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It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario 
in the early universe. This common sense depends on the assumption that Einstein’s general relativity 
is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor 
perturbations can be generated during a contracting phase before the radiation dominated epoch if the 
theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the 
tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit 
BICEP2’s result. We construct a model to achieve this purpose and show that the universe can bounce 
to the hot big bang after long time contraction, and at almost the same time the theory of gravity 
approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual 
to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual 
models are related by the conformal transformations. With this study we reinforce the point that only 
the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the 
background evolve before the radiation time depends on the frame and has no physical meaning. It is 
impossible to distinguish different pictures by later time cosmological probes.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
Cosmic inflation [1] is a hypothesis about the early universe. 
It states that at the early time before the radiation dominated 
epoch (we call this time pre-big bang in this paper) our uni-
verse experienced a period of nearly exponential expansions. This 
paradigm is very successful. It provides not only solutions to the 
horizon and flatness puzzles existed in the hot big bang cosmol-
ogy but also mechanisms to generate initial density perturbations 
for structure formation. The single field slow-roll inflation mod-
els generically predict adiabatic, nearly scale-invariant and Gaus-
sian primordial density perturbations, which were confirmed with 
strong confidences by the observations of the cosmic microwave 
background radiation (CMB) [2]. Besides the scalar (density) per-
turbations, the single field inflation models also predict nearly 
scale-invariant and sizeable tensor perturbations, i.e., primordial 
gravitational waves, with the amplitude proportional to the energy 
scale at which the inflation taking place. The tensor perturbations 
left a unique imprint to observations by producing the curl-like 
B-mode polarizations on the CMB sky. Recently the BICEP2 Col-
laboration announced the detection of the B-mode polarizations 
of CMB at large angular scales [3]. This suggested a large tensor-
to-scalar ratio, r = 0.20+0.07

−0.05 at 68% CL if all of these B-mode 
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polarizations are originated from the primordial tensor modes. It 
is commonly believed that this result, if confirmed, strongly favors 
the single field inflation models. Some alternative models, such as 
the Ekpyrotic/Cyclic universe [4], bouncing universe [5] and so on 
usually predict non-detectable tensor modes and are disfavored by 
BICEP2’s result.

This can be seen from the following general arguments. The 
single field model in the context of Einstein’s gravity has the action 
S = (1/2) 

∫
d4x

√
g[R + ∂μφ∂μφ − 2V (φ)], where we have used the 

unit in which Mp = 1/
√

8πG = 1. The tensor perturbation from 
ds2 = a2dη2 − a2(δi j + γi j)dxidx j , which is traceless and transverse 
γii = ∂iγi j = 0, has the following quadratic action

S T = 1

8

∫
d4xa2[(γ ′

i j

)2 − ∂lγi j∂lγi j
]
. (1)

This is a massless spin-2 field coupled to the background through 
the cosmic scale factor a. The prime means the derivative with re-
spect to the conformal time η. The tensor perturbation has only 
two components denoted by λ = +, ×. Its rescaled amplitude vk , 
which relates to γi j in Fourier space as γi j(�k) = ∑

λ[vkâ(�k, λ) +
v∗

k â†(−�k, λ)]ei j(�k, λ)/a, here ei j is the polarization tensor and â and 
â† are the annihilating and creating operators of gravitons respec-
tively, satisfies the equation of motion
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v ′′
k +

(
k2 − a′′

a

)
vk = 0. (2)

By quantization and choosing the Bunch–Davies vacuum at ini-
tial time η → −∞, vk = e−ikη/

