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Physics is a major external source of mathematical theories. It is shown here that the Tho- 
mas rotation effect of special theory of relativity (STR) gives rise to a “group” structure for the 
set of relativistically admissible velocities. This group structure turns out to be noncommutative 
and nonassociative. The term nonassociative group is justified by two illustrative examples 
demonstrating that the new concept of the nonassociative group is forced on us by the study of 
the laws of relativistic velocities. 

Thomas rotation is studied in STR as an isolated notion; and the bizarre and counterintui- 
tive noncommutativity and nonassociativity of the relativistic composition of nonparallel admis- 
sible velocities is sometimes interpreted as a peculiarity of STR. However, it turns out that the 
Thomas rotation plays a central role in STR, giving rise to an elegant formalism underlying the 
noncommutative, nonassociative “group” of relativistically admissible velocities. 

To demonstrate the Thomas rotation formalism and the group structure to which it gives 
rise let E?R9, 

R2 = xdt’: 1x1 cc 
t I , (1) 

be a subset of the Euclidean 3-space R3 where c is a positive constant representing the speed of 
light. The elements x of lR3 are known as relativistically admissible velociries. The relativistic 
velocity composition law is given by the equation 

x*y = * *+7yx+l . 
,T 

1 1: 1)x(xXx;) ( 

c? 
where yX is the Lorentz factor, 

X,Y&, (2) 

associated with the velocity x whose magnitude is x = Ix I, and where . and x signify the usual dot 
(scalar) and cross (vector) product between two vectors in 1R3. The magnitude of x4y is sym- 
metric in x and y, 

(x*y)* = [%I’- +[*I*. (4) 

Let x, y E @ be nonparallel, xxy #O. The two vectors x4y and y*x lie in the plane normal to 
xxy and have equal nonzero magnitudes. Hence, there is a unique rotation operator that 
transforms y4x into x4y by a rotation about an axis parallel to xxy. This rotation, denoted by 
tom[x; y], is the Thomas rotation generated by x and y [ 11. 

The Thomas rotation has interesting properties, some of which are listed below. For all 
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(a ) tom-l[x; y] = tom’ [x; yl = tom[y; xl 

(b) det tom[x; yl = 1 

(c) tom[-x;- y] = tomlx; yl 

(d) tom[x; - y] = tom[x*x; - (x*y)l tomlx; yl 

(e) tom[x; y] = I if and only if xxy = 0 

cf) tom[x; y] = tom[x*y; y] = tom[x; y*xl. 

The matrices tom-i[x; y] and tom’ [x; y] are respectively the inverse and the transpose of tomlx; yl, 
and det m is the determinant of a matrix m . Eq. (d) describes the Thomas rotation tomlx; - yl as 
the Thomas rotation tom[x; y] followed by another Thomas rotation. Eq. (e) asserts that Thomas 
rotation vanishes, tom[x; y] =I, if and only if either x 11 y or x=0 or y =O. Eq. v) shows that the 
parametrization of the Thomas rotation, tom[x; y], by two vector parameters, x,y& , is not 
unique. 

The Thomas rotation was accidentally discovered by Thomas in 1926 as a means to recon- 
cile a conflict in the spinning electron of the Goudsmit-Uhlenbeck model that gave twice the 
observed precession effect [2-51. It is interesting to realize that the Thomas rotation, which plays 
an important role in the development of quantum mechanics and atomic spectra, is a source for a 
new mathematical concept, the nonassociative group. Let x, y, z E Wd be admissible velocities. 
Then 

(i) x*y E lR,3 Closure 

(ii) x*y = tom[x; y](y*x) Weak commutative law 

(iiia) x*(y*z) = (x*y)*tom[x; y]Z Right weak associative law 

(iiib) (x*y)*z = x*(y*tom[y; X]Z) Left weak associative law 

(iv) 0*x=x*0=x Existence of identity 

(v) (-x)*x = x*(-x) = 0 Existence of inverse 

Eqs. (i)-(v) exhibit the basic properties of the noncommutative, nonassociative group, 
(J72, *), of the set @ of relativistically admissible velocities, with the group operation given by 
relativistic velocity composition. A use of this group structure is illustrated in the following two 
examples, where properties of the operators * and tom are employed. 

EXAMPLE 1. Let a, b&R:. Solve the equation 

a*x = b 

for xE IR2. 

SOLUTION Employing the left weak associative law we have 

x = 0*x 

= ((-a)*a)*x 

= (-a)*(a*tom[a; - alx) 

= (-a)*(a*x) 

= (-a)*b, 

(5) 

(6) 

The Thomas rotation involved in eq. (6) vanishes by eq. (e ). 
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EXAMPLE 2. Let a, b E RZ. Solve the equation 

xea = b 

for xE R?,3. 

SOLUTION Employing the right weak associative law and eq. cf ) we have 

x = x*0 

= x*(a*(-a)) 

= (x*a)dom[x; a] (-a) 

= (x*a)*tom[x*a; a] (-a) 

= b*tom[b; a] (-a). 

(7) 

(8) 

In contrast with Example 1, the solution to the problem in Example 2 involves a non-vanishing 
Thomas rotation. 

An expression for the effect of a Thomas rotation on an element ze@ can be obtained from 
the first weak associative law (iiia), 

tomb; rl z = (-(x*y))*(x*(y*x)), x, y, 2 E n?z. (9) 

The solution (8) of eq. (7) can therefore be expressed without a Thomas rotation by the equation 

x = b*((-(b*a))*(b*(a*(-a)))) 
(10) 

= b*((-(b*a))*b). 

By letting c tend to infinity, c +oo, the composition operator, *, is continuously deformed 
into the ordinary vector addition operator, +, and the Thomas rotation is continuously deformed 
into the identity mapping, I. We thus see that for c + 00 the noncommutative, nonassociative 
group (Or:, *) reduces to the standard Euclidean group (R3, +); eqs. (5) and (7) reduce to the equa- 
tion x+ a=b; and their solutions in equations (6), (8) and (10) reduce to x= b-a. Further details 
will be presented elsewhere. 
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