Energy performance optimization of combined Brayton and two parallel inverse Brayton cycles with regeneration before the inverse cycles

Z. Zhang, L. Chen ∗, F. Sun
College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033, China

Received 10 August 2011; revised 4 June 2012; accepted 17 July 2012

Abstract This paper proposes combined regenerative Brayton and two parallel inverse Brayton cycles with regeneration before the inverse cycles. Performance analysis and optimization for the combined cycle are performed based on the first law. The analytical formulae of thermal efficiency and specific work are derived. The performance analysis and optimization of thermal efficiency and specific work are carried out by adjusting the compressor pressure ratios of the bottom cycles. The influences of the effectiveness of the regenerator and other parameters on the optimal thermal efficiency and the optimal specific work are analyzed by numerical examples. It is found that the combined regenerative cycle can obtain higher thermal efficiency than that of the base cycle but with smaller specific work. It is revealed that if the effectiveness of regenerator equals to 0.9, the combined cycles will attain an optimal thermal efficiency of 51.2%.

© 2012 Sharif University of Technology. Production and hosting by Elsevier B.V.

1. Introduction

Nowadays, gas turbines are widely used as power and energy plants. In order to meet the growing demands of energy-saving and environmental protection, an increasing number of proposals on new configurations of the gas turbine cycle (i.e. Brayton cycle) is seen, which could potentially obtain a better performance and release less pollution.

Frutschi and Plancherel [1] studied two basic gas turbine plants with water injection. In steam injection gas turbine (STIG), the steam is raised in a heat recovery steam generator downstream of the turbine, and is injected into the combustion chamber or into the turbine nozzle guide vanes. The evaporative gas turbine (EGT) in which water is injected into the compressor outlet and is evaporated there, and then the mixture will be further heated in the cold-side of the heat exchanger. It enters the combustion chamber and then passes through the turbine and the hot-side of the heat exchanger. It was found that STIG cycle shows substantial improvement on the simple Brayton cycle, mainly in specific work and also in thermal efficiency; and EGT cycle increases the thermal efficiency while the optimum pressure ratio is still quite low.

Vecchiarelli et al. [2] proposed a modified Brayton cycle in which the usual constant pressure heat addition would be constrained to a given temperature and then further heat addition is carried out in a manner approaching an isothermal process. It was found that the emissions of NOx may be reduced by as much as 50% owing to the limited peak combustion temperature of the overall heat addition process, thus offering an environmental benefit. Moreover, the modified Brayton cycle has significant efficiency improvement of over 4% compared with conventional Brayton engines.

Horlock [3] studied the Brayton cycle with turbine cooling. In the earlier researches, it has been emphasized that the thermal efficiency of the gas turbine increases with its maximum temperature. However, in practice, higher maximum temperature requires improved combustion technology, particularly if an increase in harmful emissions such as NOx is to be avoided. Without improvement in materials or heat transfer, it is doubtful whether much higher maximum temperature can be achieved.
Nomenclature

- \(c \): Specific heat (kJ/(kgK))
- \(h \): Enthalpy (kJ/kg)
- \(k \): Ratio of the specific heats
- \(P \): Pressure (kPa)
- \(q \): Heat (kJ/kg)
- \(T \): Temperature (K)
- \(w \): Specific work output (kJ/kg)

Greek symbols

- \(\varepsilon \): Effectiveness of the regenerator/the heat exchanger
- \(\phi \): Pressure ratio
- \(\eta \): Thermal efficiency
- \(\tau \): Temperature ratio

Subscripts

- \(b \): Burner
- \(c \): Compressor
- \(in \): Input
- \(max \): Maximum
- \(opt \): Optimal
- \(p \): Pressure
- \(R \): Regenerator
- \(t \): Turbine
- \(1–12 \): State points/sequence number

In practice, as a result, a practical limit on plant efficiency may be near, before the stoichiometric limit is reached.

The exhaust gases contain a lot of waste heat content, so using regenerator to recover a part of waste heat energy has been widely applied to improve the energy consumption of gas turbine cycles. Sato [4] studied the performance of conventional regenerated gas turbine cycles. It was found that the gas turbine cycle with regenerator can augment thermal efficiency with little effect on the work output. Second, waste heat of the exhaust gases also can be further used as heat reservoir for steam or other power plants through using heat exchanger. Combined steam and gas turbine cycles are widely used in mid and large scale power productions due to their high efficiency and reliability [5]. The waste heat of the gas turbine is used as heat reservoir for the steam power plant in these combined cycles. These cycle types are considered the most effective power plants and thermal efficiency of these cycle types exceeded 55% several years ago and is now at approximately 60%.