√
2k, the resulted tensor power 

spectrum at later time when η → 0 is P T = 4k3/(π2)|vk/a|2 ∼
(−η)1−2ν−4/(1+3w)k3−2ν . Here we have assumed the background 
equation of state w is a constant and ν = |3(w − 1)/2(1 + 3w)|. 
We also for convenience put the time of all the pre-big bang phase 
at the range −∞ < η < 0, so the time η = 0 is approximately 
the beginning of the hot expansion. Taking the Ekpyrotic/Cyclic 
universe [4] as the example, the perturbations of the cosmologi-
cal scales were generated at the slow contracting phase in which 
w > 1, hence the tensor spectral index nT = 3 − 2ν > 2. This spec-
trum has a large blue tilt and the power is suppressed deeply to 
undetectable level at large scales corresponding to the observa-
tion of BICEP2. By contrast, the inflation, during which w 	 −1
and a ∼ 1/(−η), predicts a constant and nearly scale-invariant 
tensor spectrum, i.e., P T = const., nT 	 0. So the power is not 
suppressed at large scales and can be significant. In addition, the 
contracting universe dominated by the matter in which w 	 0
[6] can also produce a nearly scale-invariant tensor spectrum. In 
this scenario the matter contraction must be interrupted by other 
phases well before bouncing to the hot big bang as indicated in 
the matter bounce models [7], otherwise both the scalar and ten-
sor perturbations, scaling as (−η)−6 during the matter contraction, 
will blow up and make the background unstable. Another problem 
the matter contraction models encountered is that the classical 
anisotropies which scale as a−6 are not suppressed. So it seems 
that the inflation scenario has the strong preference over other 
models if BICEP2’s result is confirmed.

According to above observations, if the tensor spectrum is not 
strongly blue tilted, it is possible to have significant tensor per-
turbations at large scales. Currently there are some studies on the 
tensor spectral index, see, e.g., [8], but the confidence level is low 
and we need more data to improve it. But if we get a nearly 
scale-invariant tensor spectrum, as inflation predicted, we have the 
possibility to obtain significant tensor modes at large scales. In 
this paper we will focus on the production of the nearly scale-
invariant tensor spectrum. The tensor perturbation couples to the 
background by the factor a2 in the action (1). A few calculations 
show that the scale-invariant perturbation with constant ampli-
tude can only be achieved if the background is nearly de Sitter, 
i.e., inflation where a = −1/(H Iη) and the Hubble parameter H I

a constant. This conclusion is made based on the assumption that 
the theory of gravity is Einstein’s general relativity. If the theory 
of gravity is modified in the early universe, it is possible to ob-
tain scale-invariant tensor perturbation without inflation. We can 
simply argue that if there are non-minimal couplings to the curva-
ture scalar, S = (1/2) 

∫
d4x

√
g[F (φ)R + ...], the quadratic action (1)

will be modified as S T = (1/8) 
∫

d4x(a2 F )[(γ ′
i j)

2 − ∂lγi j∂lγi j]. Now 
scale-invariance requires a

√
F instead of a scales as 1/(−η). That 

is to say even the spacetime deviates de Sitter significantly, we 
may still get scale-invariant tensor perturbation through the time 
dependence of the non-minimal coupling function F .

This possibility has been investigated in Refs. [9,10], in which 
the authors constructed the models in the context of scalar–tensor 
theory to show that nearly scale-invariant scalar and tensor per-
turbations can be produced in the slow expanding universe. In this 
paper we will pursue the productions of nearly scale-invariant per-
turbations during the contraction of the universe based on similar 
models. scalar–tensor theories are usually used to model the later 
time acceleration of the universe or the variation of the Newton 
constant [11]. As we know, general relativity passed all the exper-
iments at low energy scales. But at the early universe the energy 
scale is very high and the theory of gravity may get modified and 
replaced by a scalar–tensor theory. In fact scalar–tensor theories 
arise naturally from fundamental theories with higher dimensions. 
All versions of string theory predict the scalar–tensor theory rather 
than general relativity as the actual theory of gravity, in which the 
spin-2 graviton has a spin-0 partner, the dilaton. These theories are 
effective at high energy scales and at low scales they should ap-
proach general relativity since the solar system experiments have 
put stringent constraints on the deviations from general relativity. 
We also adapt this point here, at the early universe (pre-big bang) 
the theory of gravity is scalar–tensor and approaches general rel-
ativity at the post-big bang era. The model we consider has the 
general action

S =
∫

d4x
√

g

[
1

2
F (φ)R + P (X, φ)

]
, (3)

where X = 1/2gμν∂μφ∂νφ is the kinetic term. We have consid-
ered a general Lagrangian P (X, φ) for the scalar field. The non-
minimally coupled function F (φ) should be positive to guarantee 
the positiveness of the effective Newton constant. The equations of 
motions are obtained by the variation of this action

