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Foreword

Only a small part of this thesis, namely three
viously been published (see [56]). Since th
Chapter 4 on powerdomains for modellig non-determin¥sm, has become of
increasing interest: indeed the main goal was to provide semantic
domains for modelling the simultgoneous of probabilistic and or-
dinary non-determinism. It theref med appropriate to make the thesis

available to a general audiepgs

s Keimel has rewritten large parts of the
obal structure of the original dissertation. As
of minor changes, he has incorporated some

Next, an annoying hypothesis of a non-equational nature is no longer re-
quired for the statement of the universal property of the biconvex powercone.
Further, the hypotheses for the lower powercone have been weakened: the uni-
versal property for this powercone remains valid without requiring the base
domain to be continuous. Finally, we have added Section 4.16 explicitly pre-
senting the powerdomains combining probabilistic choice and non-determinism

and their universal properties. Combining the extended probabilistic power-
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domain with the classical convex powerdomain was not possible when Tix’s
thesis was submitted: it was not known then whether the extended proba-
bilistic powerdomain over a Lawson-compact continuous domain is Lawson-
compact. Extending slightly a recent result from [3], we now know that the
extended probabilistic powerdomain is Lawson-compact over any stably lo-

cally compact space. For continuous domains the converse also holds. This

these new results in section 2.2.

There have also been some terminological changes. For

D. Varacca [57,58,59] took a related

and nondeterminism via indezxed valuati

bining probability
ational theory is weaker;
comes more flexible. M.
to ours for the probabilistic
. his goal being a semantics for

s were drawn using Paul Taylor’s diagrams macro package.

Regina Tiz
Klaus Keimel
Gordon Plotkin
December 2004
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Introduction

domains are directed complete partially order
of approximation, the so called way-below r
resent ‘ideal objects’ and their ‘finite ap
continuous domains provide a suitable
The order can be thought of as

greater an element the more infor

constit®e the powerdomain depends on the kind of non-determinism that is
be modelled. There are three classical powerdomain constructions, called the
convex, upper, and lower powerdomains, often referred to as Plotkin, Smyth,
and Hoare powerdomains.

Probabilistic non-determinism has also been studied and has led to the
probabilistic powerdomain as a model [47,42,24,23]. Different runs of a prob-
abilistic program with the same input may again result in different outputs.

In this situation, it is also known how likely these outputs are. Thus, a prob-
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ability distribution or continuous valuation on the domain of final states is
chosen to describe such a behaviour. Originally attention had been paid to
valuations with total mass < 1. This leads to powerdomains carrying a convex
structure. The collection of all continuous valuations (bounded or not) on a
continuous domain X, ordered ‘pointwise’, leads to the extended probabilis-

tic powerdomain of X. The extended probabilistic powerdomain carries the

(see also Chapter 2).

For Plotkin’s and Jones’ model of probabilistic

Integration of such lower semicontinuous
ous valuation plays a crucial role. One o

probabilistic powerdomain over a contin

such situations? The Programming Research Group in Oxford [43] has tackled

various aspects of this problem. Out of this group, Mclver and Morgan have
chosen a subdomain of the Plotkin powerdomain over the space of subprob-
ability distributions on discrete state spaces [36]. The subsets they allow are
the convex ones. Our approach to convex powercones was motivated by theirs.
We modify and generalize their construction to continuous Lawson-compact
d-cones. Therefore, we introduce and investigate a Hoare and Smyth style
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powerdomain construction for continuous d-cones. Then the convex Plotkin
powercone can be defined as a combination of the other two constructions. It
is our goal to apply these constructions to the extended probabilistic power-
domain in Section 4.16.

More background information will be given in the introductory part of
each chapter. The course of the work is as follows:

theory.

Continuous d-cones are the focus of Chapter 2. T

domain, the cone

space with values in the

Jlt-open convex sets (the notion

real vector spaces and has to be dis-

the points on a continuous d-cone. The Strict Separation Theorems will be

needed for the convex upper and biconvex powercones. Another application
of the Separation Theorem will be indicated in the Conclusion: in connec-
tion with semantics it can be used to show that a special map between two
models is injective. FExtension Theorems are another type of Hahn-Banach
Theorems. We will prove a typical extension theorem for continuous d-cones
with an additive way-below relation.
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Chapter 4 introduces Hoare, Smyth and Plotkin style constructions for con-
tinuous d-cones with the intention to apply them to the extended probabilistic
powerdomain. However, the constructions are feasable and more transparent
in the general setting of continuous d-cones. First, we modify the topological
characterisation of the lower powerdomain by taking only those non-empty

Scott-closed subsets which are also convex. This allows us to lift addition

this context.

For the upper powerdomain we replace non-emp

nuity is equivalent
which separate compact

construction is universal
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Chapter 1

Order and Topology

In this chapter we briefly review the prerequisitgl o¥gmrder a opology nec-
on d in theory; however,

essary for our further results. The focus wj
a complete introduction to this topic byfar exceeds the scope of this work.
Thus, we present selected items only and

our notation. We refer to [1,7,14,1&33] for

onm@nuous Functions

S the sense of partially ordered set, that

eflexive, antisymmetric and transitive binary
. For any subset A of X we get the lower,

={r € X |z <aforsomeacA},

TA:={r e X |z >afor someaec A}.

We eviate [{a} to |a and 1{a} to Ta. A subset A with A = | A is called
a lower set; A = 1A is called an upper set.

A subset D of an ordered set X will be called directed if it is nonempty and
if any two elements of D have a common upper bound in D. The dual notion
is that of a filtered set. An ordered set X will be called directed complete
or a dcpo, for short, if each directed subset D has a least upper bound \/TD
in X. If this is true only for directed subsets that are bounded from above,
then we say that X is conditionally directed complete. If every subset A has a
least upper bound sup A = \/ A, then X is a complete lattice. The least upper
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bound of any (directed) subset is also called its (directed) supremum. The set
R, of non-negative real numbers with the usual total order is conditionally
directed complete, whilst R, =R, N {+oc} is directed complete.

