen), supplemented with 10 mM HEPES (Gibco, Invitrogen),
0.4 mM L-proline (Sigma, St. Louis, MO), 50 mg/ml ascorbic
acid (Sigma), 10% fetal bovine serum (FBS, Qualified),
0.1 mM non-essential amino acid (Gibco, Invitrogen), and
1% penicillin streptomycin] containing 1, 2, 5, 10 and
15 mM GlcN, while control cultures were not exposed to
GlcN. To evaluate the effect of GlcN on cell morphology,
the samples were observed periodically through an optical
microscope after seeding of the cells and their subsequent
exposure to GlcN. Cells from six dishes were trypsinized
at a specific time each day and counted using a Z2 Coulter
Particle Count and Size analyzer. The initial population dou-
bling time (P2) was estimated from the proliferation data in
the first 3 days after plating the cells. Assuming an exponen-
tial growth of the cells, the population data were fitted to the
following equation

P ¼ P0expðltÞ ð1Þ
where P0 is the number of plated cells at time t¼ 0, and l is
an adjustable parameter. The population doubling time P2 is
then given by

P2 ¼ lnð2Þ=l: ð2Þ

Proliferation rate of chondrocytes in the presence of vary-
ing GlcN concentration was also analyzed through a water
soluble tetrazolium salt (WST)-1 assay. The cells were
plated in a 96-well plate and cultured in the presence of
various amounts of GlcN. Ten micro liters of WST-1 cell pro-
liferation reagent (Roche Molecular Biochemicals, Hann-
heim, Germany) were added into the cell suspension and
incubated at 37(C for 3 h. The WST-1 derived precipitate,
produced by metabolically active cells in the culture, was
quantified by a multi-well plate reader (mQuant, BIO-TEK In-
struments, Winooski, VT) at A450 as per the manufacturer’s
protocol. The viable cells for each condition were deter-
mined by WST-1 absorbance. To examine cell proliferation,
the average absorbance of wells containing the specific
medium and WST-1 (considered as the background) was
subtracted from the absorbance of the wells containing
the cells, the medium, and WST-1.

To further understand the cellular response to varying
GlcN concentrations in culture medium, three different ex-
periments were designed: (1) cells were mixed with chon-
drocyte medium already containing GlcN and plated, (2)
cells were cultured in chondrocyte medium for 3 days be-
fore their exposure to GlcN, and (3) cells were cultured for
6 days in chondrocyte medium and then exposed to GlcN.
Henceforth, we refer to these three culture conditions as
D0, D3, and D6, respectively. Control cultures were main-
tained without GlcN exposure. All groups were cultured
for a total of 11 days and the medium was changed twice
per week. The trypsinized cells were counted using a Z2
coulter counter and cell viability was determined as men-
tioned below.
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CELL VIABILITY ASSAY

A hemocytometer-based trypan blue dye exclusion
method was used to determine cell viability of monolayer
cultured chondrocytes27. Briefly, 20 ml of cell suspension
was mixed thoroughly with 20 ml of trypan blue (0.4% trypan
blue in 0.85% saline). A small amount of this suspension
was loaded onto the hemocytometer and the living (un-
stained) and dead (stained) cells were counted using a mi-
croscope. Cell viability was also analyzed using Calcein
AM/EthD-I Live/Dead Viability/Cytotoxicity Kit (Molecular
Probes, Eugene, OR). Calcein AM specifically stains living
cells via their intracellular esterase activity while EthD-I
stains dead cells that have lost plasma membrane integrity.
The reagents were diluted according to the manufacturer’s
protocol and incubated for 30 min in serum-free medium
before exposure to fluorescent light.

To examine the cell viability of 3D constructs after photo-
polymerization, samples were cut into thin slices and
stained using Calcein AM/EthD-I Live/Dead Viability/Cyto-
toxicity Kit (Molecular Probes, Eugene, OR) as mentioned
above. Cell viability of 3D constructs cultured with varying
GlcN concentration was evaluated by tunnel staining. Paraf-
fin-embedded 6 week cultured 3D construct sections were
stained for apoptotic cells by TdT-mediated dUTP nick-
end labeling (tunnel) assay according to the supplier’s in-
struction. The percentage of viable cells was determined
by counting the stained cells relative to the total cells
(stained with DAPI) presented in six different fields.

