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Abstract 

In this note we present some results on co-recursive associated Jacobi polynomials, with a special attention to some 
simple limiting cases. Explicit representations, orthogonality measures and fourth-order differential equations satisfied 
by the polynomials are presented. 
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1. Introduction 

Starting from a sequence of orthogonal polynomials {P.}. ~> o defined by the recurrence relation 

P . + 2 ( x ) = ( x -  f l . + I ) P . + x ( x ) -  7 . + I P . ( x ) ,  n >lO (1) 

and the initial conditions 

C o ( X )  = 1, e , ( x )  = x - 13o, (2) 

with ft,, ~. e C and 7, # 0, we obtain the co-recursive associated polynomials by replacing n by 
n + c in the coefficients ft. and ~. and flo by flo + v (keeping 7, ~ 0) [2]. 

The purpose of this note is to present preliminary results on co-recursive associated Jacobi (CA J) 
polynomials. The methods used are the same as in the study of the co-recursive associated Laguerre 
(CAL) polynomials presented at the Granada  Symposium [8]. In Section 2 we give an explicit 
expression for the CAJ polynomials and in Section 3 the absolutely continuous part of the 
orthogonali ty measure. In Section 4 we obtain, using Orr's method, the fourth-order differential 
equation satisfied by the CAJ polynomials in some limiting cases, among which are some new 
simple cases of associated Jacobi polynomials. 
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2. Explicit representation 

The recurrence relation of the associated Jacobi polynomials P~'P(x; c) is [13] 

(2n + 2c + ~ + fl + 1) [(2n + 2c + ~ + fl + 2)(2n + 2c + c¢ + fl)x + ~2 _ fl2]p. 

= 2(n + c + 1)(n + c + ~ + fl + 1)(2n + 2c + ~ + fl)P.+l 

+ 2(n + c + ~)(n + c + fl)(2n + 2c + ~ + fl + 2)p,-  1. (3) 

This recurrence relation (3) is invariant under the transformation Y- defined by 

J-(c,~,f l)  = (c + ~ + fl, - e, - fl). (4) 

As in [13] we use the more convenient shifted polynomials defined as 

R~,'O(x; c) = P~,'~(2x - 1; c). (5) 

A solution of the recurrence relation satisfied by the R, ~' ~(x; c) in terms of the hypergeometric 
function is [9, p. 280] 

( c + ~ +  1), ( - n - c , n + c + ~ + f l + l . l _ x )  (6) 
Un = (C + 1)n 2F1 1 4- c¢ ' 

and an other linearly independent solution is given by 

( c + f l +  1). ( - n - c - ~ - f l ,  n + c + l . l _ x ) .  (7) 
v. = Y-u. (c 4- + fl + 1). 2F1 1 -- 

The functions u, and x-8(1 - x ) - ' v ,  are two independent solutions of the second-order differential 
equation 

x ( 1 - x ) y " ( x ) + [ l + f l - ( ~ + f l + 2 ) x ] y ' ( x ) + ( n + c ) ( n + c + ~ + f l + l ) y ( x ) = O .  (8) 

The associated Jacobi polynomials are defined by (3) and the initial condition 

P ~ ( x ;  c) = O, P~'#(x; c) = 1. (9) 

This gives for P]'#(x; c) 

(2c + ~ + fl + 1)(2c + ~ + fl + 2) P]'#(x; c) = 
2(c + 1)(c + ~ + fl + 1) 

I " - :  il × x + ( 2 c + ~ + f l ) ( 2 c + ~ + f l + 2  " (10) 

The CAJ polynomials P~'a(x; c, ~) satisfy the recurrence relation (3) with a shift/2 on the monic 
polynomial of first degree. This corresponds to the initial condition on the shifted CAJ polynomials 
R~,'#(x; c, la) 

R ~ ( x ;  c, #) D (2c + c~ + fl)(2c 4- ~ + fl + 1) = = #, R~'#(x; c,/~) = 1, (11) 
2(c + ~)(c + fl) 
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with 

R~'P(x; c, I~) = P~'P(2x - 1; c, 2#). (12) 

If c + ,  ~ 0 or c + [1 -~ 0, D is not defined; nevertheless this initial condition in (3) leads to a shift 
/~ on the value of x in P~l"o(x; c). 

