
Science of Computer Programming 53 (2004) 125–141

www.elsevier.com/locate/scico

Using service grammar to diagnose BGP
configuration errors

Xiaohu Qiea,∗, SanjaiNarainb

aGoogle Inc., Mountain View, CA 94043, USA
bTelcordia Technologies, Piscataway, NJ 08854, USA

Received 31 December 2003; accepted 31 December 2003

Available online 21 July 2004

Abstract

Often network components work correctly, yet end-to-end services don’t. This happens if
configuration parameters of components are set to incorrect values. Configuration is a fundamental
operation for logically integrating components to set up end-to-end services.

Configuration errors arise frequently because transforming end-to-end service requirements into
component configurations is inherently difficult. Such transformation is largely performed in a
manual and localized fashion, resulting in high cost of network operations.

The Service Grammar technique has been developed to solve the configuration error diagnosis
problem, and, more generally, to formalize the process of building complex systems via
configuration.

At its core is aRequirements Languagethat contains global, high-level constraints upon configu-
ration parameters. These are derived from identifying the notion of “correct configuration” associated
with different protocols. These are composed to create system-wide requirements on architecture and
policies. A Diagnosis Enginechecks if constraints in the Requirements Language are true given def-
inite component configurations, and is used recursively to check composite requirements.

This paper describes an application of Service Grammar to diagnosing BGP configuration errors.
As BGP architecture and policies differ widelyfrom onenetwork to another, it is not possible using
previous techniques to check if router configurations implement theintendedrequirements. Our tools
enable administrators to specify system-wide, network-specific requirements and check if they are
correctly implemented by component configurations.
© 2004 Elsevier B.V. All rights reserved.

∗ Corresponding address: Google Inc., 1600 Amphitheatre Parkway, 94043 Mountain View, CA, USA.
Tel.: +1-650-623-5009.

E-mail address:qiexh@cs.princeton.edu (X. Qie).

0167-6423/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2003.12.007

http://www.elsevier.com/locate/scico


126 X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141

1. Introduction

Traditional network management systems diagnose hard, localized errors such as
fiber cuts or hardware/software component failures. It is quite possible, however, that
network components work correctly yet end-to-end services don’t. This happens if there
are configuration errors, i.e. configuration parameters of components are set to incorrect
values. Configuration is a fundamental operation for integrating components to implement
end-to-end services. Configuration errors arisefrequently because transforming end-to-end
service requirements into configurations is inherently difficult: in realistic networks there
are many components, configuration parameters, values, protocols and requirements. Yet,
such transformation is largely performed manually. The resulting high cost of network
operations as well as the potential forsecurity breaches is well documented [7,8].

The Service Grammar [2,10–12] technique has been developed to solve the
configuration error diagnosis problem, and more generally, to formalize the process of
building complex systems via configuration. At its core is aRequirements Languagethat
containsglobal, high-level abstractions that are set up in the process of setting up end-to-
end services. A good heuristic for deriving this language is to ask the question “what does it
mean for a group of agents executing a protocol to be correctly configured”. This language
is created for all of the protocols in a domain of interest. End-to-end service requirements
can be naturally defined as logical conjunctions of requirements in the language at and
across different protocol layers.

This is done by rules of the formA:- B1, . . . , Bk, k ≥ 0, where eachA and Bi is a
requirement. ADiagnosis Enginechecks if a language requirement is true given definite
system configuration. By recursive use of this operation, complex algorithms for diagnosis
can be developed. Service Grammar captures the intuition to regard a system not as a set
of components but as a set of services that, in general, span multiple components.

The information flow of the diagnosis system is illustrated inFig. 1. The diagnosis
engine takes input from two sources: (1) service requirements expressed in the
requirements language, and (2) vendor-neutral component configurations stored at a
centralized database, e.g. an LDAP directory. Raw component configuration is parsed
into vendor-independent data structures by vendor-specific adaptors. The diagnosis engine
queries the component configuration database and verifies if the configurations are
consistent with service requirements. If not, it notifies the administrator where the
diagnosis process had failed. The administrator can then modify the configuration settings
and rerun the diagnosis process.

