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The paper presents new two-sided bounds for the infinity norm

of the inverse for the so-called PM-matrices, which form a sub-

class of the class of nonsingular M-matrices and contain the class

of strictly diagonally dominant matrices. These bounds are shown

to be monotone with respect to the underlying partitioning of the

index set, and the equality cases are analyzed. Also an upper bound

for the infinity norm of the inverse of a PH-matrix (whose com-

parison matrix is a PM-matrix) is derived. The known Ostrowski,

Ahlberg–Nilson–Varah, andMorača bounds are shown to be special

cases of the upper bound obtained.
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1. Introduction and preliminaries

The problem of bounding the infinity norm of the inverse of a nonsingular matrix satisfying certain

assumptions was considered in a number of publications (e.g., see [1,13,14,2,12,9,10,8,5]).

Thepresentpaper considers theproblemofbounding‖A−1‖∞ for the so-calledPM- andPH-matrices

A, which form subclasses of the classes of nonsingularM- andH-matrices, respectively, and are defined

below.

Let A = (aij) ∈ Cm×m
,m � 1, and let
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〈m〉 =
n⋃

i=1

Mi, 1 � n � m, (1.1)

be a partitioning of the index set 〈m〉 = {1, . . . ,m} into disjoint nonempty subsets. Denote

Aij = A[Mi,Mj], i, j = 1, . . . ,n, (1.2)

and represent A in the following block form:

A =

⎡
⎢⎢⎣
A11 A12 · · · A1n

A21 A22 · · · A2n

· · · · · · · · · · · ·
An1 An2 · · · Ann

⎤
⎥⎥⎦ . (1.3)

Throughout the paper, for a real t × s matrix A = (aij), we denote

ri(A) =
s∑

j=1

aij , i = 1, . . . , t, (1.4)

so that ri(A) stands for the ith row sum of the entries of A.

If A ∈ Cm×m
,m � 1, then its comparison matrixM(A) = (mij) is defined by the relations

mij =
{|aij|, i = j,

−|aij|, i /= j.

A complex matrix A is said to be an H-matrix ifM(A) is a nonsingular M-matrix. Recall that if A is

an H-matrix, then (e.g., see [4, p. 131]) it is nonsingular. Furthermore, by the Ostrowski theorem [11]

(also see [4, p. 131]), the inverse matrices A−1 andM(A)−1 are interrelated as follows.

Theorem 1.1. Let A ∈ Cm×m
,m � 1, be an H-matrix. Then

|A−1| � M(A)−1. (1.5)

In (1.5) and throughout the paper, for A = (aij) ∈ Cm×n
we set |A| = (|aij|), and, in the real case,

matrix and vector inequalities are understood componentwise.

Introduce the following definitions, basic for the present paper.

Given a matrix A ∈ Cm×m
,m � 1, and a partitioning of the index set 〈m〉 = {1, . . . ,m}

〈m〉 =
n⋃

i=1

Mi, 1 � n � m, (1.6)

into disjoint nonempty subsets, represent A in the form (1.2) and (1.3) and define the following collec-

tion ofm1 × · · · × mn aggregated matrices of order n:

A(i1,i2,...,in) =

⎡
⎢⎢⎣
ri1 (A11) ri1 (A12) · · · ri1 (A1n)

ri2 (A21) ri2 (A22) · · · ri2 (A2n)

· · · · · · · · · · · ·
rin (An1) rin (An2) · · · rin (Ann)

⎤
⎥⎥⎦ , ik ∈ Mk , k = 1, . . . ,n. (1.7)

Here,mi = |Mi|, i = 1, . . . ,n.

We say that A is a PM-matrix (partitionedM-matrix) with respect to the partitioning (1.6) if A is a Z-

matrix (i.e., its off-diagonal entries are nonpositive) and all the matrices A(i1,...,in), ik ∈ Mk , k = 1, . . . ,n,

defined in accordance with (1.7) are nonsingular M-matrices. Also we say that A is a PH-matrix (with

respect to the partitioning (1.6)) ifM(A) is a PM-matrix (with respect to the same partitioning).