Thermal efficiency and power of gas turbines can also be improved by expanding the exhaust gases further below the atmosphere condition, so various cycles are used as bottom cycles combined with simple Brayton cycle to extend the expansion process of turbines [6–9]. Frost et al. [6] proposed a hybrid gas turbine cycle (Brayton/Ericsson) as “an alternative to conventional combined gas and steam turbine power plant” which was termed as Braysson cycle. Agnew et al. [9] proposed a combined Brayton and inverse Brayton cycle. The top cycle (Brayton cycle) is used as a gas generator to power the bottom cycles (inverse Brayton cycle), and the bottom cycle produces the power output. The performance of the combined cycle was analyzed by using the commercial process simulation package. It reveals that the performance of this combined cycle is superior to simple gas turbine cycle. Based on the combined Brayton and inverse Brayton cycles, Alalboadaim et al. [10] proposed its developed configurations including regenerative cycle and reheat cycle, and found that the system with regenerator could attain higher thermal efficiency than the base system but smaller work output based on the first law analysis. Alalboadaim et al. [11,12] also proposed combined Ranking, Brayton and (two parallel) inverse Brayton cycles. The combined Brayton and two parallel Brayton cycles [11] can be realized by splitting the Brayton cycle exhaust gases into two equal flows and incorporating two inverse Brayton cycles with a Rankine cycle linked by heat exchangers to generate steam for a steam turbine. The use of two inverse Brayton cycles provides an opportunity for the steam to be heated in two locations, heat exchanger 1 and heat exchanger 2, which can be considered to be an evaporator and a superheater, respectively. Fujii et al. [7] also demonstrated that the choice of two parallel bottoming cycles were better than a single cycle in terms of component size, mechanical stress and manufacturing difficulties.

For combined steam and gas turbine cycles, the use of two inverse parallel inverse Brayton cycles provides an opportunity for the steam to be heated in the two heat exchangers which can be considered as an evaporator and a super heater, respectively. All of these works mentioned above [6–12] were performed based on the first law of thermodynamics.
The exergy analysis and optimization of the Braysson cycle [6] showed that the exergy loss of the combustion was the largest in the Braysson cycle, and both specific work and exergy efficiency of the cycle were larger than those of Brayton cycle [13]. The exergy analysis and optimization of the combined Brayton and inverse Brayton cycles [9] were performed by Zhang et al. [14]. It was shown that the exergy loss of combustion chamber was the largest in the combined cycle and followed by heat exchanger. The combined cycle should be combined with Rankine cycle in order to increase the exergy efficiency. Moreover, Zhang et al. [15] performed the exergy analysis and optimization of the Brayton and two parallel inverse Brayton cycles [11]. All of these works mentioned above [13–15] were performed based on the second law of thermodynamics.

Furthermore, the power, power density and efficiency optimizations were performed for the Braysson cycle [6] by Chen et al. [16,17]. It was found that two pairs of optimum distribution of heat conductance and optimum working fluid temperature ratio existed, which led to the double maximum dimensionless power output, and double maximum dimensionless power density, respectively. Zhang et al. [18–20] also performed the power and efficiency optimizations for the combined Brayton and inverse Brayton cycles [9] as well as the Brayton and two parallel inverse Brayton cycles [11], respectively. It was found that the net power output has a maximum with respect to the air mass flow rate. It was also found that if the total size of the combined cycle power plant is taken as a constraint, there exists another optimal compressor pressure ratio of the top cycle corresponding to the maximum efficiency. All of these works mentioned above [16–20] were performed based on the finite time thermodynamics [21–33] for gas turbine cycles. The principle of optimally tuning the air flow rate and subsequent distribution of pressure drops has been used.