Service Grammars have been built and used for adaptive Virtual Private Networks
and mobile security [2,10–12]. This paper describes an application of Service Grammar
to diagnosing configuration errors in Border Gateway Protocol (BGP) [14]. Previous
solutions to diagnosing configuration errors have been network invariant [13] in that
they contain a fixed set of constraints that must be satisfied by every BGP network.
However, BGP requirements such as logical architecture and policies differ widely from
one network to another. It is not possible in previous techniques to check if component
configurations implement theintendedrequirements. Our tools enable administrators to
specify network-specific requirements and check if they are correctly implemented by
component configurations.



X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141 127

Fig. 1. Diagnosis system.

2. BGP background

The Internet consists of Autonomous Systems (ASes) operated by different institutions.
Within an AS, routing is controlled by intra-domain protocols such as OSPF, IS-IS, and
RIP. Border Gateway Protocol (BGP) is the Internet’s inter-domain routing protocol. BGP
has two distinct modes of operation: External BGP (EBGP) and Internal BGP (IBGP).
Routers in different ASes use EBGP to exchange information on how to reach destinations
throughout the Internet. Routers in the sameAS use IBGP to exchange external reachability
information. IBGP is essentially the same as EBGP except for the treatment of certain
attributes and the forwarding manner of BGP messages [14].

BGP is a path-vector based protocol. A BGP route consists of a network prefixN and
an AS Pathof the form{ASk, . . . , AS0}, which is the ordered list of ASes to traverse to
reachN. TheAS path is constructed by successively propagating reachability information:
each AS prepending its own AS number to the path (one or more times) before sending
it to neighbors.Fig. 2 illustrates how routing information about network200.12.0.0/16
is propagated between ASes. For instance, AS160 knows its traffic will traverse AS172,
AS180 and AS200 before reaching the destination.

BGP iscapable of enforcing policies based on various preferences and constraints. BGP
policies affect the route selection and export process, thereby controlling how traffic enters
and leaves an AS. Each AS can define BGP policies according to its own criteria. BGP
chooses the best route based on a number of metrics, such as the AS path length. InFig. 2
AS172 chooses{180, 200} over {190, 200, 200} as the best route toN because its policy
favors a shorter AS path.

Policy can be also applied to the route propagation process. An AS decides what to tell
its neighbors. If an AS is unwilling to carry certain traffic for a neighbor, its policy will



128 X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141

Fig. 2. BGP network example.

disallow routing advertisements about particular destinations being sent to the neighbor.
For instance, AS180 and AS190 chose not to export routes toN to each other. As a result,
the horizontal link between the two ASes will not be used to carry traffic toN. In a less
restrictive case, AS200 tells AS190 aboutN, butprepends its AS number twice to make the
path longer, indicating the route is considered a less attractive one. The policy eventually
affects AS172’s route selection process: it chose AS180 instead of AS190 as the next hop
AS to reachN.

3. Challenges of setting up BGP

To set up BGP, networkadministrators configure individual routers in the AS using a
configuration language. The following is a sample configuration in Cisco CLI format [3]
for a router in AS160. The configuration involves originating routes, establishing peer
relationship with neighbors, and applying policy filters. In this example, the router
announces network172.1.1.0/24and peers with a remote BGP router in AS172. The
policy filter allows only routes with an empty AS path (i.e. locally originated routers) to be
advertised to AS172.

router bgp 160
network 172.1.1.0 mask 255.255.255.0
neighbor 172.16.24.1 remote-as 172
neighbor 172.16.24.1 filter-list 1 out

!
ip as-path access-list 1 permit ˆ$
!



X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141 129

As BGP is a complex protocol, manuallyconfiguring individual routers is a time-
consuming and error prone task. This is especially challenging in a large network with
hundreds to thousands of routers. To maintain a consistent view of routing inside an AS,
all BGP routers must be correctly configured to form a full-mesh or some well-structured
internal hierarchy, such as route reflector clusters. At alower-level, two BGP speakers
must be able to talk to each other in order to exchange routing information. This seemingly
obvious requirement has certainintricacies due to the fact that BGP relies on pre-existing
connectivity provided by Interior Gateway Protocols (IGP) or static routes. For example,
the remote peer address specified by a BGP router must match the outgoing interface of
the IGP route used by the remote peer. Otherwise the connection will not be established,
unless the remote peer explicitly specifies the matching interface. This type of implicit
requirement can be easily overlooked by administrators, or violated due to change of the
network.