Obviously, amatrix A is a PM-matrix (PH-matrix) with respect to the finest (pointwise) partitioning

〈m〉 = ⋃m
i=1{i} if and only if A is a nonsingularM-matrix (anH-matrix). On the other hand, for the coars-

est partitioning 〈m〉 = M1 with n = 1,A is a PH-matrix if and only if it is strictly diagonally dominant

(sdd).
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In [7], the following result was established.

Theorem 1.2. If A ∈ Cm×m
,m � 1, is a PH-matrix with respect to a partitioning 〈m〉 = ⋃n

i=1 Mi, 1 � n �
m, of the index set into disjoint nonempty subsets, then A is an H-matrix.

In particular, for a PM-matrix, which is a Z-matrix by definition, Theorem 1.2 implies the following

result.

Corollary 1.1. If A ∈ Rm×m
,m � 1, is a PM-matrix with respect to a partitioning 〈m〉 = ⋃n

i=1 Mi, 1 � n �
m, of the index set into disjoint nonempty subsets, then A is a nonsingular M-matrix.

Thus, PM- and PH-matrices are nonsingular, and the problem of bounding their inverses naturally

arises. This problem is considered in the present paper, which is organized as follows. Section 2 deals

with PM-matrices. The first main result (Theorem 2.1) states that the infinity norm of the inverse of a

PM-matrix satisfies the following two-sided bounds in terms of the aggregated matrices (1.7):

min
i1,...,in

‖[A(i1,...,in)]−1‖∞ � ‖A−1‖∞ � max
i1,...,in

‖[A(i1,...,in)]−1‖∞. (1.8)

For an irreducible matrix A, the cases of equalities in (1.8) are also described.

The second result on PM-matrices (Theorem 2.2) states that the bounds (1.8) are monotone with

respect to the underlying partitioning of the index set, i.e., the finer the partitioning the tighter the

bounds. This result is based on the fact that if a matrix A is a PM-matrix with respect to a partitioning

〈m〉 = ⋃n
i=1 Mi, then it also is a PM-matrix with respect to every partitioning 〈m〉 = ⋃n′

i=1 M
′
i
,n′ � n,

that is finer than the original one.

Section 3 considers the case of PH-matrices. Based onTheorem1.1, for a PH-matrixA fromTheorems

2.1 and 2.2 we infer the upper bound

‖A−1‖∞ � max
i1,...,in

‖[M(A)(i1,...,in)]−1‖∞ (1.9)

conjectured in [6], and also themonotonicity of this boundwith respect to the underlying partitioning.

Section4compares thebounds (1.8) and (1.9)with someknownresults, obtained in [1,13,3,9,10,6,5].

We conclude this introduction with two relevant remarks. First, if AT is a PM-matrix (PH-matrix),

then the results established obviously yield two-sided bounds (an upper bound) for ‖A−1‖1. Second,
if both A and AT are PH-matrices with respect to some partitionings of the index set, which may be

different, then, in the same way as in [13], one immediately obtains an upper bound for the spectral

norm of A−1, i.e., a lower bound for the smallest singular value of the original matrix A.

2. Two-sided bounds for PM-matrices

The first main result of this paper is the following theorem.