In addition to the cycle models proposed in [6–12], there is no new cycle configuration in the open literature. Based on the cycle models proposed in [10,11], this paper proposes a new configuration of combined regenerative Brayton and two parallel inverse Brayton cycles with regeneration before the inverse cycles. The purpose of this combined cycle is to improve the utilization of heat energy by using a regenerator to recover a part of heat energy before working fluid entering the turbine of the inverse Brayton cycle, and expanding the exhaust gases further below the atmosphere condition by using two parallel inverse Brayton cycle, which can be combined with Rankine cycle through using two heat exchangers as heat reservoir. The first law analysis and optimization for the
proposed combined cycle will be carried out by adjusting the compressor pressure ratios of the bottom cycles. Moreover, the influences of effectiveness of the regenerator and other parameters on the performance of the combined cycle will be analyzed by numerical examples.

2. Material and methods

The proposed combined cycle system layout is shown in Figure 1. It is constructed of a top regenerative Brayton cycle and two parallel bottom inverse Brayton cycles. The combined cycle recovers a part of heat energy before the working fluid entering the turbines of the inverse Brayton cycles as suggested in [10]. The top cycle is used as a gas generator to power the bottom cycles. The purpose of the turbine in the top cycle is solely to power the compressor in the top cycle. The power output of the combined cycle is totally produced by the two parallel bottom inverse cycles.

The following assumptions are made for simplicity and manipulating analytical expressions: The working fluid has constant specific heat ratio \(k \) (\(k = c_p/c_v = 1.4 \)). The value of the mass flow rate \(m \) is fixed as 1 kg/s. The mass flow rate ratio \(\lambda \) (0 \(\leq \lambda \leq 1 \)) is defined, which is the ratio of the mass flow rate of the first inverse Brayton cycle to the whole mass flow rate of the combined cycle.

The specific work required for compressor 1 of the regenerative Brayton cycle is:

\[
w_{c1} = h_2 - h_1 = c_p T_1 \psi_{c1} \eta_{c1},
\]

where \(\psi_{c1} = \varphi_{c1}^{m} - 1 \), \(m = (k - 1)/k \), \(P \) is pressure, \(\psi_{c1} = P_3/P_1 \) is pressure ratio of compressor 1, \(c_p \) is constant pressure specific heat, \(h \) is enthalpy and \(T \) is temperature.

The specific work output of turbine 1 of the regenerative Brayton cycle is:

\[
w_{t1} = h_4 - h_3 = c_p T_1 \tau_{t1} \psi_{t1} \eta_{t1},
\]

where \(\psi_{t1} = 1 - 1/\varphi_{t1}^{m} \) and \(\varphi_{t1} = P_4/P_3 \) is pressure ratio of turbine 1, and \(\tau_{t1} = T_4/T_1 \) is temperature ratio of turbine 1.

The amount of heat added to the system in the combustion chamber is:

\[
q_{m} = h_4 - h_3 = c_p T_1 \left[\tau_{t1} - \varepsilon \tau_{t1} (1 - \eta_{c1}\psi_{c1}) - (1 - \varepsilon) (\psi_{c1} + \eta_{c1}) / \eta_{t1} \right],
\]

where \(\varepsilon \) is effectiveness of regenerator, \(\eta_{c1} \) and \(\eta_{t1} \) are internal efficiencies of turbine 1 and compressor 1, respectively.

The specific work output of turbine 2 of the first inverse Brayton cycle is:

\[
w_{t2} = h_5 - h_6 = \lambda c_p T_1 \psi_{t2} \psi_{c1} / \eta_{t1},
\]

where \(\psi_{t2} = 1 - 1/\varphi_{t2}^{m} \) and \(\varphi_{t2} = P_5/P_4 \) is pressure ratio of turbine 2 and \(\eta_{t2} \) is internal efficiency of turbine 2.
The specific work required for compressor 2 of the first inverse Brayton cycle is:

\[
\begin{align*}
 w_{c2} &= h_9 - h_8 \\
 &= \lambda c_p T_1 \left(1 - \eta_{t2} \psi_{t2} \right) (1 - \varepsilon_1) \left[\varepsilon_k (\psi_{c1} + \eta_{c1}) / \eta_{c1} \
 &+ \tau_1 (1 - \varepsilon_1) \right] \psi_{c2} / \eta_{c2}
\end{align*}
\] (5)

where \(\psi_{c2} = \psi_{m2} - 1 \) and \(\psi_{t2} = P_9 / P_8 \) is pressure ratio of compressor 2, \(\eta_{t2} \) is internal efficiency of compressor 2 and \(\varepsilon_1 \) is effectiveness of heat exchanger 1.