F Gμν − gμν�F + ∇μ∇ν F = −T μν,

∇μ

(
P X∇μφ

) = Pφ + 1

2
R Fφ, (4)

where T μν = −P gμν + ∇μφ∇νφ, P X represents ∂ P/∂ X , and Pφ

and Fφ are defined in the same way. At the background ds2 =
a2(dη2 − δi jdxidx j), these equations become

H2 +H
F ′

F
= a2

3F
ρ,

ρ ′ + 3H(ρ + P ) = 3

a2

(
H′ +H2)F ′, (5)

here we used the reduced Hubble parameter H = a′/a and defined 
ρ = −P + 2X P X as usual. There are some requirements for the 
model building as far as the background equations are concerned. 
To solve the flatness and the horizon problems, the absolute value 
|H| = a|H | should increase with time, i.e., d|H|/dη > 0. Further-
more, during the contracting phase H < 0, the energy density ρ
is required to increase faster than a−6 to suppress the classical 
anisotropies.

In order to discuss the perturbations and their quantizations 
we will use the ADM decomposition ds2 = N2dη2 − hij(dxi +
Nidη)(dx j + N jdη) with the lapse function N , the shift vector Ni

and the induced metric hij . Following Maldacena [12], we choose 
the gauge δφ = 0, hij = a2(e2ζ δi j + γi j). This choice simplifies the 
calculations and at the same time the left dynamical fields ζ and 
γi j are gauge-invariant. The purpose is to find the quadratic action 
of the scalar perturbation ζ and the tensor perturbation γi j . With 
the ADM decomposition the action (3) is written as

S =
∫

d4x
√

hN

{
−1

2
F

[
(3)R + E2 − Eij Ei j

N2

− 2

N
√

h
∂0

(√
hE

N

)
+ 2

N
√

h
∂i

(√
hE

Ni

N
+ √

hhij∂ j N

)]

+ P

(
φ′ 2

2N2
, φ

)}
, (6)

where h = det |hij |, Eij = − 1
2 (h′

i j − Ni| j − N j|i) and E = −hij Ei j . The 
extrinsic curvature is Kij = Eij/N . In these formulae the indices are 
lowered and raised by the induced metric hij and its inverse hij , 
and Ni| j represents the covariant derivative of Ni induced by hij .
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In linear perturbation theory the scalar and tensor perturba-
tions can be considered separately. We first consider the scalar 
perturbation, in this case hij = a2e2ζ δi j . We first solve for the con-
straints N and Ni through their equations got from the variation 
of the action (6) and then plug the result back to (6). At the 
background level, it is easy to find that N = a and Ni = 0. When 
inhomogeneous perturbations are included we need only calculate 
N and Ni up to the linear order as argued in Ref. [12]. Finally 
we may get the quadratic action of the scalar perturbation, which 
has been obtained in [13] (see also [14]). Using our notations the 
quadratic action is

Ss = 1

2

∫
d4x

(
aφ′

θ ′

)2(
ρX + 3F 2

φ

2F

)[
ζ ′ 2 − c2

s (∂iζ )2], (7)

where θ ′ = H + F ′/(2F ), and the square of the sound speed is 
defined as

c2
s = P X + 3F 2

φ/(2F )

ρX + 3F 2
φ/(2F )

. (8)

We require ρX + 3F 2
φ/(2F ) > 0 to prevent the ζ field from be-

ing a ghost and c2
s > 0 to guarantee the spatial stability. This is 

different from the minimal coupling case where ρX , P X > 0 are re-
quired. Furthermore, in order to obtain nearly scale-invariant scalar 
spectrum the factor (aφ′/θ ′)2[ρX +3F 2

φ/(2F )] should scale approx-

imately as 1/η2.
Then we focus on the tensor perturbation, for which hij =

a2(eγ )i j and N = a, Ni = 0, where eγ is the exponential func-
tion of the traceless and transverse matrix γ . The determinant 
h = det |a2eγ | = a6 exp Trγ = a6 is not perturbed. One can also 
prove that E = −hij Ei j = 3H is unperturbed up to the second or-
der. With these considerations, we find that the quadratic action 
for the tensor perturbation is

S T = 1

8

∫
d4xa2 F

[(
γ ′

i j

)2 − ∂lγi j∂lγi j
]
. (9)