Theorem 2.1. If A ∈ Rm×m
,m � 1, is a PM-matrix with respect to a partitioning 〈m〉 = ⋃n

i=1 Mi, 1 � n �
m, of the index set into disjoint nonempty subsets, then it is a nonsingularM-matrix, and its inverse satisfies

the two-sided bounds

min
i1,...,in

‖(A(i1,...,in))−1‖∞ � ‖A−1‖∞ � max
i1,...,in

‖(A(i1,...,in))−1‖∞, (2.1)

where the minimum and maximum are taken over all ik ∈ Mk , k = 1, . . . ,n. Furthermore, if A is irreducible,

then either inequality in (2.1) is an equality if and only if

(A−1e)ik = ck for all ik ∈ Mk , k = 1, . . . ,n, (2.2)

where e = [1, . . . , 1]T is the unit vector of appropriate dimension; otherwise both inequalities in (2.1) hold

strictly.
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In order to prove Theorem 2.1, we follow [7] and introduce into consideration the (m − 1) × (m − 1)

matrices A
(1)

i
and A

(2)

i
that are defined as follows:

A
(1)

i
= Âi+1

⎡
⎢⎢⎣
Ii−1 0 0

0 1 0

0 1 0

0 0 Im−i−1

⎤
⎥⎥⎦ , A

(2)

i
= Âi

⎡
⎢⎢⎣
Ii−1 0 0

0 1 0

0 1 0

0 0 Im−i−1

⎤
⎥⎥⎦ . (2.3)

Here and below, Ik is the identity matrix of order k, and for a matrix B ∈ Ct×s
, with t � 2 and s � 1, by

B̂j we denote its (t − 1) × s submatrix obtained by deleting the jth row, j = 1, . . . , t. The passage from A

to the pair A
(1)

i
,A

(2)

i
is referred to as aggregation of columns i and i + 1 of A. Obviously, thematrices A

(1)

i

and A
(2)

i
form the collection of aggregated matrices associated with the partitioning 〈m〉 = ⋃m−1

k=1
Mk ,

where Mk = {k}, k = 1, . . . , i − 1;Mi = {i, i + 1};Mk = {k + 1}, k = i + 1, . . . ,m − 1, and, in terms of the

matrices (1.7), we have

A
(1)

i
= A(1,...,i,i+2,...,m), A

(2)

i
= A(1,...,i−1,i+1,...,m).

Thus, by Corollary 1.1, if both A(1)

i
and A

(2)

i
are nonsingular M-matrices, then A also is a nonsingular

M-matrix.

The proof of Theorem 2.1 is based on the following lemma.

Lemma 2.1. Let A ∈ Rm×m
,m � 2, be a nonsingular M-matrix such that for a certain i, 1 � i � m − 1,

both matrices A
(1)

i
and A

(2)

i
defined in (2.3) are nonsingular M-matrices. Then

min
k=1,2

‖(A(k)
i

)−1‖∞ ≤ ‖A−1‖∞ � max
k=1,2

‖(A(k)
i

)−1‖∞. (2.4)

Furthermore, if A is irreducible, then either inequality in (2.4) is an equality if and only if

(A−1e)i = (A−1e)i+1; (2.5)

otherwise both inequalities in (2.4) are strict.

Proof. Permuting (if necessary) the rows and columns of A, wemay assume,without loss of generality,

that i = 1 and that

g1 � g2, (2.6)

where we set g = A−1e. Using (2.3) and (2.6) and taking into account that A is a Z-matrix, we derive

the right-hand side inequality in (2.4) in the following way:

A
(2)

1
ĝ1 = Â1

⎡
⎣1 0

1 0

0 Im−2

⎤
⎦

⎡
⎢⎢⎢⎣
g2
g3
.
.
.

gm

⎤
⎥⎥⎥⎦ = Â1

⎡
⎢⎢⎢⎢⎢⎢⎣

g2
g2
g3
.
.
.

gm

⎤
⎥⎥⎥⎥⎥⎥⎦

� Â1g = (̂Ag)1 = ê1. (2.7)

Note that the inequality in (2.7) stems from (2.6) and the fact that all the entries in the first column

of Â1 are nonpositive. Since, by assumption, A
(2)

1
is a nonsingularM-matrix, we have (A

(2)

1
)−1 � 0, and

(2.7) implies that

ĝ1 � (A
(2)

1
)−1ê1, (2.8)

whence, with account for (2.6), we obtain

‖A−1‖∞ = ‖g‖∞ = ‖ĝ1‖∞ � ‖(A(2)

1
)−1ê1‖∞ = ‖(A(2)

1
)−1‖∞.