A function f: X — Y between ordered sets is order preserving or mono-
tone, if a < b implies f(a) < f(b) for all a,b € X. If X and Y are (condi-
tionally) directed complete, then f: X — Y is called Scott-continuous, if it is

directed complete ordered set X will be
and if \/'D € A for every (bounded) di
X\ A of a Scott-closed set A will be calle
open, if U is an upper set and if
the following holds: If \/ ' D € U, t

C A. The complement
. Thus, a set U is Scott-

or some d € D. It is easily seen
on X, the Scott topology. This topol-
a%iom, but is non-Hausdorff unless the

in (conditionally) directed complete. A function f defined on X x Y
is Scott-continuous if, and only if, it is componentwise Scott-continuous, that
is, if z — f(x,y) is Scott-continuous on X for every fixed y € Y and similarly
for the second component. It is an unfortunate fact that the Scott topology
on X X Y may be strictly finer than the product of the Scott topologies on
X and Y, unless one of X and Y is continuous (see sec. 1.4 and [15, p. 197]).
Thus, a Scott-continuous function defined on X x Y need not be continuous

for the product topology unless one of X and Y is continuous.
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For any topological space X we denote the collection of open sets by O(X).
Ordered by set inclusion, this gives a complete lattice. Especially, directed
suprema exist and O(X) itself can be viewed as a topological space with the
Scott topology.

1.2 The Specialisation Order

So far, we have seen how to equip a (conditionally) directed co
set with a Tp-topology. Let us now change our point of vj
Ty-topological space X. Such a space always carries an i
the specialisation order. 1t is defined by = < y if z iz

always supposed to satisfy the Ty-separafon axiongin this work. In the case
of a Ti-space, where every singleton set e specialisation order is
trivial.

Continuous functions between

the originally given order.

The saturation of any subset A in a topological space is defined to be the
intersection of all the neighbourhoods of A. This is exactly the upper closure
TA with respect to the specialisation order. Thus, an upper set will also
be called saturated. In Ty-spaces all sets are saturated. It is an immediate
consequence of the definition that the saturation of any compact set is again
compact.

Compactness is defined by the Heine-Borel covering property: every cov-
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ering by open sets has a finite subcovering. For a monotone map f: X — Y
between two ordered sets, in particular, for a continuous map between topo-
logical spaces with their specialisation orders, Tf(TA) = 7f(A) holds for any
subset A of X.

We will mainly apply this to compact saturated subsets and Scott-continuous

functions.

From general topology we know that the continuity of a fung

f(A) = f(A), for every subset A C X. We will need the fo
which can be applied to dcpos and Scott-continuous
which are only separately continuous with respec
(see the remarks at the end of section 1.1):

Lemma 1.2.2 Let X,Y, Z be topological and
arately continuous, that is, x — f(z,y) ff continugus on X for everyy € Y
and similarly for the second coordinate. sets AC X and BCY

a

ThMollection of all nonempty compact saturated subsets of a topologi-
cal space is denoted by 8.(X) and will be ordered by reverse inclusion. An
important property of sober spaces X is the so called Hofmann-Mislove The-
orem (see [20,26], [15, Theorem II-1.20]). The following proposition (see [15,
TheoremlI-1.21, Corollary 1I-1.22]) is a consequence of this theorem. It will
be used extensively in Section 4.14.

Proposition 1.3.1 Let X be a sober space. The intersection of a filtered
family (Q;) of nonempty compact saturated subsets is compact and nonempty.
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If such a filtered intersection is contained in an open set U, then QQ; C U for

some 1.

The first part of this proposition can be rephrased as follows: 8.(X) or-
dered by reverse inclusion is a dcpo for any sober space X.
It is another property of sober spaces that the specialisation order yields

a dcpo, with the original topology being coarser than the Scot aology.

However, a dcpo with the Scott topology is not always sobeg
next section we introduce special depos, called continuous d;
always sober spaces with respect to the Scott topology

1.4 Continuous Domains

On a (conditionally) directed complete parjg der X W introduce a binary

relation < as follows: Let x and y be el . We say that = approxi-
r all (bounded) directed

< d for some d € D. We

mates y or  is way-below y, and we writ
subsets D of X, the inequality y

call < the order of approzimation

the way-below relation4
imply z Vy < z.
notations

, tA={ye X |z <yforsomezxec A},

, A={ye X |y < xforsomezx e A}.

\, the set |z is directed and xz = \/Tix. A continuous dcpo is
ed a continuous domain. A subset B of a continuous domain X is
called a basis of X if, for all x € X, the set {x N B is directed and has x
as its supremum. In a continuous domain, a basis always exists, for example
take B = X. Moreover, in a continuous domain the so called interpolation
property holds: Whenever z < y, there is z € X such that r < z < y. If a
basis of X is given, z can be chosen from this basis. We denote the category
of continuous domains and Scott-continuous functions by CONT.

The Scott topology of a continuous domain can be nicely described via
the way-below relation. The sets of the form $z, x € X, form a basis of this
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topology. Again, we can restrict ourselves to a basis B of X, i.e., the sets 1b,
b € B, also form a basis of the Scott topology.

The Scott closure of a subset A of an arbitrary dcpo can be obtained in
the following way: Let Ay = A and define by transfinite induction A, ,; to
be the set of all z such that z < \/TD for some directed subset D of A,; for
limit ordinals n, we let A, = J,,.,, Am. For cardinality reasons there is an
ordinal n such that A, = A, that is, A, = A, the Scott clos For
continuous domains, the procedure stops after the first step:

Lemma 1.4.1 In a continuous domain X the Scott clg@lre of a ary
subset A is

For a continuous domain it is known how to o@in the largest Scott-

continuous function below a monotone on n once again relies

Proposition 1.4.2 Let B be a ) ous domain X and let Y
be a dcpo. For every monotone fu — Y there is a largest Scott-

continuous function f: X that flp < f. It is given by f(x) =

tinuous retraction-section-pair if r o s is the

in this case r is surjective and s is injective. We

locally compact if every point has a neighbourhood basis
. Note that continuous domains are always locally compact.

Lemma 1.4.3 In a continuous domain each Scott-compact subset has a neigh-

bourhood basis of Scott-compact saturated sets.

1.5 Lawson-Compact Continuous Domains

According to Nachbin [39], an ordered topological space is a topological space
with an order < such that the graph of the order relation is closed in X x X
with the product topology. In [14,15] (partially) ordered topological spaces
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are called pospaces. One immediately concludes that any pospace is Hausdorff.
Another property which can already be found in [39] is the following:

Lemma 1.5.1 Let X be a pospace. If A is a compact subset, then [A, TA
and |ANTA are closed subsets of X.

For any ordered topological space X the collection U(X') of all open upper
: .

sets is closed under finite intersections and arbitrary unions, that4

the original order on X.

On the other hand, given a Ty-topological spac

the opeWsets for the original topology. Conversely, let X be a compact pospace.
With respect to the topology W(X) of open upper sets, X becomes a stably
compact space the patch topology of which is the original compact topology on
X.

