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of the inverse for the so-called PM-matrices, which form a sub-
class of the class of nonsingular M-matrices and contain the class
of strictly diagonally dominant matrices. These bounds are shown
to be monotone with respect to the underlying partitioning of the
index set, and the equality cases are analyzed. Also an upper bound
for the infinity norm of the inverse of a PH-matrix (whose com-
parison matrix is a PM-matrix) is derived. The known Ostrowski,
Ahlberg-Nilson-Varah, and Moraca bounds are shown to be special
cases of the upper bound obtained.
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1. Introduction and preliminaries

The problem of bounding the infinity norm of the inverse of a nonsingular matrix satisfying certain
assumptions was considered in a number of publications (e.g., see [1,13,14,2,12,9,10,8,5]).
The present paper considers the problem of bounding |A~1|» for the so-called PM- and PH-matrices

A, which form subclasses of the classes of nonsingular M- and H-matrices, respectively, and are defined
below.
LetA = (a;) € C™™,m > 1, and let
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my=JM;, 1<n<m, (1.1)
i=1
be a partitioning of the index set (m) = {1, ..., m} into disjoint nonempty subsets. Denote
Aj =AM, M), i,j=1,....n, (1.2)
and represent A in the following block form:
An A - An
A |An A - A (13)
An] An2 e Al’lﬂ
Throughout the paper, for a real t x s matrix A = (a;5), we denote
s
A=Y @, i=1,..,t (1.4)
j=1

so that r;(A) stands for the ith row sum of the entries of A.
IfAe C™™ m > 1, then its comparison matrix .# (A) = (my) is defined by the relations

lagl,  i=],
mj; = .
v {*|aij|v P#].

A complex matrix A is said to be an H-matrix if .# (A) is a nonsingular M-matrix. Recall that if A is
an H-matrix, then (e.g., see [4, p. 131]) it is nonsingular. Furthermore, by the Ostrowski theorem [11]
(also see [4, p. 131]), the inverse matrices A~! and .# (A)~! are interrelated as follows.
Theorem 1.1. Let A ¢ C™™ m > 1, be an H-matrix. Then

AT < AAT (1.5)

In (1.5) and throughout the paper, for A = (a;) € C™" we set |A| = (la;D, and, in the real case,

matrix and vector inequalities are understood componentwise.

Introduce the following definitions, basic for the present paper.
Given a matrix A e C™™,m > 1, and a partitioning of the index set (m) = {1,...,m}

my = JM;, 1<n<m, (1.6)

into disjoint nonempty subsets, represent A in the form (1.2) and (1.3) and define the following collec-
tion of my x --- x my aggregated matrices of order n:

ryAn) i, (A) o T (An)
Atz | T A1) TR oy o) | g e, (1.7)
Tiy(An1) T, (An2) -+ Ti,(Ann)
Here,m; = |M;|,i=1,...,n.
We say that A is a PM-matrix (partitioned M-matrix) with respect to the partitioning (1.6) if Ais a Z-
matrix (i.e., its off-diagonal entries are nonpositive) and all the matrices A%~ i € My, k=1,...,n,

defined in accordance with (1.7) are nonsingular M-matrices. Also we say that A is a PH-matrix (with
respect to the partitioning (1.6)) if .# (A) is a PM-matrix (with respect to the same partitioning).

Obviously, a matrix A is a PM-matrix (PH-matrix) with respect to the finest (pointwise) partitioning
(m) = UL, {i}ifand only if A is a nonsingular M-matrix (an H-matrix). On the other hand, for the coars-
est partitioning (m) = My with n = 1,A is a PH-matrix if and only if it is strictly diagonally dominant
(sdd).
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In [7], the following result was established.

Theorem 1.2. IfA € C™™ m > 1, is a PH-matrix with respect to a partitioning (m =UL M1<n<
m, of the index set into disjoint nonempty subsets, then A is an H-matrix.

In particular, for a PM-matrix, which is a Z-matrix by definition, Theorem 1.2 implies the following
result.