Scale-invariance requires a2 F ∼ 1/η2.
We use a toy model to illustrate these points. The action is

S =
∫

d4x
√

g

[
1

2
ξ2φ2 R − 1

2
∂μφ∂μφ − V 0(ξφ)q

]
, (10)

so in our notation F = ξ2φ2 and V = V 0(ξφ)q . The kinetic term 
has a wrong sign, this represents a ghost in general relativity and 
will cause quantum instability. But in our case from above argu-
ments the non-minimal coupling will make the time derivative 
term of the fluctuation has the right sign if ρX + 3F 2

φ/(2F ) =
6ξ2 − 1 ≡ α > 0. The spatial stability P X + 3F 2

φ/(2F ) > 0 puts the 
same constraint and c2

s = 1. What we will quantize are the fluctu-
ations, so this condition is enough to make this model free from 
instabilities. Through definitions of the dimensionless parameters 
x ≡ φ′/(Hφ), y ≡ a

√
2V /(Hφ), the Friedmann equation, i.e., the 

first equation of background equations (5), may be rewritten as 
y2 = x2 + 2(1 + α)x + 1 + α. The second equation of Eqs. (5) is

ẋ = − y2

2α(1 + α)

[
(6α − αβ − β)x − β(1 + α)

]
, (11)

where ẋ ≡ dx/d ln a and we have defined β = 4 − q. This equation 
has three fixed points corresponding to three scaling solutions: 
x0 = −(1 + α) ± √

α(1 + α) and x0 = β(1 + α)/(6α − αβ − β). 
Both the first and second critical points, in which y0 = 0, demand 
(aφ′/θ ′) ∝ η1/2 instead of 1/(−η) and the produced scalar pertur-
bation has a strong blue tilt. This conflicts with the observations 
and we will not consider these two points any more.
The third critical point corresponds to the scaling solution

a ∝ (−η)p, H = p/η, with p = 2(6α − αβ − β)

β2(1 + α) − 12α
. (12)

One can find that for this scaling solution both pre-factors in the 
quadratic actions (7) and (9) scale as:

aφ′

θ ′ , a
√

F ∝ (−η)−1−b, (13)

with b ≡ β2(1 + α)/[12α − β2(1 + α)]. Now we study the im-
plications of this solution to the expanding and contracting uni-
verses separately. For the expanding universe in which p < 0 and 
H > 0, the solution (12) can only be stable if β2(1 + α) > 36α, 
β(1 + α) > 6α or β2(1 + α) < 12α, β(1 + α) < 6α. The first case 
requires b < −1 and consequently the generated spectra in such an 
expanding universe deviate scale-invariance significantly. The sec-
ond case can achieve scale-invariance if β2(1 +α)  12α, this will 
recover the inflation or the slow expansion studied in Refs. [9,10]
according to the specific parameter space, and we will not consider 
it any more in this paper.

Now let’s consider the contracting universe for which p > 0 and 
H < 0. Combining with the stability conditions of Eq. (11), the so-
lution (12) is an attractor one if and only if β2(1 + α) > 36α >

6β(1 + α) or β2(1 + α) < 12α < 2β(1 + α). Similarly the first case 
gives b < −1 and leads to non-scale-invariant spectra. We will fo-
cus on the second case in which

6α

1 + α
< β <

√
12α

1 + α
. (14)

This requires 0 < α < 1/2 and so both α and β are small positive 
parameters. One can also check that d|H|/dη = p/η2 > 0 in such 
a contracting phase and this provides the solutions to the flatness 
and horizon problems. Furthermore, due to the definition of x, at 
the critical point φ ∝ ax0 , the energy density ρ = −φ′ 2/(2a2) +
V scales as ax0(4−β) . To suppress the classical anisotropies in the 
contracting universe, ρ must increase faster than a−6, this means 
x0(β − 4) > 6. Using the expression of x0 this inequality becomes 
β2 + 2β < 36α/(1 + α). This condition is not always satisfied in 
the region (14), but for the case β  √

12α/(1 + α) it can be well 
satisfied.