The corresponding result holds for stably locally compact spaces on the
one hand, and properly locally compact pospaces on the other hand, where a
pospace is called properly locally compact, if it is locally compact and if TK is

compact for every compact subset K. A locally compact pospace is far from
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being properly locally compact, in general; the real line with is usual order
and topology, for example, is a non-properly locally compact pospace.

We now apply these ideas to dcpos with the Scott topology. For any depo
the Lawson topology is defined to be the common refinement of the Scott
topology and the lower topology. In case the depo X is continuous the Scott
topology always is locally compact and sober. The Lawson topology and the

saturated sets is Scott-compact. By the above, cohere

compactness for continuous dcpos.

Proposition 1.5.4 ([15, Theorem III-5.8]) Fi
following properties are equivalent:
(1) X is Lawson-compact.

(2) The Scott-compact saturated sets agre®Qith th@¥closed sets for the lower
topology on X, that is, the co-c top agrees with the lower topol-

0qy.

X with the Scott topology is stably

ous domain is Lawson-compact.

Most continuous domains that occur in semantics are coherent. Thus,
it will not be a great restriction, if we restrict ourselves to Lawson-compact
continuous domains in section 4.15. But there are exceptions. The following
is an example of locally compact sober space which is not coherent. It is also

an example of a continuous domain that is not Lawson-compact.

Example 1.5.6 We take a trivially ordered infinite set Y and attach two new
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elements a and b as minimal elements, that is we let a < y and b < y for each
y € Y, but @ and b remain incomparable. This ordered set is a continuous
domain, hence, locally compact and sober for the Scott topology, but it is not
coherent: The subsets Ta = {a} UY and 1b = {b} UY are compact but their
intersection Y is not.

A
&
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Chapter 2

Directed Complete Ord
Cones

The concept of a directed complete ord cone (d-con®, for short) will be

introduced in this chapter. As these obfcts are 1t yet familiar in domain

care in developing their

one requires the order to yield a dcpo and, accordingly, one requires addition,
scalar multiplication and linear functionals to be Scott-continuous.

Before we give detailed definitions we will name at least some previous
occurrences of ordered cones. In [13] Fuchssteiner and Lusky studied them in
a functional analytic setting. In Chapter 3 we will show that some of their
results still hold for continuous d-cones. Other results about ordered cones, of
which we will take advantage, are due to W. Roth [45]. He deals with ordered
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cones equipped with a quasiuniform structure proposed by Keimel and Roth
in [27]. In the context of harmonic analysis and abstract potential theory,
cones have been studied by Boboc, Bucur and Cornea [5]. Rauch has shown
in [44] that a special class of their ordered cones, their standard H-cones, can
also be viewed as continuous lattice-ordered d-cones with addition and scalar
multiplication being Lawson continuous. Most of these cones — as is the case
with d-cones — are not embeddable into real vector spaces as the ion
law does not hold for addition.

2.6 D-Cones and Their Basic Properti

We denote by R, := {r € R | r > 0} the non-ne e real 1l with their
usual linear order and endowed with the Scott pol the only proper open
sets of which are the intervals |r, co[,r €

Definition 2.6.1 A set C'is called a con
an addition +: C x C — C and
that the following hold: there is a ement 0 € C' for addition making

it is end(@wed with two operations,

(C,+,0) into a commutativegmonol
(a+b)+c=a+ (b

A function f: C' — D between cones is called linear if, for all a,b € C' and
r € R, one has

fla+b)=f(a)+ f(b)

flr-a)=r-f(a).
A cone C is an ordered cone if it is also endowed with a partial order <
such that addition and scalar multiplication considered as maps C x C' — C
and R, x C' — C, respectively, are order preserving in both variables. If
the order is directed complete and if addition and scalar multiplication are
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Scott-continuous, then C' is called a d-cone. Thus, a d-cone is at the same
time a cone and a dcpo. In the case that C' is a continuous domain, C' is
called a continuous d-cone. Note that we are using here the notions of Scott
topology and continuity developed in Section 1.1 for conditionally directed
complete partial orders; indeed it was precisely in order to define d-cones that
we introduced these notions.

The category of d-cones as objects and Scott-continuous ling

morphisms is denoted by CONE, and the full subcategory o
cones is called CCONE

are order preserving. This stronger reqfrement {gnplies that 0 is the least

-cone also has a greatest

element, as 0 =02 < 1-x = z for any

element since the monotonicity o that the cone as a whole

on a product of (conditionally) directed complete

t be the product of the Scott topologies on the factors,

topologies. In particular, addition need not be jointly contin-
uous W & d-cone. This phenomenon cannot occur if one of the two factors
is a continuous (conditionally) directed complete partial order. Thus, scalar
multiplication is jointly continuous on any d-cone, and addition is jointly con-
tinuous for continuous d-cones which, consequently, are topological cones for
the Scott topology.

We have discussed the relations between ordered cones, d-cones and topo-
logical cones in some detail as we will apply results about topological cones
and, especially, ordered cones to continuous d-cones.

A simple example of a continuous d-cone is R, := R, U{oo} with its usual
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linear order, addition and multiplication, extended to oo as follows:

r4+00=00=00+x, xRy

T-00 = 00, r R, \ {0}

0-00 = 0.

for r € R, only — can be extended to r = oo by definin
R, }. The cone axioms will also hold for the extend

cone. We postpone the definition and

examples first examining some general p

2.6.1 The Way-Below Relation

alar multiplication preserves the way-

Chis is not true for addition, in general.

Definition 2.6.3 The way-below relation on a d-cone is called additive, if
a1 < by and ay < by imply a1 + as < by + bs.

The additivity of the way-below relation is equivalent to the property that
addition is an almost open map in the following sense:

Proposition 2.6.4 Let C be a continuous d-cone. Then the way-below rela-
tion is additive if and only if, for all Scott-open subsets U,V , the set (U + V)
s Scott-open, too.
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Proof. Suppose first that < is additive. Let x € (U + V). Then there are
elements u € U,v € V such that u +v < z. As C is continuous, there are
elements v’ € U, v € V such that v < u, v < v. By the additivity of
the way-below relation, v’ + v < w4+ v < x. This shows that (U + V) is
Scott-open. For the converse, let ' < u and v" < v. Then u +v € fu' + $v'.
As now the upper set generated by fu’ + $v’ is supposed to be Scott-open,

additive way-below relation.
Proposition 2.6.5 The way-below relation on R, 4

Proof. On R, the way-below relation is char y if and only
ition preserves this

a

ifx <yorax =y =0. Itis straightfor that a
condition, and thus the way-below relati

The additivity of the way-beloy relatiSguis pregfrved under products:

Proposition 2.6.6 The way-belo) additive on a product of con-

Proof. The way-bel p'a product [[..; X; of depos X; with a
smallest element ; be characterised by the way-below relations <;
on X; via (x;); icr if ¥ only if there exist a finite subset £ C I with
z; = 1, for g ; y; for i € E. The least element in a continuous d-

r semlicontinuous functions will be discussed later. There, we will also

xample of a continuous d-cone where the way-below relation is not

2.6.2 Convex Sets
On d-cones one has two notions of convexity:

Definition 2.6.7 A subset M of a cone C'is called convexif a,b € M implies
r-a+(1—r)-be M for all r € [0,1]. A subset M of a poset C'is called order-
conver if a,b € M and a < x < bimply x € M. A d-cone C is called locally
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convex if every point has a neighbourhood basis of Scott-open sets which are

convex and order-convex.