Policy routing is an important functionality of BGP, but also provides numerous
opportunities for configuration errors. In the face of this type of errors, BGP may
continue to operate, but does not enforce the intended policy. Policy violation could
lead to connectivity, security and economic problems. A well-known problem is address
space hijacking, in which one AS accidentally announces networks “owned” by other
ASes, forming a “blackhole” within the Internet. Other polices problems are commonly
related to the commercial relationships an AS participates in. A multi-homed AS, for
instance, shouldn’t provide transit service to non-local traffic. The causes of errors
are diverse, ranging from typographical errors to poor understanding of configuration
semantics. An excellent empirical study of BGP policy configuration errors is presented
in [9].

4. Service grammar for BGP

Correct BGP configuration means all routers in an AS achieve the joint goal of
exchange routing information, maintaining a consistent view of routing and enforcing
intended policies. However, there is quite a large conceptual gap between this global
requirement and individual router configurations. Configuration errors arise because
manual compilation of these high-level requirements into low-level “machine language”
is difficult. If for some reason the global requirements are not satisfied there are no
systematic tools to automatically diagnose configuration errors. Network administrators
today manually perform these tasks.

Diagnosing why routers don’t work together requires global reasoning about the
logical structure of the network as well as dependencies between services. The BGP
Service Grammar captures these global abstractions that are set up in the process of
constructing routing services. By making these definitions explicit, network administrators
can formally state high-level network-specific requirements and policies using these
definitions.

A subset of the requirement language is shown inTable 1 followed by detailed
explanations. The requirements fall into two categories: connectivity and policy.



130 X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141

Table 1
Service grammar for BGP

BGP Requirements Language
Requirement Meaning

ibgp session

(RouterA, RouterB, LocalAS)

Both RouterA and RouterB are BGP speakers of
the local AS. A BGP session can be successfully
established between them.

ebgp session

(LocalRouter, LocalAS,

RemoteRouter, RemoteAS)

A BGP session can be successfully established
between the local BGP speaker and the remote
BGP speaker.

reflector client session

(ReflectorRouter, ClientRouter, LocalAS)

In addition to ibgp session requirements, the
reflector is set up to forward routing updates from
other IBGP peers to the client.

cluster

(Reflectors, Clients, LocalAS)

Reflectors and clients form a cluster, i.e.
reflectors are fully meshed and all clients are
peered with all reflectors.

as full mesh

(Clusters, Non-clients, LocalAS)

Clusters and non-clients form an AS, i.e. all
reflectors and non-clients are fully-meshed. No
client peers with a non-client.

route originate

(Subnets, LocalAS)

The LocalAS originates routes represented by
subnets.

link to provider

(LocalRouter, RemoteRouter)

The session represents a link to the local AS’s
provider. On this session, the local AS should
accept everything, but only announce its own
routes.

link to customer

(LocalRouter, RemoteRouter)

The session represents a link to the local
AS’s customer. On this session, the local AS
should announce everything, but only accept the
customer’s routes.

link to peer

(LocalRouter, RemoteRouter)

The session represents a link to the local AS’s
peer. On this session, the local AS should only
announce its customers’ routes, and only accept
the peer’s customers’ routes.

provider as

(LocalAS, RemoteAS)

RemoteAS is a provider of LocalAS.

customer as

(LocalAS, RemoteAS)

RemoteAS is a customer of LocalAS.

peer as

(LocalAS, RemoteAS)

RemoteAS is a peer of LocalAS.

preferred outgoing link

(LocalRouter, RemoteRouter,

RemoteDestination)

The session is the preferred outgoing link to
reach a remote destination, expressed in either
subsets or ASPath.

preferred incoming link

(LocalRouter, RemoteRouter,

LocalDestination)

The session is the preferred incoming link to
reach a local destination, expressed in either
subsets or ASPath.

preferred neighbor entry

(LocalRouter, RemoteRouter,

LocalDestination)

The session is the preferred entry from the
neighbor AS to reach a local destination,
expressed in either subsets or ASPath.



X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141 131

Fig. 3. IBGP session diagnosis procedure.

4.1. Connectivity requirements

The language provides two basic primitives—ibgp session and ebgp session—
for describing BGP neighbor relationships. We outline the diagnosis procedure for
ibgp session in Fig. 3.