The scale-invariant scalar and tensor perturbations can be ob-
tained if β  √

12α/(1 + α). In terms of the standard proce-
dure learned from inflation theory one has the spectra P s =
As(k∗)(k/k∗)−2b and Pt = At(k∗)(k/k∗)−2b , both have the same 
small red tilts because b > 3α/(1 − 2α) from the inequalities (14). 
The amplitudes As(k∗) and At(k∗) at the pivot scale k∗ mainly 
depend on the model parameter V 0 which defines the energy 
scale at which the primordial perturbations were created. One 
can calculate that the observational result As(k∗) ∼ 10−9 requires 
V 0 ∼ 10−8. The tensor-to-scalar ratio is fixed in this model r =
16b/(1 + b) and if we choose the parameters α = 0.004, β = 0.024
one can easily find that r = 0.19 and ns − 1 = nt 	 0.0244.

So we have seen that with the model (10) the nearly scale-
invariant scalar and tensor perturbations consistent with the cur-
rent observations can be obtained in the contracting universe if the 
parameters α and β are positive and small. In terms of them, the 
action (10) is rewritten as

S =
∫

d4x
√

g

[
1 + α

12
φ2 R − 1

2
∂μφ∂μφ − V 0

(√
1 + α

6
φ

)4−β]
,

(15)

and this shows that non-zero α and β represent the breaking of 
the conformal symmetry. The model in this form was also consid-
ered in [9]. It is approximately conformal invariant. We may think 
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Fig. 1. The deformed potential, where the dimensionless Φ is positive definite and 
V 0 = 10−8, β = 0.024.

Fig. 2. The evolution of Φ . Parameters are the same with those in Fig. 1. We used 
the cosmic time t instead of the conformal time η.

that the scale invariances of the spectra are originated from the 
conformal invariance of the model.

It deserves pointing out that this model is not complete. The 
contracting phase should end at some later time and bounce to an 
expanding spacetime. This toy model itself does not provide the 
mechanism of bouncing. For this purpose we make a little defor-
mation to the toy model (10) as follows

V = V 0Φ
4(Φ−β + Φβ − 2

)
, (16)

where Φ ≡ ξφ. We have added two terms with higher powers to 
the potential so that it has the form depicted in Fig. 1. The de-
formation produces a bump and an extra local minimum in the 
potential. The evolution begins at Φ ∼ 0. When Φ  1 this de-
formed model is almost the same with the model (10). At this 
regime Φ changes slowly and the universe is contracting, nearly 
scale-invariant primordial perturbations are generated. At later 
time when Φ is not so small the terms with higher powers be-
come important and the universe exits from the contracting phase 
and bounces to the expansion. Soon after the bounce, the field Φ
crosses the bump and then oscillates around the minimum Φ = 1
with damped amplitude. Reheating takes place at this final stage 
and the energy in the scalar field is transferred to the produced 
components such as the radiation. Reheating will make the ampli-
tude of the oscillations decaying more quickly. Finally the universe 
enters into the radiation dominated epoch and the scalar field it-
self is frozen at the minimum Φ = 1. The evolution of Φ with 
respect to the cosmic time t is plotted in Fig. 2. With this frozen 
Fig. 3. The evolution the Hubble parameter.

Fig. 4. The evolution of the scale factor.

value the non-minimal coupling term in the action becomes

1 + α

12
φ2 R = 1

2
Φ2 R = 1

2
R, (17)

so after reheating the theory of gravity is identical to general rela-
tivity. We also plotted the time evolutions of the Hubble parameter 
H =H/a and the scale factor, see Fig. 3 and Fig. 4.

Hence we see that sizable gravitational waves suggested by 
BICEP2 can also be generated in a pre-big bang phase different 
from inflation. The price we take is modifying gravity. Using the 
scalar–tensor theory we showed here that nearly scale-invariant 
and significant tensor perturbation can be obtained in a contract-
ing universe. Such tensor perturbation can also be obtained during 
a slow expanding phase under the same context as pointed out 
in Refs. [9,10]. It is well known that a scalar–tensor system has 
different forms in different frames. The frame we discussed above 
is usually called Jordan frame and distinguished from the Einstein 
frame discussed below. It is assumed to be the frame in which the 
matter couples to the metric minimally. So that there is no extra 
force mediated by the scalar field φ among the matter and this is 
consistent with current experiments testing the equivalence prin-
ciple in the matter sector. But the gravity itself did not obey the 
strong equivalence principle because the scalar field would medi-
ate a fifth force in the gravity sector. However, in our model (16)
this fifth force is not detectable by current gravitational probes be-
cause after bouncing to the hot expansion the scalar field had been 
stabilized to the minimum Φ = 1 through oscillations and decays 
and the theory of gravity approaches to the general relativity from 
the beginning of radiation dominated epoch. In other words, in our 
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model the deviation of the gravity from the general relativity is 
only significant at the early universe, it does not change the post-
big bang history and cannot have effects on later time gravitational 
probes.