Principal filters Ta and principal ideals |a are convex and order-convex for
any a € C, since scalar multiplication and addition on a d-cone are monotone.

Together with the fact that the union of an increasing sequence of convex,

Lemma 2.6.9 For a continuous
the Scott interior of any coges

Proof. For the first claim we use the formation of the Scott closure indicated
before Lemma 1.4.1. In a first step we form the set M; of all x € C such
that there is a directed family (a;) in M with z < \/T a;. The set M is
convex. Indeed, for z,y € M, there are directed sets (a;) and (b;) in M such
that z < \/T a; and y < \/T bj. For 0 < r <1, the family (mi +(1- r)bj)
is also directed in M and rx + (1 —r)y < r- \/T a; + (1 —r)- \/T b =
\/T (ra; + (1 —r)b;), whence rz + (1 —r)y € M;. We continue this procedure
by transfinite induction defining convex sets M, for ordinals n. (For limit
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ordinals n we define M, = {J,,.,, My,.) For cardinality reasons there is an n
such that M,, = M, 1. Then M, is the Scott closure of M which consequently
is convex.

That the saturation and lower closure of a convex set are convex is an
immediate consequence of the fact that addition and scalar multiplication of

a d-cone are monotone.

For nonempty subsets P and @) of any cone C and r € R,

except that (r+s)P # rP+sP in general. Inde
then 2P = {2,4} but P+ P = {2, 3,4},
changes, when we pass to convex subset

Lemma 2.6.11 Let P,Q be subsets of a e C dreR,.. Then we have:

(i) The convex hull of a scalar m jven by conv(r - P) =r - conv P.

(r+s)P=rP+sP :
Indeed, if » = s = 0, then the equation is trivial. If one of r and s is nonzero,
then ¢ € r- P + s - P implies that there are elements a,b € P such that
c=ra+sb=(r+s)- (= a+2-b) € (r+s)-P. Hence r-P+s-P C (r+s)-P
by the convexity of P. The converse inclusion is clear. The last item is again
straightforward.

If we apply the second part of the previous lemma to two singleton sets
{z} and {y} we see that the convex hull of the two element set {x,y} is

indeed the ‘line segment’ connecting x and y. By a simple induction over the
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cardinality of a finite set F' we conclude conv F' = {Z TsX | r € Fr, €
[0,1], 32, cpre = 1}.

For any natural number n € N, the standard simplex A, := {(n—)?:l €

zeF

[0, 1] ‘ Yo = 1} is compact Hausdorff with respect to the topology induced
by the Scott topology on [0, 1]”. Indeed, the induced topology is equal to the
usual compact Hausdorff topology on A,,. We need this observation for n = 2
to show

Lemma 2.6.12 For compact convex subsets P and @ of
conv(PUQ) is also compact. This applies in particular
with the Scott topology.

Proof. The set Ay = {(r,1—7) | r € [0,1] @0 respect to
the Scott topology on [0,1]?. The map from
(r1=r),z,y) —>r-z+(1—r)-yis cogffnudus. The
is equal to the image of the compact sct@\s x P . Thus, conv(P U Q) is
also compact. O

We can apply this lemma to t ets and, by induction over the

in that the convex closure conv F' and

pact in a continuous d-cone.

introdce our most prominent examples of d-cones: the

(u is strict)

(U) < p(V) (w4 is monotone)
e uwU)+p(V)=pUUV)+puUnNV) (u is modular)
If, in addition, u is Scott-continuous, that is, if

. M(Ul‘e[ U;) = \/Tiel w(U;) for all directed families (U;);e; in O(X),
then p is called a continuous valuation. The set of all continuous valuations
on X is denoted by V(X) and will be called the extended probabilistic power-
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domain on X. For a dcpo X, valuations are always defined with respect to
the Scott topology.

Valuations may be considered to be a topological variant of a measure or a
probability distribution. In connection with order theory it is quite natural to

impose Scott continuity as an additional condition on valuations as was done

sequence of open sets, ,u(UTneN U,) = \/TnGN w(Uy).
on the relation between continuous valuations and cla
when can a continuous valuation be extended to a
answer has been given for various spaces using

discuss this question in some detail in Section

the case for the dcpo of probability distrifutions ofan w-algebraic domain of
states considered by Saheb-Djahromi in [ to model programs with
s about all sub-probability
e predicate transformers and
babilities. Sub-probability distribution
by 1 instead of being normalized. In

een cal¥ed the probabilistic powerdomain by Plotkin. The
rding this order theoretic model of probabilistic non-

ous valuations in order to define the probabilistic powerdomain as the
continuous valuations u such that x(X) < 1. They introduce a simple
imperative language with a probabilistic construct and use the probabilistic
powerdomain of continuous valuations to give its denotational semantics. For
this they have to study the internal structure of the probabilistic powerdo-
main quite well. Most of their results carry over to the extended probabilistic
powerdomain (see [29]). Various classes of valuations are also surveyed by
Heckmann in [18]. Although the interest in the probabilistic powerdomain
originated in denotational semantics, more recently Edalat found applications

inside mathematics, e.g. the the generalised Riemann integral [9], iterated
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function systems with probabilities [11], dynamical systems and fractals [10].
We now recall some special valuations. For any element x € X, the point

valuation 1, : O(X) — R is defined by

1, ifxeU
ne(U) 1=
0, ifx ¢U.

A point valuation is always continuous.

Given continuous valuations p and v on any topol
R, it is straightforward to check that p + v and 7,

.,n. Likewise, we define
(U) <v(U) for all U €
ily of continuous valuations
)=V e m(U), U € 0(X).

important properties of the extended

=

-

f the Theorem is straightforward to

ed to uhbounded valuations by Kirch [29]. For a proof see
.16]. The continuity of V(X) for a continuous domain

Lawson-compact. It follows from (c) that this result can be generalized to
coherent domains. The converse is new. The proof has been communicated
to us by J.D. Lawson.