Regarding establishing BGP neighbor relationship, the types of configuration errors that
can arise include:

• Incorrect AS number or neighbor address at two session end points, peer values are not
mirror images of each other (usually typos).

• The neighbor’s address is not reachable via IGP. This can happen when a loop-back
interface is used but that interface does not participate in any IGP.

• A router tries to connect to a reachable interface of a remote neighbor, but the neighbor
uses a different outgoing interface in the reverse IGP route. This happens when the
neighbor has multiple reachable interfaces.

Any of the above errors can lead to connectivityproblems preventing the BGP session from
being established. This example demonstrates that even a very basic BGP requirement
implies a number of assumptions and global relationships that the administrator must
keep in mind and configure correctly on every router. There are many places for errors.
The diagnosis engine systematically validates these assumptions and global relationships,
catching all potential errors and providing useful information for the debugging
process.



132 X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141

Fig. 4. Cluster diagnosis procedure.

Notice these basic primitives are already higher-level than raw router configurations.
They can be used to compose other higher-level requirements that specify an AS′ logical
structure, such asreflector client session andcluster.

Fig. 4 illustrates how to validate if a group of routers form a cluster. The algorithm
verifies three global properties: all reflectors are fully meshed, all clients can receive
updates from all reflectors, and every client only has BGP sessions with routers in the
same cluster. IBGP session test isembedded as part of the procedure.

4.2. Policy requirements

Routing policies are configured via policy filters. A filter consists of a match criteria and
a set of actions. Nearly all attributes of a routing update can be used to specify the match
criteria, with AS path and network prefix being the most common ones. When a routing
update satisfies the conditions set in the match criteria, associated actions (permit, deny,
or modify) are invoked to control the propagation of the update. A filter can be applied to
route origination, import and export process. It serves as the low-level building block for
composing arbitrary routing policies. Our BGP Service Grammar supports the direct use
of low-level filters to specify policy requirements. What we highlight in this section is the
grammar that describes global AS-level properties, rather than that of an individual filter.
These abstractions give network administrators a set of templates for defining common



X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141 133

Fig. 5. Link to provider diagnosis procedure.

AS routing policies at high-level. Low-level filters can then be used for further refinement.
We believe such a design would largely reduce the need for administrators to go into the
low-level configuration details of each filter.

Typical commercial relationships between two neighboring ASes can be characterized
as customer, provider, or peer, as defined in [4]. To test if a remote AS is a customer
(provider, or peer) of the local AS, we need to verify that the relationship holds
on all sessions between the two ASes.Fig. 5 outlines the diagnosis procedure for
link to provider. When exporting routers to a provider, an AS exports its own and
its customer routers, but usually does not export routes learned from providers or peers.
A properly configured export filter on this session should block those routes. For each
provider and peer AS, the diagnosis procedure constructs an AS path containing the
AS number, and feeds it to the export filter. Any of these paths passing the filter is a
violation of the policy. In that case, the diagnosis procedure fails. This procedure uses
several utilities functions.Get Provider AS returns the set of ASes that are marked as a
provider of the local AS.Routemap Evalmimic the processing of a policy filter on a route
update.

When multiple routes to a remote destination (network or AS) exist, one link is usually
designated as the primary route and others serve as backup. Such a policy can be expressed
with preferred outgoing link. Its diagnosis procedure (Fig. 6) examines the import
filter on all EBGP sessions. For each session, the procedure calculates thelocal-preference
that a route update to the remote destination would get if it arrives on this session. To pass
the test, the import filter on the preferred session must be theone that generates the highest
local-preference.



134 X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141

Fig. 6. Preferred outgoinglink diagnosis procedure.

Both preferred incoming link and preferred neighbor entry are used to
control incoming traffic by designating a primary route to a local destination. The
difference is that the latter only concerns two neighboring ASes. The diagnosis procedures
are similar. Both procedures examine export filters, except that the former looks for the
filter that generates the shortest AS path, while the latter looks for the one that generates
the lowest multi-exit-discriminator (med).

5. Sample network study

We havedesigned an experimental BGP network consisting of 9 CISCO routers in 5
ASes, shown inFig. 7. The goal is to demonstrate different BGP architecture, peering
relationship and routing policies.