This proves the right-hand side inequality in (2.4).
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In order to prove the left-hand side inequality in (2.4), we similarly deduce

A
(1)

1
ĝ2 = Â2

⎡
⎣1 0

1 0

0 Im−2

⎤
⎦

⎡
⎢⎢⎢⎣
g1
g3
.
.
.

gm

⎤
⎥⎥⎥⎦ = Â2

⎡
⎢⎢⎢⎢⎢⎢⎣

g1
g1
g3
.
.
.

gm

⎤
⎥⎥⎥⎥⎥⎥⎦

� Â2g = (̂Ag)2 = ê2, (2.9)

implying that

ĝ2 � (A
(1)

1
)−1ê2. (2.10)

By using (2.6) and (2.10), we obtain

‖A−1‖∞ = ‖g‖∞ � ‖ĝ2‖∞ � ‖(A(1)

1
)−1ê2‖∞ = ‖(A(1)

1
)−1‖∞.

This completes the proof of inequalities (2.4).

In order to analyze the cases of equalities in (2.4), we assume that A is irreducible and that

‖A−1‖∞ = ‖(A(2)

1
)−1‖∞. (2.11)

Set

u = [u2, . . . ,um]T = (A
(2)

1
)−1e.

Then we have

e = A(2)

1
u = Â1

⎡
⎣1 0

1 0

0 Im−2

⎤
⎦

⎡
⎢⎢⎢⎣
u2
u3
.
.
.

um

⎤
⎥⎥⎥⎦ = Â1

⎡
⎢⎢⎢⎢⎢⎢⎣

u2
u2
u3
.
.
.

um

⎤
⎥⎥⎥⎥⎥⎥⎦

= (̂Aũ)1, (2.12)

where we denote

ũ = [u2,u2,u3 . . . ,um]T.
From (2.12) it immediately follows that

Aũ =

⎡
⎢⎢⎢⎣

α

1
.
.
.

1

⎤
⎥⎥⎥⎦ = e + (α − 1)e1, (2.13)

where ei is the ith column of the identity matrix I. Since A is an irreducible M-matrix, its inverse is

positive, and A−1e1 is a positive vector. By (2.13), we have

ũ = A−1e + (α − 1)A−1e1 = g + (α − 1)A−1e1.

Suppose α > 1. Then ũ > g and

‖ũ‖∞ > ‖g‖∞ = ‖A−1‖∞,

which contradicts (2.11), because

‖ũ‖∞ = ‖u‖∞ = ‖(A(2)

1
)−1‖∞.

In a similar fashion, we ascertain that the case α < 1 is impossible as well. Thus, if equality (2.11) holds

true, then α = 1, i.e., ũ = A−1e = g, which implies that g1 = g2.

Conversely, if g1 = g2, then ĝ1 = ĝ2, and both (2.7) and (2.9) are strings of equalities, implying that

(A
(2)

1
)−1e = (A

(1)

1
)−1e, whence both inequalities in (2.4) are equalities.



L.Yu. Kolotilina / Linear Algebra and its Applications 430 (2009) 692–702 697

The case ‖A−1‖∞ = ‖(A(1)

1
)−1‖∞ is treated similarly. �

From the proof of Lemma 2.1, we readily infer the following useful result.

Corollary 2.1. If, under the assumptions of Lemma 2.1, the matrix A is irreducible, then the inequality

‖(A(2)

i
)−1‖∞ > ‖(A(1)

i
)−1‖∞

is equivalent to the inequality

gi < gi+1, where g = A−1e.

Note also that in the secondpart of Lemma2.1, the assumption thatA is irreducible canbeweakened

as follows.