The specific work output of turbine 3 of the second inverse Brayton cycle is:

\[
\begin{align*}
 w_{t3} &= h_8 - h_{10} = (1 - \lambda) c_p T_1 \eta_{t2} \psi_{t2} \left[\varepsilon_k (\psi_{c1} + \eta_{c1}) / \eta_{c1} \
 &+ \tau_1 (1 - \varepsilon_1) \right] \psi_{c3} / \eta_{c3}
\end{align*}
\] (6)

where \(\psi_{c3} = 1 - 1 / \psi_{m3} \) and \(\psi_{t3} = P_8 / P_{10} \) is pressure ratio of turbine 3, \(\eta_{t3} \) is internal efficiency of turbine 3.

The specific work required for compressor 3 of the second inverse Brayton cycle is:

\[
\begin{align*}
 w_{c3} &= h_{12} - h_{11} \\
 &= (1 - \lambda) c_p T_1 \left(1 - \eta_{t3} \psi_{t3} \right) (1 - \varepsilon_2) \times \left[\varepsilon_k (\psi_{c1} + \eta_{c1}) / \eta_{c1} + \tau_1 (1 - \varepsilon_k) \right] \psi_{c3} / \eta_{c3}
\end{align*}
\] (7)

where \(\psi_{c3} = \psi_{m3} - 1 \) and \(\psi_{t3} = P_{12} / P_{11} \) is pressure ratio of compressor 3, \(\eta_{c3} \) is internal efficiency of compressor 3 and \(\varepsilon_2 \) is effectiveness of heat exchanger 2.

For turbine 1 is solely used to power the compressor 1 \((w_{c1} = w_{t1}) \), one can derive the following expression:

\[
\psi_{t1} = \left[\eta_{t1} \psi_{c1} / \left(\eta_{t1} \psi_{c1} - \psi_{m1} + 1 \right) \right]^{1 / \eta_{t1}}
\] (8)
where the inverse Brayton cycle are:

\[\phi_c \] following expressions:

\[
\begin{align*}
\psi_{C2} &= 1 - \frac{\eta_c \eta_1 \psi_1}{D_1 (\psi_1 + 1)(\eta_2 \eta_1 \psi_1 - \psi_1)\psi_{C2}^m}, \\
\psi_{C3} &= 1 - \frac{\eta_c \eta_1 \psi_1}{D_2 (\psi_1 + 1)(\eta_2 \eta_1 \psi_1 - \psi_1)\psi_{C3}^m},
\end{align*}
\]

where \(D_1 = P_1/P_9 \) and \(D_2 = P_1/P_{12} \).

The specific work outputs of the first inverse and the second inverse Brayton cycle are:

\[
\begin{align*}
w_{\psi_1} &= w_{c2} - w_{c3} \\
&= \lambda \eta_c \eta_1 T_1 \left(1 - \frac{a/\psi_c^m}{\psi_c^m} \right) \left(\epsilon_g + b (1 - \epsilon_g) \right) + \lambda \eta_c T_1 \left(1 - \frac{a/\psi_c^m}{\psi_c^m} \right) \left(\epsilon_c^m + b (1 - \epsilon_c) \right) \\
&\quad \times \left(1 - \epsilon_c \right) + \epsilon_c \left(\phi_c^m - 1 \right) / \eta_c.
\end{align*}
\]

For the total ratios of expansion and compression are equal \((\psi_{C2} = D_1 \psi_1 \psi_{C2}/\psi_1, \psi_{C3} = D_2 \psi_1 \psi_{C3}/\psi_1)\), one can derive the following expressions:

\[
\begin{align*}
\psi_{C2} &= 1 - \frac{\eta_c \eta_1 \psi_1}{D_1 (\psi_1 + 1)(\eta_2 \eta_1 \psi_1 - \psi_1)\psi_{C2}^m}, \\
\psi_{C3} &= 1 - \frac{\eta_c \eta_1 \psi_1}{D_2 (\psi_1 + 1)(\eta_2 \eta_1 \psi_1 - \psi_1)\psi_{C3}^m},
\end{align*}
\]

where \(D_1 = P_1/P_9 \) and \(D_2 = P_1/P_{12} \).