Corollary 1.1. IfA ¢ R™™, m > 1, is a PM-matrix with respect to a partitioning (m =UL M;1<n<
m, of the index set into disjoint nonempty subsets, then A is a nonsingular M- matnx

Thus, PM- and PH-matrices are nonsingular, and the problem of bounding their inverses naturally
arises. This problem is considered in the present paper, which is organized as follows. Section 2 deals
with PM-matrices. The first main result (Theorem 2.1) states that the infinity norm of the inverse of a
PM-matrix satisfies the following two-sided bounds in terms of the aggregated matrices (1.7):

mm A=) o <A o < max I[AGr i =Ty (1.8)

For an irreducible matrix A, the cases of equalities in (1.8) are also described.

The second result on PM-matrices (Theorem 2.2) states that the bounds (1.8) are monotone with
respect to the underlying partitioning of the index set, i.e., the finer the partitioning the tighter the
bounds This result is based on the fact that if a matrix A is a PM-matrix with respect toa partitioning

= UiL; M;, then it also is a PM-matrix with respect to every partitioning (m U, 1M = n,
that is finer than the original one.

Section 3 considers the case of PH-matrices. Based on Theorem 1.1, for a PH-matrix A from Theorems
2.1 and 2.2 we infer the upper bound

1A~ oo < max W[ (A1t =T (1.9)
11,0e0ln

conjectured in [6], and also the monotonicity of this bound with respect to the underlying partitioning.
Section4 compares the bounds (1.8) and (1.9) with some known results, obtained in[1,13,3,9,10,6,5].
We conclude this introduction with two relevant remarks. First, if AT is a PM-matrix (PH-matrix),
then the results established obviously yield two-sided bounds (an upper bound) for |A~1|;. Second,
if both A and AT are PH-matrices with respect to some partitionings of the index set, which may be
different, then, in the same way as in [13], one immediately obtains an upper bound for the spectral
norm of A1, i.e., a lower bound for the smallest singular value of the original matrix A.

2. Two-sided bounds for PM-matrices
The first main result of this paper is the following theorem.
Theorem 2.1. IfA € R™™ m > 1, is a PM-matrix with respect to a partitioning (m =ULi M;1<

m, of the index set into disjoint nonempty subsets, then it is a nonsingular M-matrix, and its inverse satlsﬁes
the two-sided bounds

min [|(AT ) "o <A oo < max ATy =T, (21)

iendn ey
where the minimum and maximum are taken over all iy, € My, k = 1,...,n. Furthermore, if A is irreducible,
then either inequality in (2.1) is an equality if and only if

A7 le), = foralliy e My, k=1,....n, (2.2)
where e = [1, ..., 11T is the unit vector of appropriate dimension; otherwise both inequalities in (2.1) hold

strictly.
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In order to prove Theorem 2.1, we follow [7] and introduce into consideration the (m — 1) x (m — 1)
matrices Alfl) and A,@ that are defined as follows:

iy 0 0 i, 0 0

a5 0 1 0 @ =10 1 0

AV=Ria| o 1 o |- A=A, 1 o (2.3)
0 0 Inig 0 0 Inig

Here and below, I, is the identity matrix of order k, and for a matrix B € Ctxs, witht > 2ands > 1, by
B; we denote its (t — 1) x s submatrix obtained by deleting the jth row,j = 1,...,t. The passage from A

to the pairAla),A,@ is referred to as aggregation of columns i and i + 1 of A. Obviously, the matrices Afl)

and AIQ) form the collection of aggregated matrices associated with the partitioning (m) = UZ:11 M,
where M, = {k},k=1,...,i—1;M; ={i,i +1}; M, ={k+1},k=i+1,...,m—1, and, in terms of the
matrices (1.7), we have

Thus, by Corollary 11, if both A" and A> are nonsingular M-matrices, then A also is a nonsingular
M-matrix.