Corollary 2.2. Let A be a nonsingularM-matrix and let A(2)

i
be a nonsingularM-matrix. If A−1ei is a positive

vector, then

‖A−1‖∞ = ‖(A(2)

i
)−1‖∞

if and only if gi = gi+1.

ProofofTheorem2.1.Fromdefinitions (1.7) and (2.3) it readily follows that for anarbitrarypartitioning

〈m〉 = ⋃n
i=1 Mi, with 1 � n < m, each of the aggregated matrices A(i1,...,in) from the collection (1.7) can

be obtained from A as a result of successively aggregating pairs of consecutive columns. Thus, for every

fixed partitioning 〈m〉 = ⋃n
i=1 Mi, we obtain a sequence (which is in general not uniquely determined)

of partitionings of the index set, startingwith the entrywisepartitioning 〈m〉 = ⋃m
i=1{i} and terminating

with the given one. Note that the order of the associated aggregated matrices successively decreases

fromm ton, and, by Corollary 1.1, all the intermediate aggregatedmatrices are nonsingularM-matrices.

Thus, the bounds (2.1) stem from Lemma 2.1.

In order to prove the second assertion of Theorem 2.1, let A be irreducible. First assume that

‖A−1‖∞ = max
i1,...,in

‖(A(i1,...,in))−1‖∞. (2.14)

Wewill show that (2.14) implies (2.2). To this end, it is obviously sufficient to demonstrate that if |Mk| �
2, where 1 � k � n, then for all i, j ∈ Mk , i /= j, we have (A−1e)i = (A−1e)j . Without loss of generality,

we may assume that

Mk = {jk , . . . , jk + |Mk| − 1}.
In this case, it is sufficient to show that from (2.14) it follows that for all i, jk � i < jk + |Mk| − 1,

(A−1e)i = (A−1e)i+1. (2.15)

Indeed, by Lemma 2.1 and (2.1), we have

‖A−1‖∞ � max
l=1,2

‖(A(l)
i

)−1‖∞ � max
i1,...,in

‖(A(i1,...,in))−1‖∞. (2.16)

From (2.16) and (2.14) we immediately obtain that

‖A−1‖∞ = max
l=1,2

‖(A(l)
i

)−1‖∞

and, consequently, (2.15) holds by Lemma 2.1.

The fact that equality on the left-hand side of (2.1) implies (2.2) is established similarly.

Finally, assume that condition (2.2) is fulfilled. Then, by Lemma 2.1, aggregation of columns i and

i + 1, where i, i + 1 belong to the same set Mk , does not change the infinity norm of the inverse. In

addition, each of the inverse matrices (A(1)

i
)−1 and (A

(2)

i
)−1 still satisfies (2.2), with Mk replaced by
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Mk \ {i + 1}andMk \ {i}, respectively. Thus, proceedingby induction,weconclude thatboth inequalities

in (2.1) are equalities.

Theorem 2.1 is proved completely. �
Following [7], we say that a partitioning:

〈m〉 =
n⋃

i=1

Mi (2.17)

of the set 〈m〉 into disjoint nonempty subsets is finer than a partitioning

〈m〉 =
n′⋃
i=1

M′
i (2.18)

and (2.18) is coarser than (2.17) if n > n′ and each of the sets M′
i
, i = 1, . . . ,n′, is a union of some sets

Mi, i = 1, . . . ,n.

In this terminology, from the proof of Theorem 2.1 we infer the following monotonicity result.

Theorem 2.2. Let A ∈ Rm×m
,m � 1, be a PM-matrix with respect to a partitioning (2.17). Then A is a

PM-matrix with respect to every finer partitioning (2.18), and the following inequalities hold:

min
i1,...,in

‖(A(i1,...,in))−1‖∞ � min
i′
1
,...,i′

n′
‖(A(i′

1
,...,i′

n′ ))−1‖∞ � ‖A−1‖∞ (2.19)

and

‖A−1‖∞ � max
i′
1
,...,i′

n′
‖(A(i′

1
,...,i′

n′ ))−1‖∞ � max
i1,...,in

‖(A(i1,...,in))−1‖∞. (2.20)

Here, the minima and maxima are taken over all i′
k

∈ M′
k
, k = 1, . . . ,n′, and all ik ∈ Mk , k = 1, . . . ,n.