The specific work outputs of the first inverse and the second inverse Brayton cycle are:

\[
w_{\psi_1} = w_{c2} - w_{c3} = (1 - \lambda) c_T \eta_1 \left(1 - d/\psi_c^m \right) \times \left(\epsilon_g + b (1 - \epsilon_g) \right) \times \left[(1 - \eta_2 \left(1 - d/\psi_c^m \right) \right] \left(\epsilon_g^m + b (1 - \epsilon_g) \right) \times \left(1 - \epsilon_2 \right) + \epsilon_2 \left(\phi_c^m - 1 \right) / \eta_c.
\]

where:

\[
a = \eta_c \eta_1 \eta_2 \psi_1 / \left[D_1^m (\psi_1 + 1)(\eta_1 \eta_1 \psi_1 - \psi_1)\psi_{C2}^m \right], \\
b = \psi_1 (1 - \eta_1 \psi_1), \\
c = 1 + \psi_1 / \eta_c \text{ and} \\
d = \eta_c \eta_2 \psi_1 / \left[D_2^m (\psi_1 + 1)(\eta_1 \eta_1 \psi_1 - \psi_1)\psi_{C2}^m \right].
\]

The specific work output and the thermal efficiency of the whole system are: Eqs. (13) and (14) are given in Box I.

Combining Eq. (13) with Eq. (14), one can find that for the first inverse Brayton cycle the extremal conditions of \(\partial \eta_c / \partial \psi_{C2} = 0 \) and \(\partial w_c / \partial \psi_{C2} = 0 \) are the same, and for the second inverse Brayton cycle, the external conditions of \(\partial \eta_c / \partial \psi_{C3} = 0 \) and \(\partial w_c / \partial \psi_{C3} = 0 \) are also the same. Thus, the optimal pressure ratios of compressor 2 and compressor 3 corresponding to the maximum specific work output and the maximum thermal efficiency are: Eqs. (15) and (16) are given in Box II respectively.

When the parameters of the first inverse Brayton cycles are the same as the second inverse Brayton cycle, the performance of the combined cycle is also the same as the combined regenerative Brayton and inverse Brayton cycles proposed in [10]. In order to meet the practical applications, the mass flow rate ratio can be adjusted under different conditions.

3. Result and discussions

To see how various parameters influence the thermal efficiency and specific work of the combined cycle, numerical examples are provided. In the calculations, it is set that \(\lambda = 0.5, \eta_c = 0.9, \eta_1 = 0.9, \eta_2 = 0.9, T_1 = 288.15 \text{ K, } P_1 = 0.1013 \text{ MPa, } P_9 = 0.104 \text{ MPa, } \epsilon_1 = 0.95, \epsilon_2 = 0.9 \text{ and } \epsilon_c = 0.9. \) If the parameters of the two parallel bottom cycles are the same, \(\lambda \) has no influence on the performance of the combined cycles.

Figures 3–9 show the influences of the effectiveness \(\epsilon_g \) of the regenerator, the mass flow rate ratio \(\lambda \), the effectiveness
\[
\begin{align*}
\psi_{2\text{opt}} &= \left\{ \frac{a[b(\varepsilon_R - 1) - c\varepsilon_R](\varepsilon_1 - 1 + \eta_{c2})\eta_{c2}}{b(\varepsilon_R - 1)(\varepsilon_1 - 1)(\eta_{c2} - 1) + c\varepsilon_R(\eta_{c2} - 1) + \varepsilon_3(c\varepsilon_R - c\varepsilon_R\eta_{c2} - 1)} \right\}^{1/m}, \\
\psi_{3\text{opt}} &= \left\{ \frac{d[b(\varepsilon_R - 1) - c\varepsilon_R](\varepsilon_2 - 1 + \eta_{c3})\eta_{c3}}{b(\varepsilon_R - 1)(\varepsilon_2 - 1)(\eta_{c3} - 1) + c\varepsilon_R(\eta_{c3} - 1) + \varepsilon_3(c\varepsilon_R - c\varepsilon_R\eta_{c3} - 1)} \right\}^{1/m},
\end{align*}
\]

Figure 12: Influence of \(\tau_1\) on the \(\psi_{2\text{opt}}\) \(\sim\) \(\psi_{c1}\) and \(\psi_{3\text{opt}}\) \(\sim\) \(\psi_{c1}\) characteristics.