It is also necessary to comment on the possibility of nonsin-
gular bouncing behavior realized in our model. In the general rel-
ativity, nonsingular bounce requires violation of the null energy 
condition by the matter field. Especially the equation of state of 
the matter should cross −1, similar to the behavior of the quintom 
dark energy [15] at late time. This is not true for the scalar–tensor 
theory. In fact in the context of scalar–tensor theories effective 
phantom or quintom dark energy models without violation of null 
energy condition have been discussed extensively in the literature, 
see, e.g., [16]. Hence applying the scalar–tensor theory to the early 
universe, it is also possible to realize a nonsingular bouncing uni-
verse without introducing ghosts. Such an example was provided 
in Ref. [17] where a nonsingular universe was obtained in the gen-
eralized Brans–Dicke theory without potential. In our model with 
the quadratic non-minimal coupling and the potential (16), the 
bounce happened at the point where ρ = −φ′ 2/(2a2) + V = 0, 
but neither the scalar field nor the graviton is ghost. According 
to [16,18], the scalar tensor theory of the type

S =
∫

d4x
√

g

[
1

2
F (φ)R + 1

2
h(φ)∂μφ∂μφ − V (φ)

]
, (18)

is stable if

F > 0, F1 ≡ F h + 3

2

(
dF

dφ

)2

> 0. (19)

The first requirement guarantees a positive Newton “constant” and 
prevents the graviton from being a ghost, and the second require-
ment protects the scalar field from being a ghost. These require-
ments are fully satisfied in our case. The non-minimal coupling 
function F = ξ2φ2 = Φ2 is positive everywhere because φ �= 0, and 
F1 = −ξ2φ2 + 6ξ4φ2 = αξ2φ2 > 0 because α is a positive parame-
ter as we discussed before. So in our model, the bounce is stable.

For comparison with the discussions in the Jordan frame, it is 
useful to see what happened in the Einstein frame. For the toy 
model (10), if we rescale the metric ḡμν = Ω2 gμν with Ω = ξφ =
Φ and through field redefinitions, one may get the action in the 
Einstein frame,

S =
∫

d4x
√

ḡ

[
1

2
R̄ + 1

2
∂μφ̄∂νφ̄ − V 0 exp

(
−β

√
1 + α

6α
φ̄

)]
. (20)

The conformal transformation is essentially identical to the redef-
initions of the scalar and tensor fields. The action (20) has been 
used to model the power law inflation in the literature, and the in-
flation is an attractor solution if 0 < β

√
(1 + α)/(6α) <

√
2. With 

the same parameters α = 0.004, β = 0.024, this inflaton has the 
equation of state w = −0.992. Similarly this inflation model is not 
complete because it needs other mechanisms to end the inflation. 
The deformed model with the potential (16) in the Einstein frame 
has the potential V̄ = 2V 0[cosh(−β

√
(1 + α)/6αφ̄) − 1] and has 

the minimum at φ̄ = 0. With this potential the inflation has a 
graceful exit. In the Einstein frame, other matters should couple 
to the metric non-minimally. However, after inflation, the scalar 
field φ̄ has been relaxed to the vacuum φ̄0 = 0 and these non-
minimal couplings which depend on the exponential of φ̄ reduce 
to the minimal couplings. This means that the Jordan and Einstein 
frames are identical at late time in our model and denotes again 
the difference between these two frames are significant only in 
the early universe. Though the scalar field is stabilized at the vac-
uum φ̄0 = 0, its fluctuation still transmits residual force between 
matter. It is straightforwardly to show that the fluctuation around 
the vacuum ϕ̄ = φ̄ − φ̄0 has the potential V̄ = (1/2)m2
eff ϕ̄

2 with 
meff = β

√
V 0(1 + α)/3α. Please note that we use the unit Mp = 1

in this paper. With the parameters to produce the right primordial 
perturbations, the effective mass is meff ∼ 10−5 Mp ∼ 1013 GeV. 
Due to this high mass, the residual force is short range and invis-
ible to the fifth force searches. Current experiments show that no 
deviations from the Newton’s inverse square law have been found 
above the distances of 10−8 m [19,20], this places a lower limit on 
the effective mass of the scalar field meff > 10 eV. In our case the 
effective mass is well above this limit.