3. An upper bound for PH-matrices

In view of Theorems 1.1 and 1.2, the following upper bound for the infinity norm of the inverse of

a PH-matrix is an immediate consequence of Theorem 2.1.

Theorem 3.1. If A ∈ Cm×m
,m � 1, is a PH-matrix with respect to a partitioning 〈m〉 = ⋃n

i=1 Mi, 1 � n �
m, of the index set into disjoint nonempty subsets, then it is an H-matrix, and its inverse satisfies the upper

bound

‖A−1‖∞ � max
i1,...,in

‖(M(A)(i1,...,in))−1‖∞. (3.1)

The following monotonicity property of the upper bound (3.1) readily stems from Theorem 2.2.

Theorem 3.2. Let A ∈ Cm×m
,m � 1, be a PH-matrix with respect to a partitioning

〈m〉 =
n⋃

i=1

Mi, 1 � n � m, (3.2)

of the index set into disjoint nonempty subsets. Then A is a PH-matrix with respect to an arbitrary parti-

tioning

〈m〉 =
n′⋃
i=1

M′
i , 1 � n′ � m, (3.3)

that is finer than (3.2), and

‖A−1‖∞ � max
i′
1
,...,i′

n′
‖(M(A)

(i′
1
,...,i′

n′ ))−1‖∞ � max
i1,...,in

‖(M(A)(i1,...,in))−1‖∞, (3.4)
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where the maxima are taken over all ik ∈ Mk , k = 1, . . . ,n, and all i′
k

∈ M′
k
, k = 1, . . . ,n′.

4. Comparison with known results

First we note that if n = m, i.e., no nontrivial block partitioning is imposed on A, then A(i1,...,in) = A,

and the upper bound of Theorem 3.1 reduces to the Ostrowski result (1.5).

If n = 1, then A is a PH-matrix if and only if

pi(A) :=|aii| −
m∑
j=1
j /=i

|aij| > 0, i = 1, . . . ,m, (4.1)

i.e., A is a strictly diagonally dominant matrix, and the upper bound of Theorem 3.1 reduces to the

classical Ahlberg–Nilson–Varah bound (see [1,13])

‖A−1‖∞ � max
i∈〈m〉

{1/pi(A)}. (4.2)

In addition, for a PM-matrix A, Theorem 2.1 supplements the upper bound (4.2) with its lower coun-

terpart

‖A−1‖∞ � min
i∈〈m〉

{1/pi(A)}, (4.3)

which is almost trivial and was presented in [10]. Furthermore, if A is an irreducible PM-matrix, then,

by Theorem 2.1, the bounds (4.2) and (4.3) simultaneously hold with equality if and only if

A−1e = ce,

where c is a positive constant; otherwise both of them hold strictly.

Since the trivial partitioning 〈m〉 = M1 is coarser than any partitioning (3.2)with n � 2, by Theorem

3.2 we have

‖A−1‖∞ ≤ max
i1,...,in

‖(M(A)(i1,...,in))−1‖∞ � max
i∈〈m〉

{1/pi(A)}. (4.4)

Thus, Theorem 3.2 provides an improvement of the Ahlberg–Nilson–Varah upper bound (4.2), which

is, in addition, applicable under milder assumptions on A (because if A is sdd, then all the matrices

A(i1,...,in) are sdd as well). Furthermore, if A is a PM-matrix with respect to a partitioning with n � 2,

then, by Theorem 2.2, we also have the lower counterpart of inequalities (4.4), namely

‖A−1‖∞ ≥ min
i1,...,in

‖(A(i1,...,in))−1‖∞ � min
i∈〈m〉

{1/pi(A)}. (4.5)