As in [8] writing 

R~'a(x; c, It) = Au. + By, 

and using the initial condition (11) we obtain 

A = ~ [ D v o - v _ l ]  and B =  - [ D u o - u - i ] ,  

(13) 

(14) 

where A is easily calculated using the fact that u, and x-a(1 - x ) - ' v ,  are two independent solutions 
of (8), 

~(2c + ~ + [1) 
A = u - l v o  - U o V - i  = - (c  + ~ ) ( c  + [1)" (15) 

The condition A :/: 0 leads to 7 ~: 0 and 2c + a + [1 ~ 0. Noting the invariance of D and A under 
Y one sees that B = 3-A. 

Grouping the two 2F1 involved in expression (14) of A, we may write the CAJ polynomials 

R~'P(x; c,#) = (1 + Y )  c + a + [1- D(c + fl) (c + a) (c + ~ + l)" 
a(2c + ~ + [1) (c + 1). 

x3F2(  -c-c~-[1'c'F+l'l-1 - a , F  , x )  

( - n - - c ' n  + c + a + [1+ l ; 1 -  x )  (16) 
x 2F1 1 + 

with 

F =  c [O(c + [1) - c - ~ - [1] (17) 
D(c + [1) + c 

Transforming the 2Fa(1 -- x) in (13) by [3, Eq. (1), p. 108] one obtains with a little algebra 

( -  1)"c(c + 00 R~,'P(x; c, kt) = (1 + J - )  
[1(2c + a + [1) 

( c + u + l ) .  ( - n - c - o ~ - [ 1 ,  n + c + l ,  ) 
X ( c + a + [ 1 + l ) , 2 F 1  1 - [ 1  "x 

1 x D2FI "x -2F1 x . (18) 
c 1 + [ 1  ' 1 + [ 1  
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This formula generalizes the one of [13, Eq. (28)] to the case of the CAJ polynomials. The 
representations (16) and (18) are valid only for e ¢ 0, _+ 1, _+ 2. . .  and/3 4: 0, + 1, + 2 . . .  but can 
be extended by limiting processes. 

We obtain an explicit formula following the same way as in [13]. We first use [3, Eq. (14), p. 87] 
for each product of 2F1 in (18) to obtain four series involving gamma functions and a ,F3.  For two 
of them we use [1, Eq. (1), p. 56]. The next step is to use for each 4F3 twice [1, Eq. (3), p. 62]. After 
numerous cancellations only two series of 4F3 remain, which we can group to obtain the following 
explicit form 

(_1) , (2c  + 0c +/3 + 1).(fl + c + 1). /.,~ (--n)k(n + 2c + ~ + fl + 1)k R~'~(x; c, p) 
n!(c + e + fl + 1), (c + 1)k(C + fl + 1)k k=0 

kfk-n'n+k+2c+~+fl+l'c'c+fl'G+lc+k+l,c+fl+k+l, 2c+°~+/3+l ,G ) x5F4. ;1 x k, (19) 

where 

G =  
2c(c +/3) (2c + 0c +/3) 

2c(c +/3) +/.t(2c + c~ +/3)(2c + o~ +/3 + 1)" 
(20) 

3.  S p e c t r a l  m e a s u r e  

The Stieltjes transform of the measure of the shifted associated Jacobi polynomials R~'~(x; c) is 
[13, Eqs. (63) and (64)] 

12F1[C+1, c + • + 1  ~) ( c,c+,6 ,1"] -1 (21) 
s(p) = p  \ 2 c + 0 ~ + f l + 2 ;  2Fl\2c+o~+fl 'pJ  

The CAJ polynomials R~,'O(x; c, #) satisfy the same recurrence relations as the R~.'P(x; c) with 

R~l't~(x; c, #) R]'°(x; c) (2c + 0~ + fl + 1)(2c + 0~ + fl + 2) - = p .  ( 2 2 )  
2(c + 1)(c + ~ + fl + 1) 

Using continued J-fractions [4, 6, 12] whose denominators are R'.'tJ(x; c, #) and R~'O(x; ¢) we can 
derive for the Stieltjes transform of the measure ( )1 

s(p) s(p; p) = s(p) 1 +-~ 

( c + l , c + f l + l  ~) 
2F1 \ 2c + ~ + fl + 2 ; (23) 