One can show that in both frames the created scalar and tensor 
perturbations are the same. This reflects the fact that the gauge-
invariant scalar and tensor perturbations are frame independent as 
demonstrated in Refs. [14,21]. Note that the frame or conformal in-
variance of the scalar perturbation ζ has relative limited meaning 
compared with the invariance of gravitational waves. At least this 
can be seen from the discussions of [14,21]. The curvature pertur-
bation ζ is only invariant under those conformal transformations 
ḡμν = Ω2 gμν in which Ω is a function of the scalar field φ. How-
ever the tensor perturbation which relates to the Weyl tensor is 
invariant for any Ω .

The conformal invariances of the perturbations have important 
implications. In terms of the trick from [22], the conformal trans-
formations can be upgraded to the gauge transformations. In fact 
any scalar–tensor system with canonically normalized kinetic term 
can be described by the following conformal invariant action,

S =
∫

d4x
√

g

[
χ2 − ϕ2

12
R + 1

2
(∂ϕ)2

− 1

2
(∂χ)2 − f

(
ϕ

χ

)(
χ2 − ϕ2)2

]
, (21)

where f is an arbitrary function of ϕ/χ . One can prove that 
this action is invariant under the rescalings ḡμν = Ω2(x)gμν , χ̄ =
Ω−1χ , ϕ̄ = Ω−1ϕ . Though there introduced two scalar fields, one 
of them can be gauged away. The toy model (15) or (20) corre-
sponds to

f (ϕ/χ) = V 0

36

(
χ + ϕ

χ − ϕ

)−β

√
1+α
4α

. (22)

Different frames correspond to different gauges and once the frame 
is chosen the conformal symmetry is spontaneously broken. In our 
example (22), if we choose the gauge

χ = √
1 + αφ cosh

[√
α

1 + α
ln

(√
1 + α

6
φ

)]
,

ϕ = √
1 + αφ sinh

[√
α

1 + α
ln

(√
1 + α

6
φ

)]
, (23)

the invariant action (21) reduces to the action (15) in the Jordan 
frame. As same if we choose the gauge

χ = √
6 cosh

φ̄√
6
, ϕ = √

6 sinh
φ̄√

6
, (24)

it reduces to the action (20) in the Einstein frame. From the discus-
sions of this paper, in the first gauge, the universe was contracting 
in the pre-big bang era, however in the second gauge the universe 
was inflating. Both produce identical nearly scale-invariant pertur-
bations. From this point, only the conformal invariant quantities, 
such as the scalar and tensor perturbations are physical because 
the background evolutions of the early universe, inflation or con-
traction or other possibilities, depend on the frames and in terms 
of late time cosmological probes we cannot determine which frame 
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our universe was in. Perhaps it is more important to pursue the 
model (22) in the conformal invariant action than studying the 
background evolution in a specific frame.

In summary, we used a model to show that nearly scale-
invariant scalar and tensor perturbations can be achieved in the 
contracting universe in the context of scalar–tensor theory. This 
model with slight deformations can bounce to the hot big bang 
universe and at almost the same time the theory of gravity 
changes to general relativity and will not change the post-big 
bang history. We also note that this model is dual to inflation if 
we change the frame by the conformal transformation. Different 
frames correspond to different gauge choices. We want to through 
this study reinforce the point that the background evolution of the 
early universe is gauge-dependent and has no physical meaning 
because for the late time observers, we cannot know which frame 
our universe was in. What we can measure are the gauge invari-
ant quantities such as the scalar and tensor perturbations. Hence, 
if the detection of sizable primordial gravitational waves by BICEP2 
is confirmed, we still cannot say that inflation, the quasi exponen-
tially expansion, must have happened.
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