Figure 13: Influences of \(\eta_{c1}, \eta_{c2}\) on the \(\psi_{2\text{opt}}\) \(\sim\) \(\psi_{c1}\) and \(\psi_{3\text{opt}}\) \(\sim\) \(\psi_{c1}\) characteristics.
Figures 10–15 show the influences of the effectiveness (ε_R) of the regenerator, the effectiveness (ε_1) of the heat exchanger 1, the effectiveness (ε_2) of the heat exchanger 2, the temperature ratio (τ_1), the compressor internal efficiencies η_{c1}, η_{c2} and η_{c3} as well as the turbine internal efficiencies η_{t1}, η_{t2} and η_{t3} on the $\phi_{c2opt} - \phi_{c1}$ and $\phi_{c3opt} - \phi_{c1}$ characteristics, respectively. From Figure 10, one can see that both the optimal pressure ratio (ϕ_{c2opt}) of the compressor 2 and the optimal pressure ratio (ϕ_{c3opt}) of the compressor 3 decrease with the increase in ε_R. In the critical range of ϕ_{c1} shown in Figure 10, the values of ϕ_{c2opt} and ϕ_{c3opt} will equal to 1 when $\varepsilon_R = 1$. In other words, the compressor 2 and the compressor 3 should be canceled under these conditions. From Figures 11–15, one can see that both ϕ_{c2opt} and ϕ_{c3opt} increase with the increases in ϕ_{c1}, ε_1, τ_1, η_{c2}, η_{c3} and η_{t3}, whereas they decrease with the increases in η_{c1} and η_{t1}.

4. Conclusion

A configuration of combined regenerative Brayton and two parallel inverse Brayton cycles with regeneration before the inverse cycles is established in this paper. The combined cycle proposed herein recovers a part of heat energy contained in the exhaust gases leaving the turbine of the top cycle. This paper provides a clear idea about the performance of the combined regenerative cycle by taking the first law analysis and optimization. The thermal efficiency and the specific work are optimized by adjusting the compressor pressure ratios of the bottom cycles. The influences of effectiveness of the regenerator and other parameters on the optimal thermal efficiency and optimal specific work are analyzed. It is found that the combined regenerative cycle can obtain higher thermal efficiency than that of the base cycle but with smaller work.
output, and the performance of the combined cycle (with two parallel inverse Brayton cycles) proposed in this paper is the same as the combined cycle (with one inverse Brayton cycle) proposed in [10] when the parameters of the two inverse Brayton cycles are the same. One can adjust the mass flow ratio and other parameters of the combined cycle in different practical applications. Further steps will be the second law analysis and optimization and finite time thermodynamic optimization for the proposed cycle.

Acknowledgments

This paper is supported by The National Natural Science Foundation of PR China [Project No. 10905093] and the Natural Science Foundation of Naval University of Engineering (HGYDJJ10011). The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

References

Zelong Zhang received his B.S. degree in 2009 in heat energy and power engineering from the Huazhong University of Science and Technology, M.S. degree in 2011 in power engineering and engineering thermophysics of Naval University of Engineering, PR China. His work covers topics in finite time thermodynamics and technology support for propulsion plants. He is the author and co-author of 7 peer-refereed articles (4 in English journals).

Lingen Chen received all his degrees (B.S., 1983; M.S., 1986; Ph.D., 1998) in power engineering and engineering thermophysics from the Naval University of Engineering, PR China. His work covers a diversity of topics in engineering thermodynamics, constructal theory, turbomachinery, reliability engineering, and technology support for propulsion plants. He was the Director of the Department of Nuclear Energy Science and Engineering, the Director of the Department of Power Engineering and the Superintendent of the Postgraduate School. Now, he is President of the College of Naval Architecture and Power, Naval University of Engineering, PR China. Professor Chen is the author and co-author of over 1220 peer-refereed articles (over 560 in English journals) and nine books (two in English).

Fengrui Sun received his B.S. degree in 1958 in Power Engineering from the Harbin University of Technology, PR China. His work covers a diversity of topics in engineering thermodynamics, constructal theory, reliability engineering, and marine nuclear reactor engineering. He is a Professor in the Department of Power Engineering, Naval University of Engineering, PR China. Professor Sun is the author and co-author of over 350 peer-refereed papers (over 440 in English) and two books (one in English).