In the case where n = 2 and 〈m〉 = M1 ∪ M2, a matrix A ∈ Cm×m
,m � 2, represented as

A =
[
A11 A12

A21 A22

]
, where Aij = A[Mi,Mj], i, j = 1, 2,

is a PH-matrix if and only if all the matrices

Aij :=
[

pi(A11) −ri(|A12|)
−rj(|A21|) pj(A22)

]
, 1 � i � |M1|, 1 � j � |M2|,

are nonsingularM-matrices, or, equivalently

pi(A11) > 0 for all i, 1 � i � |M1|
and

pi(A11)pj(A22) > ri(|A12|)rj(|A21|) for all i, j, 1 � i � |M1|, 1 � j � |M2|.
Such matrices were studied in a number of papers (e.g., see [9,6] and the references therein). In this

case, the upper bound of Theorem 3.1 reduces to the bound
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‖A−1‖∞ � max
i,j

‖A−1
ij

‖∞, (4.6)

which was first proved in [6]. However, it should bementioned that the bound (4.6) actually coincides

with the bound established in [9], which is in terms of the entries of A and suggests no extension to

the case n � 2. Note that in [5] the same upper bound as in [9] was proved for the narrower class

consisting of matrices that are PH-matrices with respect to the specific partitioning of the index set

into two subsets one ofwhich corresponds to the strictly diagonally dominant rows, whereas the other

corresponds to the rows that are not strictly diagonally dominant.

The lower counterpart of (4.6),

‖A−1‖∞ � min
i,j

‖A−1
ij

‖∞, (4.7)

valid for a PM-matrix A by Theorem 2.1, and the analysis of the equality cases in (4.6) and (4.7) for a

PM-matrix A are new.

In conclusion, we show that the upper bounds of Theorems 2.1 and 3.1 are is general incomparable

with an old-known block bound, which is recalled below.

Given a block-partitioned matrix (1.3), define the matrix

Ñ(A) =

⎡
⎢⎢⎢⎣

‖A−1
11

‖−1∞ −‖A12‖∞ · · · −‖A1n‖∞
−‖A21‖∞ ‖A−1

22
‖−1∞ · · · −‖A2n‖∞

· · · · · · · · · · · ·
−‖An1‖∞ −‖An2‖∞ · · · ‖A−1

nn ‖−1∞

⎤
⎥⎥⎥⎦ . (4.8)

As is known (see [3]), if Ñ(A) is a nonsingular M-matrix, then A is nonsingular, and the nonnegative

matrix

N(A−1) =
⎡
⎣‖A′

11
‖∞ · · · ‖A′

1n
‖∞

· · · · · · · · ·
‖A′

n1
‖∞ · · · ‖A′

nn‖∞

⎤
⎦ , (4.9)

where we denote A−1 = (A′
ij
)n
i,j=1

, satisfies the inequality

N(A−1) � Ñ(A)−1. (4.10)

On the other hand, we trivially have

‖A−1‖∞ � ‖N(A−1)‖∞. (4.11)

Thus, in view of (4.10) and (4.11), for ‖A−1‖∞ we have the block bound

‖A−1‖∞ � ‖Ñ(A)−1‖∞. (4.12)

Note that (4.12) and the Ahlberg–Nilson–Varah bound (4.2) immediately imply the bound [13]

‖A−1‖∞ ≤ 1

min1�i�n

{
‖A−1

ii
‖−1∞ − ∑

j /=i ‖Aij‖∞
} , (4.13)

whichholds under the assumption that Ñ(A) is strictly diagonally dominant, and generalizes the bound

(4.2) to the block case.

Relation (4.12) is an upper bound for ‖A−1‖∞ in terms of the infinity norm of the inverse to the

n × n matrix Ñ(A), which is assumed to be a nonsingular M-matrix. Thus, it is natural to attempt to

compare (4.12) with the upper bounds provided by Theorems 2.1 and 3.1, which are stated in terms of

the aggregated n × nmatrices. To this end, we consider two examples.