( c , c + f l f l ; ~ ) + #  f c + l , c + f l + l . ~ ) '  
p zF1 \2c + o~ + ~ 2Fa \ 2c + 0c + fl + 2 ' 

which, using contiguous relations, we can also write 

fc + l,a -l- fl + l I~ F F f c,c + fl, G -I-1 l ~ l - '  ' 
s(P;#)= zFXk 2c + oc + fl + 2 ;p/[_3 2\2c + oc + /3 + l, G;p / j  (24) 
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where G is given by (20). A sufficient condi t ion for the positivity of the denomina to r  in (24) on 
(1, ~ ) i s  

2c(c + fl) 
c >>. O, c > - f l ,  ~ > - 1 ,  # > > . - ( 2 c + ~ + f l ) ( 2 c + c ~ + f l + l ) '  (25) 

but  other condit ions are possible. 
To obtain the absolutely cont inuous  part  of the spectral measure we need to evaluate 

s ÷ (p;/t) - s - (p ;  #) where s -+ are the values of s above and below the cut [0, 1]. Using the analytic 
cont inuat ion  I-3, Eq. (2), p. 108] for each 2F1 in (23) we find 

( c , c + f l f l ;  + _ ~ x : F , ( C + l , c + f l + l  -2 
C b ' ( X )  = (1 - -  X)aX ~+2c 2F1 \2c  + o~ + \ 2 c  + 0¢ + fl + 2 ; 

( c , c + f l ,  G + l  ~ )  -2 
= (1 - x)~x ~+2c 3F2 \2c  + ~ + fl + 1, G; (26) 

which is certainly valid under  condit ions (25). 

. Fourth-order  differential equat ion 

To obtain the differential equat ion satisfied by the R~,'a(x; c, #) we use the Orr  me thod  [10]. 
is of the In (16) the hypergeometr ic  function 2F1 is a solution of Eq. (8) and the 3F2 

form 

3F2(  a' b' e + l e ; x 

which we can prove to be a solution of the second-order  differential equat ion 

x (x  - 1)[(a - e)(b - e)x + e(d - e - 1)] y"(x) 

+ {(a - e)(b - e)(a + b + 1)x 2 + [e(a + b + 1 ) ( 2 d -  e -  2 ) -  d(ab + e 2) + ab]x  

+ de(e - d + 1)}y'(x) + ab[(a - e)(b - e)x + (e + 1)(d - e - 1)]y(x) = 0. (27) 

The general form of the fourth-order  differential equat ion is 

c4yt4)(X) -'1- c3yta)(x)  -'1- c2ytE)(x) -'l'- Cly(1)(X) -}- Coy(X ) = O, (28) 

where the coefficients ci hardly obtained by symbolic M A P L E  computa t ion ,  are at most  of degree 
eight in x. It would take several pages to write them so we will give the results only in the following 
particular cases. 
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4.1. Laguerre case limit 

The limit giving the CAL polynomial case is obtained by the replacement 

2 x  
x ~ l  - ~ -  

2~ 

# ~  +-fl- 

/3 ~ oo. (29) 

The representation (16) is the more suitable to obtain the form of the CAL polynomials studied in 
[8]. Using the Kummer transformation [3, p. 253] for one of the 2F1 and his generalization 

2F2( a ' e + l  ) ; x = eX2F2 
C, e 

for one of the 2F2. 

c -- a -c, e(cl'_ e(Ce_a_ e-a -a a-l)_ 1) + 1  ; - x ) (30) 

4.2. Limit c = 0 

In this limit we obtain the co-recursive Jacobi polynomials. An explicit form is 

R~,t~(x; # ) = (_1) , (  fl + 1). ~ (--n)k(n + ~ + fl + 1)kxk 
n! k=0 kI(fl + 1)k 

J'l + p(k - n)(n + k + a +/3 + 1) 
X 

2(k + 1)(/3 + k + 1) 

x4Fa k + 2 , / 3 + k + 2 ,  e + / 3 + 2  ; ' 

and the spectral measure is given by 

( + 4;(x) = (1 - x)~x ~ 1 + -~x 2f  x e +/3 + 2; (32) 

The limit p = 0 leads back to the Jacobi polynomials. 
The fourth-order differential equation satisfied by the co-recursive Laguerre polynomials can be 

factorized in the limit c = 0 to obtain as in [11] the factorized (2 + 2) differential equation 

0 = [(1 - -  x 2 ) A ( x ) D  2 -t- {(/3 --  o~ - (~ + / 3  + 4)x)A(x) -- (1 -- x2)B(x)}D 