HISTOLOGY AND IMMUNOFLUORESCENT STAINING

Hydrogel constructs were fixed overnight in 4% parafor-
maldehyde in PBS (pH 7.4) at 4(C and transferred to
70% ethanol until processing. Constructs were embedded
in paraffin, and cut into 5 mm sections that were stained
with hematoxylin and eosin, and Safranin-O/fast green. Im-
munofluorescent staining was performed according to the
manufacturer’s protocol (Zymed Laboratories, San Fran-
cisco, CA). Polycolonal rabbit antibodies against mouse
types I and II (RDI, Flanders, NJ) were used with 1:40 to
1:100 dilutions.

BIOCHEMICAL ASSAY

The lyophilized 3D constructs were crushed using pellet
pestle mixer (Kimble/Kontes) and digested in papainase so-
lution (construct/1 ml papainase solution; 125 mg/mL; Wor-
thington Biomedical, Lakewood, NJ) for 18 h at 60(C. The
DNA content was determined using Hoechst 33258 dye28.
The GAG content characterized by CS was measured using
dimethylene blue (DMMB) spectrophotometric assay at
A525

29. CS in de-ionized water was used as standard. Total
collagen content was determined by measuring the hydrox-
yproline content of the constructs after acid hydrolysis and
reaction with p-dimethylaminobenzaldehyde and chlora-
mine-T30.

REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION

(RT-PCR) AND REAL-TIME PCR

Total RNAs were extracted from 2D monolayer cultures
and 3D constructs using TRIzol (Invitrogen, Carlsbad, CA)
following the manufacturer’s instruction. Two micrograms
of total RNA per 20 ml of reaction volume were reverse tran-
scribed into cDNA using the SuperScript First-Strand Syn-
thesis System (Invitrogen). Real-time PCR reactions were
performed and monitored using the SYBR Green PCR
Mastermix and the ABI Prism 7700 Sequence Detection
System (Perkin Elmer/Applied Biosystems, Rotkreuz, Swit-
zerland). cDNA samples (2 ml for total volume of 25 ml per
reaction) were analyzed for genes of interest and for refer-
ence b-actin. The level of expression of each target gene is
then calculated as 2�DDCT , as previously described31. Each
sample was repeated three times for each gene of interest.
RT-PCR was performed at 95(C for 2 min followed by 34
cycles of 30 s denaturation at 95(C, 30 s annealing at the
primer specific temperature, and 1 min elongation at
72(C. PCR products were verified by electrophoresis.
The PCR primers are listed in Supplementary Table 1.

STATISTICAL ANALYSIS

All results are presented as averages and standard devi-
ations (n¼ 6). Statistical significance was determined by
one way single factor analysis of variance (ANOVA; in the
Microsoft Excel package) and post hoc Tukey tests and
set as P< 0.05.

Results

EFFECT OF GlcN ON CELL MORPHOLOGY AND

PROLIFERATION IN 2D MONOLAYER CULTURES

To understand the dose-dependent effect of GlcN on cell
morphology and growth kinetics, primary chondrocytes were
cultured in the presence of varying GlcN concentrations.
The cell morphology changed with GlcN exposure when
cells were plated and exposed to GlcN at the same time,
i.e., D0 culture condition [Fig. 1(A)]. Without GlcN, the
cell number increased after plating and all cells had a
fibroblastic morphology. However, upon incubation with
GlcN, the cell number decreased and a larger fraction of
cells retained the original ‘‘spherical’’ morphology, as shown
in [Fig. 1(A)]. Cells that were exposed to GlcN proliferated
slowly, requiring a longer time to achieve 100% confluency
as compared to their GlcN-deficient counterparts. GlcN-
induced cell death was observed at higher GlcN concentra-
tions; at 10 and 15 mM GlcN, cell death occurred after 4 and
3 days, respectively, as determined by trypan blue staining
and liveedead analysis. However, if cells were allowed to
adhere onto the culture dish before their exposure to GlcN
(D6 culture conditions), significantly higher concentrations of
GlcN (10 and 15 mM) could be tolerated [Figs. 1(B) and 2].
Cells that were cultured for 6 days prior to GlcN exposure
achieved confluency in 11 days, with a cell number compa-
rable to cells cultured in the absence of GlcN [Figs. 1(B) and
2]. Nonetheless, a decrease in cell proliferation with increas-
ing GlcN concentration was observed in all systems (Fig. 2).