The proof of Theorem 2.1 is based on the following lemma.
Lemma 2.1. Let A € R™™ m > 2, be a nonsingular M-matrix such that for a certain i,1 <i<m-—1,
both matrices A" and A'® defined in (2.3) are nonsingular M-matrices. Then

min [AX) e < 1A oo < max |AY) . (24)
k=1,2 k=1,2

Furthermore, if A is irreducible, then either inequality in (2.4) is an equality if and only if
A o) = A e)i; (2.5)

otherwise both inequalities in (2.4) are strict.

Proof. Permuting (if necessary) the rows and columns of A, we may assume, without loss of generality,
thati = 1 and that

g1 < &, (2.6)

where we set g = A~'e. Using (2.3) and (2.6) and taking into account that A is a Z-matrix, we derive
the right-hand side inequality in (2.4) in the following way:

2 &2
1 0 £2
A2 a1 0 |[|Z oA |8 | <Ag=dp, =
181 ="~ L =A <A1g = A7 =é;. (2.7)
0 Inho .
m 8m

Note that the inequality in (2.7) stems from (2.6) and the fact that all the entries in the first column
of A, are nonpositive. Since, by assumption, Af) is a nonsingular M-matrix, we have (Agz))*1 > 0,and
(2.7) implies that

81 < AP) e, (2.8)
whence, with account for (2.6), we obtain

1A oo = l1glloe = 181 1lc < IAP) 181100 = 1AP) M lco-
This proves the right-hand side inequality in (2.4).
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In order to prove the left-hand side inequality in (2.4), we similarly deduce

81 &
1 |1 0 &l |8 - —
AP =A |1 0 C | =A2| 8| > A=A, =6, (29)
0 In_o . .
m 8m
implying that
g > AN e, (210)

By using (2.6) and (2.10), we obtain

1A oo = 181l = 1820100 = 1A 82000 = 1A lco-

This completes the proof of inequalities (2.4).
In order to analyze the cases of equalities in (2.4), we assume that A is irreducible and that

A o = 1AP) V. (2.11)
Set
u=1[uy,... unl" = (A(lz))‘le.

Then we have

u U2
2
_ 1 0 us3 - 12 —
e=APu=4;[1 0 Tl =A B =@y, (2.12)
0 Ipaf| - :
U :
m U
where we denote
U = (U, Up, U3 ..., Un] .
From (2.12) it immediately follows that
o
1
Au=| . |[=e+ (- 1eq, (2.13)
1

where ¢; is the ith column of the identity matrix I. Since A is an irreducible M-matrix, its inverse is
positive, and A~le; is a positive vector. By (2.13), we have

i=Ale+@-1A ey =g+ (@— DA le;.
Suppose « > 1.Then i > g and

Il > lIglloo = A oo
which contradicts (2.11), because

Iilloe = tllos = 1AP) oo

In a similar fashion, we ascertain that the case « < 1 is impossible as well. Thus, if equality (2.11) holds
true, theno = 1, i.e., it = A~le = g, which implies that g; = g.

Conversely, if g; = g5, then g; = &, and both (2.7) and (2.9) are strings of equalities, implying that
(Af))*]e = (A%”)*le, whence both inequalities in (2.4) are equalities.
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The case [A™1|o = ||(A§1))—1 lloo is treated similarly. OJ
From the proof of Lemma 2.1, we readily infer the following useful result.

Corollary 2.1. If, under the assumptions of Lemma 2.1, the matrix A is irreducible, then the inequality
1A oo > 1AM oo

is equivalent to the inequality
g < g1, whereg =A"le.

Note also that in the second part of Lemma 2.1, the assumption that A is irreducible can be weakened
as follows.

Corollary 2.2. Let A be anonsingular M-matrix and letAEz) be a nonsingular M-matrix. IfA=1e; is a positive
vector, then

1A oo = 1AP) oo
ifand only if g; = g;,1.