+ {n(n + ~ + fl + 1 ) -  (~ +/3 + 2)}A(x) + {fl-- a--  (a + fl + 2)x}B(x) + C(x)] 

x [ (1- -x2)D z + { ( a + / 3 - 2 ) x + ~ - / 3 } D + n ( n + a + f l + l ) + a + / 3 ] n ~ ' a ( x ; p ) ,  (33) 
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where  

A ( x )  = 2(~ + fl)2(2n + 1)(n + ~ + fl + 1)x2  + 2(~ + f l)(4n(n + ~ + fl + 1) 

× ( - / ~ ( 1  + ~ + f l ) + c ~ - - / 3 ) + ( 1  + ~ + / 3 ) ( - / ~ ( ~ + / 3 + 2 ) + 2 ~ - 2 f l ) ) x  

+ 4n(n  + ~ + /3 + l ) (  - /~(l + ~ + /3) + ~ - /3)2 --  (~ + /3)( - 2 / t ( l  + ~ + /3) 

× (/3 - ~) - 2(fl - ~)2 _ 3~ - 3/3), 

B ( x )  = - (~ +/3)((~ + f l ) (8n(n + ~ + / 3  + 1) + 3~ + 3/3)x + 8n(n + ~ + / 3  + 1) 

× ( - /~(1  + ~ + fl) + ~ - fl) - 2(~ + /3  + 2)(1 + ~ + fl)/2 + (~ --/3)(3~ + 3/3 + 4)), 

C(x )  = - (~ +/3)( (~  +/3) (~  + fl + 2)(2n(n + ~ + /3  + 1) + ~ + /3  - 1)x 2 

+ 2(n(n + ~ + /3  + 1)( - p(~ + /3  + 1)(~ + / 3 -  4) + 2(7 - fl)(~ + / 3 -  2)) 

+ (~ + fl)(~ - / 3 ) ( ~  + fl - 1))x - 2n(n + ~ + fl + 1)(-/2(c~ + /3  + 1)(/3 - ~) 

_ (~ _/3)2 + 6~ + 6/3) + (~ + fl)((~ - /3 )2  _ 3~ - 3/3 - 6)). 

4.3. L imi t  c = - ~ - / 3  

Due  to the Y- invariance of (3) we obtain  in this limit the special case of CAJ polynomials  for 
which 

R~'a(x; - ~ - / 3 ,  I~) = R ;  ~' -a(x; fl). (34) 

All the results are obta ined  f rom Section 4.2 by changing  a to - a and /3  to - / 3 .  

4.4. L imi t  c = - fl 

The explicit form (19) simplifies in the same way as in the case c = 0. One  obtains  

- +/3 +1).1)" ~ (-n)k(nk!(1 + -- ~ - / 3  + 1)kx* R~'P(x; - / 3 ,  #) = ( -  1)" (a(a 
k=O 

f l + ~ ( k  - n)(n  + k + a - /3 + l) 
× 

2(k + 1)(1 - / 3  + k) 

k + 2 , 2 - / 3 + k , ~ - / 3 + 2  ' " 

C o m p a r i n g  this form with the explicit form of the co-recursive Jacobi  polynomials  (32) one sees 
that  

n!(~ - / 3  + 1). 
R ~ ' q x ;  - fl, tt) = (a + 1),(1 - / 3 ) .  R"~" -~(x;/~). (36) 

The spectral  measure  and  the four th -order  differential equa t ion  are obta ined  f rom (32) and  (33) by 
changing/3  to - / 3 .  
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4.5. Limit  c = -- 

This case is the 5- t ransform of the preceding case. All the results are obtained from Section 4.4 
by changing ~ to - ~ and/3  to - /3 .  

4.6. Limit  It = 0 

In this limit we obtain the associated Jacobi polynomials  studied in [13]. The form [13, Eq. (28)] 
may be obtained directly using (18) but  a slightly different form is 

R~,#(x; c) = (l  + ~ - )  (c + ~)(c + ~ + /3) (c + ~ + l ) .  , 
~(2c + ~ +/3) (c + 1). 

x2F1 1 - -~  ' 1 + ~  ' 

The explicit form [13, Eq. (19)] is easily obtained starting from (19) with G = 2c + e +/3, the 
5F4 reducing to a 4F3. Obviously the limit c = 0 leads back to the Jacobi polynomials.  