The early phase growth kinetics of chondrocytes exposed
to various amounts of GlcN is shown in [Fig. 3(A)]. The ef-
fect of GlcN on cell proliferation was more dramatic at day 3
as compared to 1 and 2 days after plating. The calculated
population doubling times (P2) based on these initial prolif-
erations [using Eqs. (1) and (2)] show a subtle increase in
P2 with GlcN at low concentrations [Fig. 3(B)]. Beyond
2 mM, P2 shows a marked increase with GlcN concentra-
tion. A similar trend was observed with the WST-1 cell
proliferation assay vs GlcN concentration. In WST-1 assay,
the absorbance of the WST-1 precipitate decreased with in-
creasing GlcN concentration, indicating a decrease in cell
number. Absorbance values at days 3 and 4 indicate cell
death when WST-1 solutions were added to culture medium
containing 15 and 10 mM GlcN, respectively [Fig. 3(C)].
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Fig. 1. (A) Cell morphology of chondrocytes exposed to GlcN after 3 days of culture. (B) Cells exposed to GlcN proliferated and achieved
comparable confluency to control cultures when they were exposed to GlcN after 6 days of initial plating. Photographs were taken after a total

of 11 days of culture.
EFFECT OF GlcN ON GENE EXPRESSION

Cells exposed to 0, 0.7 mM and 2 mM of GlcN expressed
genes for cartilage specific markers such as aggrecans
and collagen type II (Fig. 4). Using real-time PCR we
observed a 1.3- and 4.6-fold increase in aggrecan gene
expression when the cells were treated with 0.7 mM and
2 mM GlcN, respectively. A similar increase in collagen
type II expression was also observed (1.2- and 1.8-fold
increases with 0.7 mM and 2 mM GlcN, respectively). Addi-
tionally, GlcN was found to up-regulate TGF-b1 mRNA
levels in a dose-dependent manner. In particular, 1.3- and
1.75-fold increases in TGF-b1 mRNA levels were
observed with 0.7 mM and 2 mM GlcN, respectively. A
similar statistically significant up-regulation of gene ex-
pressions was observed for 3D constructs incubated
with 2 mM GlcN (data not shown).
Fig. 2. GlcN tolerance of chondrocytes depends upon when GlcN is added to culture. Proliferation of cells after 11 days in monolayer at
various experimental conditions. (B) Snapshots of monolayer cultures obtained via optical microscope at the time of GlcN exposure.
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Fig. 3. (A) Growth kinetics of chondrocytes in culture medium containing different concentrations of GlcN. Chondrocytes were plated at a cell
density of 5000 cells/cm2, and exposed to GlcN immediately. Initial population doubling for the first 3 days after plating the cells. Cells were
harvested after 24, 48, and 72 h and counted using a coulter counter. (B) Population doubling times. (C) Cell proliferation for 5 days after

plating the cells determined by WST-1 assay. Higher absorbance indicates more cells.
EFFECT OF GlcN ON CHONDROCYTES IN 3D

HYDROGEL CULTURE SYSTEMS

Three-dimensional culture systems are known to provide
enhanced cell biological activities and physiological envi-
ronment to the encapsulated cells32,33. Our earlier studies
have shown that PEGDA hydrogels provide a suitable envi-
ronment to chondrocytes and chondroprogenitor cells34. In
this study, chondrocytes were successfully encapsulated
in 10% (w/v) PEGDA hydrogels at a cell density of approx-
imately 1.5 million cells per construct. Gross visualization of
the constructs revealed that chondrocytes were homoge-
nously distributed throughout the hydrogel after photopoly-
merization. The majority of cells within the hydrogel were
viable immediately after encapsulation while some dead
cells were sparsely distributed throughout the hydrogel
(data not shown).