Proof of Theorem 2.1.Fromdefinitions (1.7)and (2.3) it readily follows that for an arbitrary partitioning

be obtamed fromA as a result of successively aggregating pairs of consecutive columns. Thus, for every
fixed partitioning (m) = |Ji_; M;, we obtain a sequence (which is in general not uniquely determined)
of partitionings of the index set, starting with the entrywise partitioning (m) = |JI"; {i} and terminating
with the given one. Note that the order of the associated aggregated matrices successively decreases
from m ton, and, by Corollary 1.1, all the intermediate aggregated matrices are nonsingular M-matrices.
Thus, the bounds (2.1) stem from Lemma 2.1.

In order to prove the second assertion of Theorem 2.1, let A be irreducible. First assume that

1A oo = max A i)y =T o (2.14)
We will show that (2.14) implies (2.2). To this end, it is obviously sufficient to demonstrate that if M| >

2, where 1 < k < n, then for all i,j € My, i + j, we have (A~ le); = (A‘1e)j. Without loss of generality,
we may assume that

My = {jk, - - -k + IMi| = 1}
In this case, it is sufficient to show that from (2.14) it follows that for all i,j, < i < ji + M| — 1,
A le) = A o). (2.15)
Indeed, by Lemma 2.1 and (2.1), we have

1A~ oo < pnax||(A<’)>‘1||oo max AT i) =Ty (2.16)

.....

From (2.16) and (2.14) we immediately obtain that

_ D —
1A~ oo = max 1AM oo

and, consequently, (2.15) holds by Lemma 2.1.

The fact that equality on the left-hand side of (2.1) implies (2.2) is established similarly.

Finally, assume that condition (2.2) is fulfilled. Then, by Lemma 2.1, aggregation of columns i and
i+ 1, where i,i + 1 belong to the same set M, does not change the infinity norm of the inverse. In
addition, each of the inverse matrices (Af]))*l and (Al(z))*1 still satisfies (2.2), with M, replaced by
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M\ {i + 1}and M), \ {i}, respectively. Thus, proceeding by induction, we conclude that both inequalities
in (2.1) are equalities.

Theorem 2.1 is proved completely. []

Following [7], we say that a partitioning:

n

(m) = _JM; (217)
i=1

of the set (m) into disjoint nonempty subsets is finer than a partitioning

-

(my =|_JM; (2.18)
i=1

and (2.18) is coarser than (2.17) if n > n” and each of the sets Mj,i = 1,..., 1, is a union of some sets
M,‘,i: 1,...,1”[.

In this terminology, from the proof of Theorem 2.1 we infer the following monotonicity result.

Theorem 2.2. Let A < R™ ™, m > 1, be a PM-matrix with respect to a partitioning (2.17). Then A is a
PM-matrix with respect to every finer partitioning (2.18), and the following inequalities hold:

min | AG-) T < min AG ) T o < JAT oo (2.19)
i1,.-0in 1’1 ,,,,, 1,’1,
and
A*l < A(ill ----- i’ )1 < A(i],.,.,in) -1 2.20
IA™ Moo < l,/mal?f Il ") Moo S max K¢ )" loo- (2.20)
ey Lol
Here, the minima and maxima are taken over allij e Mj,k=1,...,n’,and all iy € M,k =1,...,n.

3. An upper bound for PH-matrices

In view of Theorems 1.1 and 1.2, the following upper bound for the infinity norm of the inverse of
a PH-matrix is an immediate consequence of Theorem 2.1.

Theorem 3.1. IfA € C™™, m > 1, is a PH-matrix with respect to a partitioning (m) = U_; M;,1 < n <

m, of the index set into disjoint nonempty subsets, then it is an H-matrix, and its inverse satisfies the upper
bound

1A~ oo < max 4/ A) 1)~ o, (3.1)
1se-nln
The following monotonicity property of the upper bound (3.1) readily stems from Theorem 2.2.
Theorem 3.2. Let A ¢ C™™ m > 1, be a PH-matrix with respect to a partitioning
n
my=JM;, 1<n<m, (3.2)
i=1

of the index set into disjoint nonempty subsets. Then A is a PH-matrix with respect to an arbitrary parti-
tioning

"
my=JM;, 1<n'<m, (3.3)
i=1

that is finer than (3.2), and
1A oo < max (A A1) o < max |4 &))", (3.4)
1’1,...,1,’1, i1,e0dn
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where the maxima are taken over all iy € M,k =1,...,n,and allij e M}, k=1,...,1".