Under this setup:

• AS172 represents a large service provider with 4 routers, 3 of which are BGP speakers.
The 3 BGP speakers form a cluster withPR3 being the reflector. Therefore IBGP
peering betweenCR3 andCR4 is not required. Inside the AS OSPF is running as IGP.

• AS160 represents a small customer ISP. It connects to the Internet solely via AS172,
and thus it is a stub.

• AS180 and AS190 represent two intermediate level service providers. They subscribe
service from AS172 and provide connectivity for AS 200. They also enter a bilateral
peering agreement.

• AS200 represents a multi-homed customer ISP with 2 BGP speakers. It has multiple
links to AS180 and AS190.



X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141 135

Fig. 7. Experimental setup.



136 X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141

Suppose AS200’s network administrator wants to enforce the following policies:

1. AS200 announces two networks:200.12.1.0/24and200.12.2.0/24.
2. AS200 is a multi-homed AS. AS180 and AS190 are its providers.
3. AS190 is the preferred AS for outgoing traffic to AS172.
4. BGP1 is the preferred Border Router for outgoing traffic to AS180.
5. BGP1 is the preferred ingress Border Router for traffic to network200.12.1.0/24from

AS180.
6. BGP2 is the preferred ingress Border Router for traffic to network200.12.2.0/24from

AS180.
7. AS180 is the preferred AS for all incoming traffic.

To realize these policies, network administrators first need to analyze the underlying
requirements that support them. Typically, Policy 1 requires the two networks be originated
by the two BGP speakers. Policy 2 requires outbound filters on every EBGP session that
only allows locally originated routes to be advertised. Policies 3 and 4 require inbound
filters to set up thelocal-preference attribute correctly. More precisely, routes to AS172
learned from AS190 should be given a higherlocal-preference, as should routes to AS180
learned viaBGP1.

Policies 5 and 6 requiremanipulation of themed path attribute. BothBGP1 andBGP2
advertise network200.12.1.0/24and200.12.2.0/24to BGP3. BGP1 should give a more
favorablemed value to network200.12.1.0/24than to200.12.2.0/24, andBGP2 should do
theopposite.BGP3 then is able to decide which routeris the best to reach these networks
based on the metric. Themed value should be set by outbound filters ofBGP1 andBGP2.

For Policy 7, a common practice is for AS200 to prepend its own AS number to all
updates sending to AS190. This would discourage incoming traffic from going through
AS190 because everything elsebeing equal BGP will select the route with the shortest AS
Path.

Based on these requirements, administrators then choose the appropriate configuration
commands and parameter values for each router to satisfy them.Figs. 8 and 9 give a
snapshotof the working configuration ofBGP1 andBGP2.

The configuration errors that can arise include (in fact, we inadvertently made most of
them in setting up our network):

1. Forget to configure the static route to the loopback interface ofBGP1 and BGP2.
Neighbor address becomes unreachable. BGP session could not be established.

2. Forget to specify theupdate-source in the neighbor command. TCP connection is
rejected and BGP session could not be established.

3. Forget the AS path access list. AS200 becomes a transit AS of AS180 and AS190.
4. Incorrect route maps and filters due to misunderstanding of the syntax of regular

expression and meaning of path attributes. For example, a lowermed value is considered
better, which is in contrast to a higherlocal-preference favored in the route selection
process.

5. For Policies 5 and 6,BGP1 and BGP2 should give, respectively, more and less
favorable values tomed. It is entirely possible that both give equally favorable values.



X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141 137

Fig. 8. BGPI configuration.

6. For Policy 7, AS200 should prepend its own AS number in all updates to AS190, and
this rule should be enforced both atBGP1 andBGP2. If it is forgotten at one router,
Policy 7 will not be implemented.

This example shows that manual compilation of high-level requirements into low-level
configuration is a rather demanding and error-prone process. Even for a small network,
the resulting configuration is already complex. It is not so obvious how each individual
command relates to intended policies. A large network has many more routers to manage
and much more complicated policies in place.The service requirement also changes more
frequently. It will be even harder for the administrator to keep the mental map of how each
policy is effected on each individual router, and make sure adding or modifying devices
and services does not violate existing requirements.

Using Service Grammar, the global requirements of AS200 can be described as shown
in Table 2.



138 X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141

Fig. 9. BGP2 configuration.