The coefficients of the differential equat ion (28) satisfied by the associated Jacobi polynomials  
are 

c4 = x2(x  - 1) z, c3 = 5 x ( x  - 1)(2x - 1), 

c2 = (24 - (n + 1) 2 - A ) x ( x  - 1) - B x  - /32  + 4, 

c~ = -- 3((3(n + 3)(n -- 1) + 3A)(2x - 1) + B), 

Co = n(n + 2)A, 

(38) 

(39) 

(40) 

(41) 

with 

A = (C + n + 1)(C + n -  1), B = (~ - /3)(~ +/3), C = 2 c +  ~ +/3. (42) 

This result was also first given by Hahn  [5, Eq. (20)]. Note  the 5-  invariance of A, B and C which 
implies the invariance of the ci. Our  expressions make  this invariance more  obvious than in [13, 
Eqs. (47) and (48)]. 

4.7. Limit  # = [2c(c + ~)]/[(fl  + ~ + 2c)(fl + ~ + 2c + 1)] 

In this limit the symmetry 5-  is broken.  We obtain the zero-related Jacobi polynomials  studied 
in [7]. An explicit form is 

(2c + ~ + fl + 1)n(f l  + C q- 1). ~ (--n)k(n + 2c + ~ + fl + 1)k 
~ ' # ( x ;  C) ( -  1)" 

n!(c + ct + fl + 1). k=0/-" (C + 1)k(C + fl + 1)k 

( k -  n, n + k + 2c + ct + fl + 1, c , c  + fl + 1. 1)xk" (43) 
x 4 F 3 \  c + k + l , c + f l + k + l ,  2 c + ~ + / 3 + l  ' 

The limit c = 0 leads back to the Jacobi polynomials.  
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The  spectral  measu re  is 

(c,c+/3+1 . ~ )  -2. (44) 
~ ' ( X )  = ( 1  - -  X)°~X ~+2c i F  1 \ 2 c  + ~ + /3  + 1; 

Th e  coefficients of the differential  equa t i on  (28) satisfied by the po lynomia l s  ~R.~'a(x; c) are 

c4 = x 2 ( x  - 1)2(Ax + D), (45) 

c3 = x ( x  - 1)(8Ax 2 - 3(A - 3 D ) x  - 4D), (46) 

cz = --  ½A(A  + 2C z - 29)x 3 + (½A(A + 2C 2 - -  2B -- 23) - D ( C  2 - 19))x 2 

--  ¼(A(D + 1)(D - 3) - 2D(2C z - 2B + D - 35))x - ¼D(D 2 - 9), (47) 

cl  = - A ( A  + 2C 2 - -  5)x 2 + ¼(A(A  + 2C 2 - -  2B - 5D - 5) -- 3 D ( 4 C  2 - l l ) )x  

+ ¼D((D + 3)A + 6C z - 6B + 3D - 15), (48) 

Co = 2n(n + 1)(C + n)(C + n + t ) (Ax + 3D), (49) 

where  B and  C are def ined in (42) and  

A = (2n + 1)(1 + 2C + 2n), D = 1 + 2/3. (50) 

4.8. L imi t / . t  = [2(c + /3) (c  + ~ +/3)] /[( /3  + ~ + 2c)(/3 + ~ + 2c + 1)] 

This  case is the ~-- t r ans fo rm of Sect ion 4.7. The  explicit  form is 

( _ l ) , ( 2 c + ~ + f l + l ) , ( ~ + c + l ) ,  z., ~ '  ( - - n ) k ( n + 2 c + ~ + f l + l ) k  
9t,~,~(x; c) 

n!(c + 1). (c + ~ + fl + 1)k(C + ~ + 1)k k=O 

x4f3~-  _[k-n'n+k+2c+c~+fl+l'c+c~+fl'c+°~+lc+e+fl+k+l,c+~z+k+l, 2 c + ~ z + f l + l  ; 1 ) x  k. (51) 

The  limit c = 0 yields the co-recurs ive Jacobi  po lynomia l s  with # = 2fl/(e + fl + 1). The  spectral  
measu re  is 

~b'(x) = (1 - -  2 E l  ~ 2 c  -Jr- 0~ + / 3  --[- 1 '  (52)  

Th e  coefficients of  the  differential equa t i on  (28) satisfied by the po lynomia l s  9t~'a(x; c) are 
ob t a ined  f rom (45)-(50) by chang ing  D = 1 + 2/3 by D = 1 - 2/3. 