Theorem 2.7.2 (a) For a topological space X, the extended probabilistic
powerdomain V(X)) with pointwise addition, scalar multiplication and or-

der is a d-cone.

(b) If X is a continuous domain, then V(X) is a continuous d-cone; the
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simple valuations form a basis.

(¢c) For a stably locally compact space X, the extended probabilistic powerdo-
main V(X) is stably compact for the weak topology, that is, the weakest
topology rendering Scott-continuous the maps p +— p(U): V(X) — R,
for all open subsets U.

(d) Let X be a continuous domain. Then V(X) is Lawson-com

only if X is coherent.

Proof. It remains to prove the last two statements.

easily verifies. By
V(X) is stably compact

invoking Proposition 1.5.4 we have thus s
when equipped with the weak topology.
us

In order to restrict further to uations, we remember that,

for a locally compact space X, the ) of open subsets is continuous.

sociate to an arbitrary valuation y its

0 holds, and that ®(x) is monotone. For the

a projection operator on MV(X) with image V(X). In order
to se@@ghat @ is continuous with respect to the weak topology on MV(X),
observe that ®(u)(U) > r, if and only if u(V) > r for some V < U. Hence
the preimage under @ of the subbasic open set {u € MV(X) | u(U) > r}
equals Jy o {p € MV(X) [ u(V) > r}.

As a (continuous) retract of the stably compact space MV(X), the space
V(X) with the weak topology is stably compact (see e.g. [3, Proposition 16]).

(d) Let X be a continuous domain. Let L denote its upper powerdomain,
that is, the collection of all Scott-closed subsets of X ordered by inclusion. It
is well known that L is a completely distributive lattice. The natural injection
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x +— |x of X into L preserves the way-below relation and is an embedding
both for the respective Scott and Lawson topologies. Identifying the elements
x with there images |z, we may view X as a subspace of L.

We now suppose that X is not coherent. Then X ;| = XU{_L} is not Lawson
compact. As L is Lawson compact, there is a net (p;) in X that converges to
an element a € L\ X with respect to the Lawson topology. We claim that
the extended probabilistic powerdomain V(X) is not Lawson-coig

(X \ la) = 0: As L is linked biconti
way-above a (i.e., way-below for the op
c with b way-above c is Lawson-
7p; (X \ [0) = 0 eventually. Going
is the union of the directed fami

np, eventually. It follows that 7, < p and 7., < p. This
\C) <u(X\C)<land 1=17,(X\B)<pu(X\B) <1

It ISows that

1> (X \ la) = p((X\ B)N (X \ O))
— u(X\ B) + pu(X\ €) — u((X \ B)U (X \ ©))
>14+1-1=1.
Od

Every continuous map f: X — Y of topological spaces induces a Scott-
continuous linear map V(f): V(X) — V(Y). To every continuous valuation
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1 on X we associate its image V(f)(u) defined by V(f)(1)(V) = pu(f(V))
for every open set V' C Y. In this way we have defined a functor V from
the category of topological spaces to the category of d-cones. Restricting this
functor to the category of depos (with the Scott topology), we obtain a functor

V: DCPO — CONE

from the category of dcpos to the category of d-cones. This functgis mo

but the algebras of this monad are not known. By the previouS@heorem,

may restrict V to a functor
V: CONT — CCONE

from the category of continuous domains to the®ate of continous d-cones.

X into a d-cone C, there is a

V(X) — C such that f ony = f.

e following: For a lower semicontinuous

: X — R, there is a unique Scott-continuous

dy. for every continuous valuation p € V(X).

ary definition and the properties of this integral independant
of tMuniversal property see [23,29,54,18].
Bec

valued functions f, it makes sense to say in general that f (1) is the integral

se of the interpretation of f(u) as integral [ fdu in the case of real-

of the Scott-continuous function f defined on a continuous domain X with
values in a d-cone C' with respect to the continuous valuation p on X.
2.7.1 Valuations and Measures

In this section we present some results on the relation between valuations

and classical measures. Indeed, for the spaces we deal with here a continuous
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valuation can always be extended to a Borel measure. The results collected
in this section are not used later; however, a reader who is more familiar with
measure theory may find them helpful.

A measure is a function p: A — R, defined on a o-algebra A with values in
the non-negative extended real numbers, which is strict and o-additive. This
is equivalent to being strict, monotone, modular and countably continuous.

p are taken from [4,16].

rmative answer can be given using outer measures

However, this method cannot be applied to non-Hausdorff spaces directly.
We continue with the non-Hausdorff case and consider extensions to finitely
additive measures first: The fact that a valuation is strict and modular implies
that it is finitely additive. Thus, it makes sense to ask for finitely additive
extensions. We do not impose any additional continuity condition for the
moment. The lattice of open sets O(X) of a topological space X can be
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extended to a Boolean ring R(X) of sets, which consists of all finite unions
R=Ju\V;
i=1

with U;,V; € O(X) and V; C U; for all ¢ = 1,...,n ; moreover, one may
suppose that the sets U; \ V; are mutually disjoint.

For a finite valuation p: O(X) — Ry, it is clear how a fini#
extension fi: R(X) — R, has to look like if it exists:

i=1

The following standard result is sometimes cdle e Smil&-Horn—Tarski

Theorem:

Proposition 2.7.5 Fvery finite valuati@ 1 on ttice of open sets O(X)

has a unique extension to a finitely addWgge meghure i on the ring R(X)

generated by O(X).

In case the valuation i an extension is still possible but not
ible extensions there is always a maxi-
mal one ([29], [15,

We return t of o-additive extensions of continuous valu-
ations. The i assical result is useful in this context, see e. g. [4,

page 164]:

nite on R(X).

If w& apply this to our situation, it remains to show that the finitely addi-
tive extension fi: R(X) — R, from Proposition 2.7.5 is countably subadditive
in order to obtain an extension to a Borel measure. And this is indeed the
crucial step that could be performed for various spaces using quite different
techniques. Using ideas from [47], the authors from [2] could verify countable
subadditivity in the following situation:

Proposition 2.7.7 Let X be a depo with the Scott topology and let (i;)ier be

a directed set of simple valuations on X with p = \/Tiej Wi If p is o-finite



R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1-104 33

then p has a unique extension to a measure on the Borel algebra generated by
the Scott topology.