The description is concise and hides most low-level details. More importantly, it
highlights the constraints spanning multiple routers that have to be enforced. Keeping track
of such global constraints in low-level configuration language would be much harder. The
diagnosis engine can effectively identify the configuration errors listed above. For instance,
the first two errors will causeibgp session test to fail. A missing AS path access list
can be detected bylink to provider. Similarly, misconfigured route-maps are caught
by policy grammar rules.



X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141 139

Table 2
AS200 service grammar

• bgpAS200 :-
AS200basicConnectivity, AS200policies.

• AS200basicConnectivity :-
ibgp session(BGP1, BGP2, AS200),
ebgpsession(BGP1, AS200, BGP3, AS180),
ebgpsession(BGP2, AS200, BGP3, AS180),
ebgpsession(BGP2, AS200, BGP4, AS190),
as full mesh({}, {BGP1, BGP2}, AS200).

• AS200policies :-
policy1, policy2, policy3, policy4, policy5, policy6, policy7.

• policy1 :-
route originate({200.12.1.0/24, 200.12.2.0/24}, AS200).

• policy2 :-
provider AS(AS200,AS180),

link to provider(BGP1, BGP3),
link to provider(BGP2, BGP3),

provider AS(AS200,AS190),
link to provider([BGP2, BGP4).

• policy3 :-
preferredoutgoinglink(BGP2, BGP4, AS172).

• policy4 :-
preferredoutgoinglink(BGP1, BGP3, AS180).

• policy5 :-
preferredneighborentry(BGP1, BGP3, 200.12.1.0/24).

• policy6 :-
preferredneighborentry(BGP2, BGP3, 200.12.2.0/24).

• policy7 :-
preferredincominglink(BGP1, BGP3, ALL),
preferredincominglink(BGP2, BGP3, ALL).

6. Related work

Our system provides a language to express the logical structure of an AS and its
BGP policies. It can automatically check expressions in this language against router
configurations and thereby provide a useful diagnosis service, which has not been available
to date. The main difference between this approach and previous diagnosis systems is that
wecan describe the BGP architecture of an AS in a high level language and check that it has
been correctly configured. If someone changes a router configuration, he can just run the
diagnosis again to ensure that the logical structure and policies have not been violated. In
Netsys [13], there is no way to describe the administrator’sintention, i.e.network-specific
policies and structure. It just runs a collection of network-invariant tests.

Routing Policy Specification Language (RPSL) [1] allows a network operator to specify
routing policies in a high-level language. The goal of RPSL is to contain a view of the
global routing policy in a single cooperatively maintained distributed database so that the
integrity of the Internet’s routing can be checked. RPSL shares some common views with
our approach. We feel Service Grammar is better suited for diagnosing configuration errors



140 X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141

because of its expressive power. In addition to policies, Service Grammar can also describe
AS structure, non-BGP properties, which provide important diagnostic information but are
not available with RPSL.

Our system focuses on diagnosis because we believe in the short run diagnosis is more
important than service provision—it gives administrators the desirable level of control and
predictability, and can be used immediately. In the long run, it is natural to extend our sys-
tem for service provision. Given a comprehensive servicespecification, it can be compiled
into vendor-neutral component configurations. Vendor-specific adaptors can then be ap-
plied to generate low-level routerconfiguration commands. Reference [11] demonstrates
a system that implements Service Grammar rules in Prolog. Because of the relational na-
ture of Prolog, service specification simultaneously serves provisioning purposes. Another
system that performs a set of specialized provisioning tasks is described in [5].

Reference [6] studies IBGP routing anomalies and proposes sufficient conditions that
guarantee correctness. These conditions can be incorporated into our Service Grammar
as policy templates. Reference [9] presents an empirical studyof BGP misconfigurations.
Several classes of errors, such as reliance on upstream filtering, forgotten filter, incorrect
summary, bad route map, etc., are caused by simple high-level policies that are not obvious
for operators to express at the CLI level. Our system would reduce these types of errors
given the high-level, system-wide requirements.

7. Summary

Our Service Grammar system enables a new way of configuration error diagnosis in a
distributed environment. Network administrators can express the global requirements in a
high-level language. The diagnosis engine thensystematically verifies if the expressions
in this language are satisfied by device configurations in a top-down fashion. Our system
highlights global reasoning—i.e. why a group of components fail to jointly compose the
intended service—rather than why a single component fails.