4.9. L imi t  p = - [2c(c + /3 ) ] / [ (2c  + ~ +/3) (2c  + ~ + / 3  + 1)] 

The  s y m m e t r y  Y is also broken .  We ob ta in  a new 
form is 

( _ 1 ) ,  (2c + ~ + fl + 1).(fl + c + 1), z., ~ ( - -n)k(n  + 2c + ~ + fl + 1)k 91,~'~(X; C) 
n!(c + ~ + fl + 1), (c + 1)k(C + fl + 1)k k=O 

_ [ [ k - n , n + k + 2 c + ~ + f l + l , c , c + f l  . 1 ) x  k 

x J % , , c  + k + 1, c + f l + k +  1,2c + e + f l +  1 '  

s imple case of CAJ  polynomia ls .  An explicit  

(53) 
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and the spectral  measure  is 

X)ctXfl+2 c 2F1(  c , c + / 3  .~)1-2 
q~'(x) = (1 - 2c + ~ + /3  + 1'  (54) 

The  coefficients of  the differential equa t ion  (28) satisfied by  the po lynomia l s  ~.~'P(x; c) are 

C 4 = X 2 ( X  - -  1)2(A(x - 1) - O), (55) 

c3 = x(x  - 1)(8Ax 2 - (13A + 9D)x + 5A + 5D), (56) 

c2 = - - 1 A ( A  + 2C 2 - 29)x 3 + (A(A + 2C z - B - 32) + D(C 2 - 19))x 2 

-- ½(A(A + 2C 2 + 2/3 2 - -  2B - 43) + D(2C 2 - 2B -- D -- 41))x 

+ (/32 _ 4)(A + D), (57) 

cl = - 2A(A + 2 C  2 - -  5 ) x  2 

+ ½(A(7A + 14C 2 - 2B + 5D - 35) + D(3C 2 - 33))x 

-A(~zA + 3 C  2 - B - 2 ~  2 - 7 ) - 3 D ( C  2 - B - ½ D - 3 ) ,  (58) 

Co = n(n + 1)(C + n)(C + n + 1)(A(x - 1) - 3D), (59) 

where  B and C are defined in (42) and 

A = ( 2 n + l ) ( 1  + 2 C + 2 n ) ,  D =  1 + 2 ~ .  (60) 

4.10. Limit # = - - [2(c  + c0(c + ~ + /3 ) ] / [ (2c  + ~ +/3)(2c + 0~ + /3  + 1)] 

This case is the ~-- t ransform of Section 4.9. The  explicit form is 

(2c + ~ + fl + 1),(~ + c + 1), ~ (--tl)k(n + 2c + ~ + fl + 1)k c) (-1)" 
n ! ( c + l ) ,  ~ ( C + ~ + / 3 + l ) k ( C + ~ + l ) k  k=O 

( k - n , n + k + 2 c + ~ + / 3 + l , c + ~ + / 3 ,  c + ~  ) 
x 4 F 3 \ c + ~ + / 3 + k + l , c + ~ + k + l ,  2 c + e + / 3 + l ; 1  x k (61) 

and the spectral  measure  

q~'(x) = ( 1 -  x)~-2x fl+2c+2 2 F 1  ( C +  1, C + / 3 + 1  d'~) -2 
\ 2 c + ~ + / 3 + 1  ; (62) 

The coefficients of the differential equa t ion  (28) satisfied by  the po lynomia l s  ff~,~'fl(x; c) are 
ob ta ined  f rom (55)-(60) by changing only D = 1 + 2~ by  D = 1 - 2~. 

5. Conclusion 

We end with some brief remarks.  In this note  we have presented some proper t ies  of  the 
co-recursive associa ted Jacobi  polynomials .  

(a) Fo r  three values of  the associat ivi ty pa ramete r  we ob ta in  po lynomia l  families for which the 
results are of  the same complexi ty  as the cor responding  co-recursive polynomials .  
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(b) For four values of the co-recursivity parameter we obtain polynomial families for which the 
results are of the same complexity as the corresponding associated polynomials. 

(c) In some cases the fourth-order differential equations satisfied by the polynomials studied 
above are factorizable (co-recursive and associated of order one) but we do not find factorization 
for the co-recursive associated polynomials nor for the associated one, except for the three cases 
in (a). 
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