The proof of the proposition also applies to sober spaces X. The reason
is that the specialisation order of a sober space always yields a dcpo with the
original topology being coarser than the Scott topology.

By Proposition 2.7.2, the simple valuations are a basis for thg ended

probabilistic powerdomain of a continuous domain. Thus, Prgb

implies:

Corollary 2.7.8 FEvery o-finite continuous valuation

In [2] a negative example is also provided,
does not exist in general. For this the aut
of a non-sober dcpo [22]: X = N x (N

j=mand k <norn=o00andk <m.

Then v is mod¥#ar s the itWersection of any pair of nonempty Scott-open

trictness, monotonicity and Scott continuity are

ts with ﬂheN U, = 0 but lim, v(U,) = 1.

ation where the finitely additive extension of a continuous
ring R(X) can be shown to be countably subadditive is that
ly locally compact pospaces. Recall from section 1.5 that these are
locally compact ordered spaces X in which TK is compact for every compact
subset K. There we have also seen that the open upper sets form a topology
which we denoted by U(X). A continuous valuation p: U(X) — R, is called
locally finite if p(U) < oo for all U € U(X) with U < X with respect to the
order of subset inclusion on U(X). Equivalently, U < X iff there is a compact
set () C X containing U. In this situation one has:

Proposition 2.7.9 Let X be a properly locally compact ordered space and
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w: UW(X) — Ry a locally finite continuous valuation defined on the collection
W(X) of all open upper sets. Then p can be extended to a regular Borel measure
on the locally compact pospace X in a unique way.

For the compact case, this result is due to Lawson [32]. It has been ex-
tended to the properly locally compact case by Weidner [60] and Keimel [28].
In particular, Proposition 2.7.9 can be applied to locally compactdgmsdorft

spaces: Equipped with the trivial order, Hausdorff spaces ca
ordered topological spaces. Then, every subset is an upper

way.

In 1.5.3 and the subsequent remark wghave seenthat there is a one-to-one
correspondance between properly locally @empact jMspaces and stably locally

compact spaces: the open upper ¢ of a locally compact pospace

ad, vice-versa, the patch topology

X form a locally stably compact ovy
'S a properly locally compact pospace.

pnsion result of Proposition 2.7.9, we

2ty of the Way-Below Relation on the FExtended Probabilistic
Powerdomain

We are Tnterested in the additivity of the way-below relation on the extended
probabilistic powerdomain V(X)) over a continuous domain X. In [23] Jones
provides a useful characterisation of the order relation for simple valuations.

Her characterisation is known as Splitting Lemma:

Lemma 2.7.12 For two simple valuations &, x on a depo X, one has:

E=D rile, <D sy, = X
=1 =1
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if and only if there exist t;; € Ry such that t;; = 0 whenever x; £ y; and

Z tij=mr; for alli
j=1

n
Ztij <sj forallj .
i=1

if and only if there exist t;; € Ry ij whenever x; L y; and
Z tij=r; for alli
j=1

our Mgblem to this subset of V(X).

Lemma 2.7.14 Addition preserves the way-below relation on the simple val-
uations of a continuous domain.

Proof. The main reason for this is that the way-below relation on simple
valuations can be characterized by the Splitting Lemma as a transport prob-
lem. The disjoint union of two of these transport problems corresponds to the
sum of the simple valuations. Thus the sums are also way-below each other

whenever the summands are pairwise way-below. Formally, we can write the
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proof like this: Let

ni n mi m
&1 = E Tilz;y §2 = E Tillzyy X1 = E SiTly;s X2 = E S5y,
i=1 i=ni+1 j=1 j=mi+1

be simple valuations with & < x; and & < x2. Lemma 2.7.13 gives rise to
t;; € Ry with ¢;; = 0 whenever z; & y; and

m1
E tz‘j:ri ,izl,...,m
Jj=1
ni
E tij<5j i =1,....my
i=1

m
E tz‘j:ﬁ' ,i:n1+1,...,n
j=mi+1

n
Zt¢j<8j yj=mi+1,...,m.

1=n1+1
For the sums & + & = Y., mm 1 = D _j_1 8N, we take these
ti; and set t;; := 0 in case i = ng 7=1....myore=1,...nq,

j=mi+1,...,m. Then

tij<5j ,j:m1+1,...,m.

Thus, we can apply Lemma 2.7.13 and conclude & + & << x1 + Xo. O

Our next step is to extend the additivity of the way-below relation on a
basis to the whole d-cone.

Lemma 2.7.15 Let C be a continuous d-cone and B a basis of C' which is

closed under addition. If the way-below relation is additive on B, then it is
also additive on C.

Proof. Let ;1 < vy, x2 < yo in C. Using the interpolation property we
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find bi,c1,b0,c0 € B with 1 < b <€ ¢ < U1 and 19 < by K ¢ < Ya.
Monotonicity of addition and additivity of the way-below relation on B yield
1+ 29 < by + by €1+ o <y1+ 1y and thus, x7 + 29 < y; + yo follows. O

We apply these results to the basis of simple valuations of the extended
probabilistic powerdomain and conclude:

Proposition 2.7.16 The extended probabilistic powerdomain oy tin-
wous domain has an additive way-below relation.

2.8 Lower Semicontinuous Functions

and Dual Cones

ted to the extended

real-valued lower

There is another important class of d-cones c[®sely
probabilistic powerdomain. They consist on-nega

semicontinuous functions on a topologicqspace.

Definition 2.8.1 Let X be a top,
the Scott topology. The set of all
by L(X); they are also called
R the Scott topology isg

ical let R, be equipped with

functions f: X — R, is denoted
icontinuous functions on X since on

wer topology.

Special element are the characteristic functions yy: X — R, of
open sets U C ned b
1, ifeeU
xu(z) =
0, ifxgU.

functions f and g on any topological space X and r € R,
Pictions [ + g and 7 - f defined ‘pointwise’ by (f + g)(z) := f(z) + g(x)
)(x) :=r- f(x) for all z € X are also continuous. This allows us to

take finite linear combinations of characteristic functions, > . | r; - xy, with
Ui € O(X), r, € Ry fori = 1,...,n. We call them simple functions. We
define an order ‘pointwise’ on L(X) by f < g if f(z) < g(x) for all x € X.
It is straightforward to show that for a directed subset (f;);e; of continuous
functions a least upper bound \/TZ.e ; [fi exists in L(X) and turns out to be
the pointwise supremum (\/Tiel fi)(x) = VTieI fi(z), x € X. To make the
set L(X) of functions into a continuous domain we do not need a hypothesis
as strong as the underlying space X to be continuous, but only its topology
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O(X), see [14]. We call such a space, whose lattice of open sets is a continuous

domain, core compact.