First let n = 1 and let A be anm × m,m � 2, nonsingularM-matrix. In this case, Ñ(A) = ‖A−1‖−1∞ , so

that (4.12) obviously holds with equality. On the other hand, if, in addition, A is sdd, then Theorem 2.1

yields

min
i∈〈m〉

{1/pi(A)} � ‖A−1‖∞ � max
i∈〈m〉

{1/pi(A)}
and if A is irreducible and p(A) = (pi(A)) is not a constant vector, then both inequalities are strict. Thus,

in the case considered, the bound (4.12) is applicable under weaker assumptions and is, in general,

better than the upper bound of Theorem 2.1.



L.Yu. Kolotilina / Linear Algebra and its Applications 430 (2009) 692–702 701

However, if we assume that n > 1, that A is a PM-matrix, and that

Aiie = cie, ci > 0, i = 1, . . . ,n, (4.14)

then, obviously,

‖A−1
ii

‖∞ = ‖A−1
ii

e‖∞ = 1/ci, i = 1, . . . ,n,

whence the diagonal entries of thematrix Ñ(A), defined in (4.8), coincide with the respective diagonal

entries of each of the matrices A(i1,...,in). Since, in addition, we have

rik (Akj) = −rik (|Akj|) � −‖Akj‖∞, ik ∈ Mk , k /= j,

we conclude that

A(i1,...,in) � Ñ(A) for all ik ∈ Mk , k = 1, . . . ,n. (4.15)

Thus, it may happen that A is a PM-matrix, but the matrix Ñ(A) is not a nonsingular M-matrix. Fur-

thermore, under the assumption that Ñ(A) is a nonsingular M-matrix, from (4.15) it follows (e.g., see

[4, p. 131]) that

Ñ(A)−1 � (A(i1,...,in))−1 for all ik ∈ Mk , k = 1, . . . ,n, (4.16)

and, consequently,

‖Ñ(A)−1‖∞ � max
i1,...,in

‖(A(i1,...,in))−1‖∞. (4.17)

Thus, in this case, the bound (4.12) is not necessarily applicable and is nobetter than theupper boundof

Theorem 2.1. Furthermore, as is not difficult to realize, inequality (4.17) may hold strictly. For instance,

it is strict for the matrix

A =

⎡
⎢⎢⎣
3 0 −2 −1

0 3 −1 −α

0 0 1 0

0 0 0 1

⎤
⎥⎥⎦ , α > 1,

which is a PM-matrix with respect to the partitioning {1, 2, 3, 4} = {1, 2} ∪ {3} ∪ {4}. Indeed, for this

partitioning we have

Ñ(A) =
⎡
⎣3 −2 −α

0 1 0

0 0 1

⎤
⎦ , A(1,3,4) =

⎡
⎣3 −2 −1

0 1 0

0 0 1

⎤
⎦ , A(2,3,4) =

⎡
⎣3 −1 −α

0 1 0

0 0 1

⎤
⎦ ,

whence

Ñ(A)−1 =
⎡
⎣1/3 2/3 α/3

0 1 0

0 0 1

⎤
⎦ ,

(A(1,3,4))−1 =
⎡
⎣1/3 2/3 1/3

0 1 0

0 0 1

⎤
⎦ , (A(2,3,4))−1 =

⎡
⎣1/3 1/3 α/3

0 1 0

0 0 1

⎤
⎦ ,

and

‖Ñ(A)−1‖∞ = 1 + α/3 > max{1 + 1/3, 2/3 + α/3}
= max{‖(A(1,3,4))−1‖∞, ‖(A(2,3,4))−1‖∞}.

The above examples demonstrate that the bound (4.12) is in general incomparable with the upper

bounds of Theorems 2.1 and 3.1.
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