We demonstrate how to use such a system to diagnose BGP configuration errors in an
AS. Previous solutions to diagnosing configuration errors have been network invariant in
that they contain a fixed set of constraints that must be satisfied by every BGP network.
However, BGP requirements such as logical architecture and policies differ widely from
one network to another. It is not possible in previous techniques to check if component
configurations implement the network-specific requirements. Our language consists of a
small set of abstractions that can be composed to describe most BGP features.

One limitation of this approach is that Service Grammars and diagnosis procedures
must be developed for each protocol of interest. We have prototyped Service Grammars
for RIP, OSPF, BGP, BGP/MPLS, PIM, GRE, IPSEC, DiffServ and the Spread group
communication protocol [15]. The difference between grammars tends to be significant
because they are very protocol-specific. Based on our experience, the amount of effort
required to develop the Service Grammar for a protocol is not terribly large. The notion of
correct configuration is already implicit in the definition of protocols since their intended
use is a part of the definition. The job of the Service Grammar designer is essentially to
make this “configuration logic” explicit by analyzing these definitions.



X. Qie, S. Narain / Science of Computer Programming 53 (2004) 125–141 141

The challenge for end users is that they need to go through another learning curve, and
may still write incorrect specifications in thislanguage. However, we believe the chances of
errors should be lowered in this high-level language as opposed to low-level configuration
commands.

References

[1] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T. Bates, D. Karrenberg, M. Terpstra,
Routing Policy Specification language (RPSL), Request for Comments 2622, June, 1999.

[2] M. Barton, D. Atkins, S. Narain, D. Ritcherson, K. Tepe, Integration of IP mobility and security for secure
wireless communications, in: Proceedings of IEEE International Communications Conference, New York,
NY, 2002.

[3] BGP Commands,
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/np1r/1rprt1/1rbgp.htm.

[4] L. Gao, J. Rexford, Stable internet routing without global coordination, in: Proceedings of ACM
SIGMETRICS, June, 2000.

[5] J. Gottlieb, A. Greenberg, J. Rexford, J. Wang, Automated provisioning of BGP customers, IEEE Network,
no. 6, November, 2003.

[6] T.G. Griffin, G. Wilfong, On the correctness ofIBGP configuration, in: Proceedings of ACM SIGCOMM,
August, 2002.

[7] P. Horn, Autonomic Computing: IBM’s Perspective on the State of Information Technology,
http://www.research.ibm.com/autonomic/manifesto/autonomiccomputing.pdf.

[8] B. Lampson, Computer security in the real world, in: Proceedings of Annual Computer Security
Applications Conference, 2000.

[9] R. Mahajan, D. Wetherall, T. Anderson, UnderstandingBGP misconfigurations, in: Proceedings of ACM
SIGCOMM, August, 2002.

[10] S. Narain, A. Shareef, M. Rangadurai, Diagnosing configuration errors in virtual private networks,
in: Proceedings of IEEE International Communications Conference, Helsinki, Finland, 2001.

[11] S. Narain, T. Cheng, B. Coan, V. Kau, K. Parmeswaran, W. Stephens, Building autonomic systems via
configuration, in: Proceedings of AMS AutonomicComputing Workshop, Seattle, WA, June, 2003.

[12] S. Narain, R. Vaidyanathan, S. Moyer, W. Stephens, K. Parmeswaran, A. Shareef, Middleware for
building adaptive systems via configuration, in: Proceedings of ACM SIGPLAN Workshop on Optimizing
Middleware, Salt Lake City, UT, June, 2001.

[13] Netsys,http://www.cisco.com/warp/public/cc/pd/nemnsw/nesvmn/index.shtml.
[14] Y. Rekhter, T. Li, A Border Gateway Protocol4 (BGP-4), Request for Comments 1771, March, 1995.
[15] The Spread Toolkit,http://www.spread.org/.

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/np1_r/1rprt1/1rbgp.htm
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.cisco.com/warp/public/cc/pd/nemnsw/nesvmn/index.shtml
http://www.spread.org/

	Using service grammar to diagnose BGP configuration errors
	Introduction
	BGP background
	Challenges of setting up BGP
	Service grammar for BGP
	Connectivity requirements
	Policy requirements

	Sample network study
	Related work
	Summary
	References