Proposition 2.8.2 Let X be a topological space. Then the set of lower semi-
continuous functions L(X) with pointwise addition, scalar multiplication and
order is a d-cone. If X is core compact, then L(X) is a continuous d-cone

and the simple functions form a basis.

main functor V: CONT — CCONE as being mo
X there is also a duality between V(X) a

Definition 2.8.3 For a d-cone C' the scfof contifous linear maps into R
is called the dual cone of C, deno

V(X) and L(X). One half of this duality

between is gj Riesz Representation Theorem which holds for any

There is a

dual Wgge of a continuous d-cone is not always continuous; take X = [0, 1]
with the usual Hausdorff topology. Then the Lebesque measure restricted to
the open sets is a continuous valuation which cannot be approximated from
below. On the other hand, there exist plenty of continuous d-cones for which
the dual cone is also continuous. Thus, an interesting question remains to find
a characterisation of those continuous d-cones whose dual cone is continuous.

For the remainder of this section we look at L(X) as a d-cone in its own
right and we answer the question when its way-below relation is additive.

Thereby, we restrict our attention to core compact spaces X, since, for exactly
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those, L(X) becomes continuous. For characteristic functions of open sets the
way-below relation is characterised as follows:

Lemma 2.8.4 Let X be a core compact space, let U,V € O(X) and ty,ty €
R,. Then tyxy < tyxv if and only if ty <ty and U <V (orty =0).

However, core compactness is not sufficient to obtain an additive way-

In stably locally compact spaces we can apply the
way-below relation on function spaces from [12].
{r € X | f(x) # L} the support of a continuo

complete continuous domain with

following statements are equivalen
(i) f<yg
(i) (a) suppf < X,
(b) there are
such that

Osition 2.8.6 If X is a stably locally compact space, then L(X) has an
way-below relation.

Proof. Since R, is a bounded complete continuous domain, we can use the
previous characterisation for the way-below relation on the function space
L(X). Let fr < gi for k = 1,2, which is equivalent to

(a) suppfr < X, and

(b) there are finitely many VF € O(X), Q¥ € Q(X), th € L, for i = 1,...n,
such that
(i) tF < gr(v) for all v € V¥,
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(i) f(w) < tFfor all w ¢ QF,
(i) X = Uk, VA QF.
For the sums f; + f2 and g1 + g» we deduce

(a) supp(f1 + f2) = suppfi Usuppfo < X, and
(b) the finitely many Vij = ViinV? e 0(X), Qy = Qi UQ; € QX),
ty =t +1;€Ryfori=1,...,ny and j = 1,...,ny, satisfy,
(i) tiy =t} +15 < g1(v) + g2(v) = (g1 + g2)(v) for all v €
since the way-below relation is additive on @Jr,
(il) (fr+fo)(w) = fi(w)+ fo(w) < t}+85 =t for 7@ R Qi

since addition is monotone,

(iii)

a locally compact space X is not stably locally compact,
elation on L(X) is not additive.

e of the duality between the category of stably locally compact
spa nd the category of arithmetic lattices, see e.g. Theorem 7.2.19 in [1], we
know ti¥at if X is locally compact but not stable, we can find open sets U, V, W
with U < Vand U < W, but U « V N W. Thus, there exists a directed
set (O;)ier of open sets with UTZ.GI O, =VnW,but U € O, for all i € I.
Lemma 2.8.4 tells us xy < (14+¢)xv and xy < (1 +¢)xw for any 0 < e < 1.
But 2yu & (1+)xv + (1+&)xw, since (1+)xy + (1+e)xw = V 1oy (1+

e)xvow + (L +¢€)xo,, and for all i € T is 2xy € (1 +¢)xvow + (1 4+ &)xo,. O



R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1-104 41

Chapter 3

Hahn-Banach Type The

In this chapter we consider continuous d-cones i
For a d-cone C, we already introduced li
A: C — R,. All these functionals are c
special case that we take the d-cone L(
on a topological space X a versio
be shown [29,54]. It states that t

extended probabilistic powea

), 1.e., the two are isomorphic as d-

domain we have full duality, meaning

ly convex topological vector spaces.

a tool we will first prove a version of the Sandwich Theorem for contin-
uous d-®ones. From this, we obtain a Separation Theorem which implies that,
for a continuous d-cone C, the Scott continuous linear functionals separate
the points. This information is complemented by a Strict Separation Theo-
rem. Other Hahn-Banach type theorems are extension theorems. We obtain
an Extension Theorem in our context under the additional hypothesis of an
additive way-below relation. We have seen in the previous chapter that this
hypothesis is fulfilled for a broad class of examples. We close this chapter with
a Sum Theorem which is a consequence of our Extension Theorem.
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3.9 A Sandwich Theorem

We start with a version of the Sandwich Theorem for continuous d-cones. For
its proof we will take advantage of existing results for ordered cones. First,
we introduce sublinear and superlinear functionals:

Definition 3.9.1 Let C be a d-cone. A map p: C — R is called sublinear if

p(a) + p(b) for all a,b € C and all r € R,.

A map ¢q: C — Ry is called superlinear if it is homog
ditive, that is, if ¢(r - a) = r - ¢(a) and g(a + b) > q(a)& q(b
and all » € R,.

We quote a sandwich theorem due to h (see , Theorem 2.6) for
ordered cones:

Theorem 3.9.2 Let C' be an ordgred co Let 4l C — Ry be a sublinear
at a < b= q(a) < p(b). (The
order preserving.) Then there

onal A: C — Ry such that ¢ < A < p.

t ¢ < f < p we can choose a maximal chain F by the Hausdorff
maxility principle. The pointwise defined infimum p(z) = inf{f(z) | f €
F} is again order preserving and sublinear, hence minimal in the set of all
order preserving sublinear functionals f: C' — R, such that ¢ < f < p. In
the same way, one finds an order preserving superlinear functional § which is
maximal in the set of all order preserving superlinear functionals g: ¢ — R
such that ¢ < g < p.

Step 3: Assuming that P is sublinear and order-preserving, the set C” :=
{a € C | p(a) < +o0} is again a cone and a lower set in C. If y is an order
preserving linear functional below p on C”, then it can be extended to a linear
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order preserving functional on all of C by setting it equal to +oc outside C".
For the task at hand we can therefore assume that both p and g take values
below +00.