4. Comparison with known results

First we note that if n = m, i.e., no nontrivial block partitioning is imposed on A, then Al1--in) = A,
and the upper bound of Theorem 3.1 reduces to the Ostrowski result (1.5).
If n =1, then A is a PH-matrix if and only if

m
pi(A):=la;l - Y laj| >0, i=1,...,m, (41)
7
i.e,, A is a strictly diagonally dominant matrix, and the upper bound of Theorem 3.1 reduces to the
classical Ahlberg-Nilson-Varah bound (see [1,13])

1A~ oo < max{1/pi(A)}. (4.2)
ie(m)

In addition, for a PM-matrix A, Theorem 2.1 supplements the upper bound (4.2) with its lower coun-
terpart

1A~ oo = min(1/p;(A)}, (43)
ie(m)
which is almost trivial and was presented in [10]. Furthermore, if A is an irreducible PM-matrix, then,
by Theorem 2.1, the bounds (4.2) and (4.3) simultaneously hold with equality if and only if
A le =ce,
where c is a positive constant; otherwise both of them hold strictly.

Since the trivial partitioning (m) = M is coarser than any partitioning (3.2) withn > 2, by Theorem
3.2 we have

1A oo < max (A (A) Ty =1 o < {n(érln))(“/pi(A)}- (4.4)
1 n €

0150

Thus, Theorem 3.2 provides an improvement of the Ahlberg-Nilson-Varah upper bound (4.2), which
is, in addition, applicable under milder assumptions on A (because if A is sdd, then all the matrices

1A o = min |AT-)=1) > min{1/p;A)). (4.5)
11yeesy In ie(m)

mxm

In the case where n = 2 and (m) = M; UM, a matrixA e C ,m > 2, represented as

_[An A o AML Mol i —
A_[An Any | where A; = AIM;, M;], i,j=1,2,

is a PH-matrix if and only if all the matrices

pi(A11) —ri(IAlzl)] : .
A L 1<i< Myl 1< < M),
) [_rj(lAZID pj(422) SIS 1| NV | 2|

are nonsingular M-matrices, or, equivalently
piAn) >0 foralli, 1 <i< My
and
PiA11)Pj(Ap) > 1i(|A12Drj(|Axn ) forallij, 1 <i<|Mql, 1<j < |Myl.

Such matrices were studied in a number of papers (e.g., see [9,6] and the references therein). In this
case, the upper bound of Theorem 3.1 reduces to the bound
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1A oo < max 147 oo (4.6)

which was first proved in [6]. However, it should be mentioned that the bound (4.6) actually coincides
with the bound established in [9], which is in terms of the entries of A and suggests no extension to
the case n > 2. Note that in [5] the same upper bound as in [9] was proved for the narrower class
consisting of matrices that are PH-matrices with respect to the specific partitioning of the index set
into two subsets one of which corresponds to the strictly diagonally dominant rows, whereas the other
corresponds to the rows that are not strictly diagonally dominant.

The lower counterpart of (4.6),

1A~ oo > min 147 o, (47)

valid for a PM-matrix A by Theorem 2.1, and the analysis of the equality cases in (4.6) and (4.7) for a
PM-matrix A are new.

In conclusion, we show that the upper bounds of Theorems 2.1 and 3.1 are is general incomparable
with an old-known block bound, which is recalled below.