The 3D constructs were cultured in chondrocyte medium
containing 0, 2 and 15 mM GlcN. The cells in 3D constructs
remained viable in the presence of the same GlcN concen-
trations that caused cell death in monolayer cultures. How-
ever, as in 2D cultures, a decrease in cell proliferation with
increasing GlcN concentration was observed in 3D hydro-
gels systems [Fig. 5(A)]. Histological analysis (Fig. 6) dem-
onstrates that 3D constructs produced proteoglycans in all
three experimental conditions (culture medium with 0, 2
and 15 mM GlcN). Quantitatively, we observed that GAG
synthesis was maximized when the GlcN concentration in
the culture medium was 2 mM, but at higher concentrations
Fig. 4. Real-time PCR of monolayer cultured chondrocytes indicates a dose-dependent up-regulation of (A) cartilage specific markers collagen
type II and aggrecan mRNA and (B) TGF-b1 mRNA with GlcN treatment.
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Fig. 5. Biochemical analysis of DNA (cell proliferation), GAG, and collagen (n¼ 6) for 3D constructs cultured with 0, 2, and 15 mM GlcN. (a)
Cell proliferation of chondrocytes encapsulated within hydrogel (b) GAG, and (c) collagen content for encapsulated chondrocytes normalized

by DNA content (w/w; n¼ 6). *P< 0.05 and **P< 0.007.
of GlcN (15 mM), GAG matrix production was inhibited
[Fig. 5(B)]. A similar trend in the accumulation of collagen
type II was observed by immunofluorescent staining
(Fig. 6) and collagen assay [Fig. 5(C)]. Type II collagen
staining extends radially from the cells to a greater distance
with 2 mM GlcN incubation compared to 0 and 15 mM GlcN.
No collagen type I protein was detected by immunofluores-
cent staining which agrees with the PCR analysis. In our 3D
studies, the physiological concentration of GlcN (0.7 mM)
was found to be too low to produce any significant effect
Fig. 6. (A) Safranin-O and, (B) collagen type II staining (nuclei of the cells were stained with DAPI (blue)) for 3D hydrogels constructs cultured
in the indicated concentrations of GlcN.
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as those observed at 2 mM. Tunnel staining showed an
insignificant number of apoptotic cells after GlcN exposure
as shown in (Fig. 7).

Discussion

The results described here represent the first comprehen-
sive and systematic investigation of GlcN effect on chondro-
cytes in 2D and 3D culture systems. Discrete differences in
GlcN tolerance were observed between 2D and 3D culture
conditions. This may be attributed to the various niches the
two conditions provide to the cells. There are a number of
differences between 2D monolayer and 3D constructs
which include both cellular morphology as well as the micro-
environment surrounding the cells. Three-dimensional hy-
drogels provide a closer in vivo cartilage environment to
cells by entrapping secreted extracellular matrix (ECM),
and maintaining spherical cellular morphologies. From
a structural perspective, native AC, which is composed of
extracellular matrix components filled with 80% water and
1e10% of chondrocytes, is very similar to the cell-laden hy-
drogels considered here. Another difference is that the ex-
tent of GlcN exposure may also vary between the two
culture conditions. In monolayer culture conditions, cells
are exposed to bolus dose of GlcN compared to 3D cul-
tures. In the case of 3D constructs, GlcN diffuses into the
hydrogel and the diffusion time is highly dependent upon
the dimensions of the hydrogels. It has been shown that
the characteristic pore sizes of 10% PEGDA hydrogels
are on the order of 10 nm35. The large pore sizes along
with the small hydrogel dimensions (6 mm diameter� 4 mm
length) allow for fast equilibration of monosaccharide con-
centrations within the hydrogels.
Results from 2D and 3D cultures indicate that exposure
to GlcN decreases cell proliferation, which is in agreement
with previous studies that show growth inhibition of various
cells in the presence of glucose and GlcN36e38. The GlcN-
induced cell death in monolayer cultures at high GlcN con-
centrations (10 and 15 mM) under D0 culture conditions is
possibly adhesion related. A close examination of these
cells shows that they did not adhere to the culture dish,
which may eventually lead to cell death. This hypothesis
is supported by the observation that cells which were ex-
posed to the same GlcN concentration after given sufficient
time to adhere onto the culture dish (i.e., under D3 and D6
conditions) exhibit good cell viability and reach 100% con-
fluency within comparable time frames to that of the control.
These observations emphasize that chondrocytes need to
be adhered onto the culture dish when they are exposed
to an adherent dependent culture condition (monolayer cul-
ture) in order to survive at high GlcN concentrations.