Given a block-partitioned matrix (1.3), define the matrix

AR —lAnle o —lAle
Ny = | M2l 140K Il || (458)
“IAnllos —lAm2llos o AR
As is known (see [3]), if N(A) is a nonsingular M-matrix, then A is nonsingular, and the nonnegative
matrix
1A oo -+ 1A}l
N(A1)=|: } (4.9)
S 21 )
where we denote A~ = (A;j ?J:l, satisfies the inequality
NAH) <Ny (4.10)
On the other hand, we trivially have
1A oo < INA™Dlloo. (4.11)
Thus, in view of (4.10) and (4.11), for ||A~1 || we have the block bound
A oo < INA) oo (412)
Note that (4.12) and the Ahlberg-Nilson-Varah bound (4.2) immediately imply the bound [13]
1A o < ! (413)

miny cicn {14712 = i 1Ay loc

which holds under the assumption that N(A) is strictly diagonally dominant, and generalizes the bound
(4.2) to the block case.

Relation (4.12) is an upper bound for A1« in terms of the infinity norm of the inverse to the
n x n matrix N(A), which is assumed to be a nonsingular M-matrix. Thus, it is natural to attempt to
compare (4.12) with the upper bounds provided by Theorems 2.1 and 3.1, which are stated in terms of
the aggregated n x n matrices. To this end, we consider two examples.

Firstletn = 1 and let Abe an m x m,m > 2, nonsingular M-matrix. In this case, N@A) = |A~] =l so
that (4.12) obviously holds with equality. On the other hand, if, in addition, A is sdd, then Theorem 2.1
yields

min{1/p;(A)} < A le < max{1/p;(A)}
ie(m) ie(m)
and if A is irreducible and p(A) = (p;(A)) is not a constant vector, then both inequalities are strict. Thus,

in the case considered, the bound (4.12) is applicable under weaker assumptions and is, in general,
better than the upper bound of Theorem 2.1.
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However, if we assume that n > 1, that A is a PM-matrix, and that
Aie=ce, ¢>0,i=1,...,n, (4.14)
then, obviously,
1A oo = 147 elloo = 1/ci, i=1,...,m,
whence the diagonal entries of the matrix N(A), defined in (4.8), coincide with the respective diagonal
entries of each of the matrices A%--n), Since, in addition, we have
Ti, Ak) = =T, (AgD 2 —1Akjlloos Tk € My, k#J,
we conclude that
Al > N(A) foralliy e My, k=1,...,n. (4.15)

Thus, it may happen that A is a PM-matrix, but the matrix N@) is not a nonsingular M-matrix. Fur-
thermore, under the assumption that N(A) is a nonsingular M-matrix, from (4.15) it follows (e.g., see
[4, p. 131]) that

N@A)™1 > @G—iy=1 foralli, e My, k=1,...,n, (4.16)
and, consequently,
INGA oo = max [[AT-i) =T . (4.17)
yeery In

Thus, in this case, the bound (4.12) is not necessarily applicable and is no better than the upper bound of
Theorem 2.1. Furthermore, as is not difficult to realize, inequality (4.17) may hold strictly. For instance,
it is strict for the matrix

3 0 -2 -1

0 3 -1 -«

0 0 1 o’

0 0 O 1

which is a PM-matrix with respect to the partitioning {1,2, 3,4} = {1,2} U {3} U {4}. Indeed, for this
partitioning we have

_ 3 -2 -« 3 -2 -1 3 -1 -«
Nao=|0 1 o], AB3H=|0 1 0], A®¥»=|0 1 0],
0 0 1 0 0 1 0 0 1

whence

B 13 2/3 «/3
NA =] 0 1 0|,

A=

oa>1,

0 0 1

1/3 2/3 1/3 1/3 13 «/3
AT 0 1 0|, AN 110 1 0|,

0 0 1

and

INCA) Yoo = 1+ /3 > max{l +1/3,2/3 + «/3}
= max{[ A3 o, 1AZ3D) 7T ).

The above examples demonstrate that the bound (4.12) is in general incomparable with the upper
bounds of Theorems 2.1 and 3.1.
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