Incubation of 3D constructs with 2 mM GlcNechondrocyte
medium resulted in highest cartilage specific matrix produc-
tion, GAG and collagen type II. However, this effect was only
observed when cells were treated with 2 mM or less GlcN
concentrations, which suggests that an optimal concentra-
tion of GlcN is required for it to have beneficial effects.
This finding is in agreement with the previously reported
studies, which show no visible stimulatory effect of GlcN
on cartilage matrix synthesis at low exogenous GlcN con-
centrations25,39. We found that higher amounts of GlcN in
the culture medium had adverse effects on chondrocyte ma-
trix production. Kim and Conrad reported a similar trend in
CS accumulation of chick embryo vertebral cartilage cul-
tured in varying GlcN concentrations39. The above authors
attributed this trend to GlcN-induced inhibition of protein syn-
thesis at high GlcN concentration. It has been documented
Fig. 7. (A) Tunnel staining for apoptotic cells after incubated in the presence of varying GlcN concentrations. (B) Percentage of living cells after
6 weeks culture in presence of varying GlcN concentrations.
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that mucopolysaccharide synthesis of chondrocyte cultures
is depressed when protein synthesis was blocked40. This
optimal 2 mM GlcN concentration which renders beneficial
effect on cartilage matrix production is thousand folds higher
than the concentration achieved in the synovium after con-
suming the clinically recommended dose14,15. Even though
we have observed that 0.7 mM GlcN results in some up-
regulation of mRNA levels corresponding to matrix markers,
such low concentrations of GlcN do not result in significant
matrix production (as seen from 2 mM GlcN). However, var-
ious other studies have shown that low levels of GlcN rang-
ing from 20 to 100 mM can inhibit IL-1 stimulated gene
expressions (and not higher matrix production), thereby alle-
viating some of osteoarthritic symptoms22,41. It is also impor-
tant to note that we have used healthy chondrocytes to
understand the effects of GlcN and not the osteoarthritic
chondrocytes, which may have a different behavior in the
presence of GlcN.

One of the motivations for the use of GlcN for treating OA
is based on their anti-catabolic effects such as inhibiting the
anti-inflammatory responses21e24,41. Another rationale for
using GlcN stems from the knowledge that GlcN is one of
the building blocks of GAG. Therefore it has been hypothe-
sized that exogenously supplied GlcN is directly incorpo-
rated into the polysaccharide components (i.e., CS) of the
ECM. This hypothesis, however, does not explain the
GlcN medicated increase in collagen type II. New studies
that disprove the notion of direct incorporation of exoge-
nously supplied GlcN into matrix proteoglycans are begin-
ning to appear25. Based on our results, we propose
a novel explanation to account for the increased production
of extracellular matrix through GlcN mediated up-regulation
of TGF-b1. As described before, GlcN was found to up-
regulate TGF-b1 mRNA levels in a dose-dependent manner
in both 2D and 3D constructs. We therefore believe
that GlcN mediated increase in the production of specific
matrix components involves TGF-b1 up-regulation, possibly
through the hexosamine pathway. Indeed, it has been
shown in mesangial cells that exogenously supplied glu-
cose and GlcN enhance the matrix production through an
up-regulation in TGF-b1 which was proven to be acting
through the hexosamine pathway36,42,43. TGF-bs have
a long history of beneficial effects in the AC. For instance,
this growth factor is known to stimulate the collagen and
GAG production of articular chondrocytes44,45. TGF-bs
also regulate cartilage fracture repair by extracellular matrix
production44. TGF-b is considered as multifaceted cytokine
that plays a key role in many downstream effects such as
mesenchymal differentiation, matrix production, preventing
de-differentiation and controlled differentiation of stem
cells45,46. In adults, TGF-bs are also believed to maintain
a critical balance between the various anabolic and cata-
bolic functions of chondrocytes for proper functioning of
the cartilage44,47.

Conclusion

The present study provides evidence that prolonged ex-
posure of primary chondrocytes to optimal concentrations
of GlcN increases matrix production with concomitant inhibi-
tion of chondrocyte proliferation. The effect of GlcN on
chondrocytes was found to be strongly dependent upon
the culture conditions. Our results indicate the presence
of a narrow GlcN concentration range over which the chon-
drocytes produced the maximum levels of type II collagen,
and aggrecans. To the best of our knowledge, the present
study is the first of its kind that demonstrates GlcN mediated
up-regulation of TGF-b1 in chondrocytes. We believe that
by promoting expressions of these extracellular molecules
and TGF-b1, optimal amount of GlcN preserves cartilage
tissue and promotes its repair upon damage. This study
paves way for the development of better clinical strategies
for cartilage repair involving localized and controlled release
of GlcN into the defect site.
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