Step 4: We claim that p = g, which implies that A := P = § is linear. For
this, choose any fixed a € C and let

¢ (z) := sup{g(c) —p(b) | b,c e C,c <x+b} and

P(z) := inf{p(d) + A\’ (a) | N e Ry, d € C,x < d g\

Setting ¢ = z,b = 0 in the first definition we see th , likeWise by

that superlinearity, resp. sublinearity, are pres imality and
maximality property of p, resp. ¢, we dedu =D ¢ = q. By setting
r=a,d=0,\ =1 in the second definiti
implies p(a) = g(a) by the previous ineq

we see that pta) < ¢'(a) and this
ities. Athis is true for all a € C,

we conclude p = q.

For continuous d-cones this san em can be strengthened:

Theorem 3.9.3 ((San
p: C — R, be sublinggr

heolgm)) Let C be a continuous d-cone, let

R, be superlinear and Scott-continuous

cott-continuous linear map A: C — R, such

as ¢ < p, the hypotheses of Roth’s sandwich theorem are
hus, there is an order preserving linear functional A such
< A <p. Moreover, A can be chosen to be minimal in the set X of all
order preserving maps s: C' — R, with ¢ < s < p. We now show
that A is Scott-continuous.

For a continuous domain, it is known how to find a largest Scott-continuous
function below a monotone one, see Proposition 1.4.2. If we apply this to A
we get the Scott-continuous function A defined by A(a) := va <o A(b). As
g < A and as ¢ is Scott-continuous, we conclude that ¢ < A. We also have
A<A< p. If we can show that A is also sublinear, then it is an element of X .
From the minimality of A in X, we then can conclude that A = A; therefore,
A is linear.
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Lemma 2.6.2 implies that A is homogeneous. For subadditivity observe
that z < a+ b implies that there are ¢’ < a and V < b such that z < o’ +¥'.
Now, we can calculate

Aa) +A) = \/"A@) + \/ " AW)
a'<Ka b'<b
= /' Ad)+A®W)
o' <La,b'<b
= V' A@+)

a/ La,b' Kb

> \/" A

z<a+b
=A(a+0b).
Thus A is subadditive and the proof is co . O

Before concluding this section let us sk whet the Sandwich Theorem
3.9.3 remains valid, if one replaces the ¢ R, by#bther target cones. More

precisely we ask:

P have the Sandwich Property
cott-continuous superlinear q: C — P
p: P — C with ¢ < p, there is a Scott-
that g < A < p?

roperty, the same holds for every power @f.
tinuous d-cones P that do not have the Sandwich

e show that P does not have the Sandwich Property.
51,720 Ry x R, — R, be the canonical projections m;(a,b) = a and
mo(a,b) = b. Define

q= (inf(7r1,772), 772) and p = (7r1, Sup(ﬂ'l,ﬂ'g)) )
More explicitly
q(a,b) = (min(a,b),b) and p(a,b) = (a, max(a,b)) .

Then p and ¢ are Scott-continuous maps from R, xR, — P, they are sublinear
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and superlinear, respectively, they fulfill ¢ < p and, moreover, p|p = ¢|p = id.
But there is no linear map from Ry x R, to P which is the identity when
restricted to P. This is not only obvious, but can be easily proved: Suppose
that there is an additive map A: Ry x R, — P with A|p =id. As (1,1) and
(0,1) are in P, we have (1,1) = A(1,1) = A(1,0) + A(0,1) = A(1,0) + (0, 1).
It follows that A(1,0) = (1,0) which is not in P.

There is a second question related to the previous one: Is thgf€ ye-
trized Sandwich Theorem? More precisely:

Question 3.9.2 Let X be any continuous domain a s d-
cone. Let §,p: X x C — Ry be Scott-continuous qg <p
and such that §(z,—): C — R, and p(z,—): C inear and
sublinear, respectively, for all x € X. Is the t-contiMuous function

A: X xC — Ry such that § < A < p

linear for all x?

The relation of this question to the i ne is the following: Let
L(X) denote the d-cone of all Sco

Section 2.8). There is a natural or hism of dcpos

nctions from X into R, (see

[C — L(X)].

3.10 A Separation Theorem

To prove our Separation Theorem we need the following;:

Lemma 3.10.1 If B is a Scott-open subset of a d-cone C then r - B is also
Scott-open for all r > 0.

Proof. This is an immediate consequence of the fact that scalar multiplication
by a real number r > 0 is an order-isomorphism. O
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Theorem 3.10.2 (Separation Theorem) Let C' be a continuous d-cone
with two disjoint nonempty convexr subsets A and B. If, in addition, B is
Scott-open, then there exists a Scott-continuous linear functional A: C — R
such that A(a) <1 < A(b) for alla € A and all b € B.

Proof. Without loss of generality we can assume A to be a lower set, since
| A is also nonempty convex and disjoint from B.
To apply the Sandwich Theorem we have to define functiogw t-
isfying all assumptions of Theorem 3.9.3:
pla):=inf {A | A € Ry, a € AA}
q(a) :==sup {\ | A€R,, a € AB}.

Let us show that p is sublinear. For r = 0 we h8ve

p(0-a)=p(0) =inf {{ |0\ =0,

because 0- A = {0}. For r > 0 we

—inf (N + Ao | a1 € MA ay € AoA)
M\ + o | an 4 a2 € MA+ MAY

inf {)\1 + Ao ‘ a;+as € (A + )\Q)A}, since A is convex

=inf {/\’ ‘ a; +as € XA}

=p(ay + as).

Thus, p is sublinear. The steps to show that ¢ is superlinear are nearly the
same. To show homogeneity for » = 0, we use the fact that 0 ¢ B implies
that 0 € AB if and only if A = 0. To show monotonicity of ¢, let a; < as.
Since B and hence AB is an upper set for A > 0, we conclude that {\ | a; €
AB} C {\ | ay € AB}. Thus ¢(a1) < g(az) holds. Now, let D be a directed
subset of C'. Then q(\/TD) > \/TdE p q(d) because ¢ is monotone. By definition
q(\/TD) = sup{A\ | \/TD € AB}. Lemma 3.10.1 states that for A > 0, AB is
open. Therefore, \/TD € AB implies that an element d € D exists such that
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d € A\B. Then

T T
A <sup{u|depuB} <\ sup{u|depB}=\/ qd),

deD deD

which yields q(\/TD) < \/TdeD q(d), hence ¢ is Scott continuous.
Finally, we need to show that ¢ < p. This holds if a € AA, a € g

1< A Assume p > X. Then AA C pA, because A is a convex lo

a € AA implies a € pA. But then a € uB contradicts AN B =%

Now, we apply the Sandwich Theorem to get a lin Scott-SQutinddus
function A with ¢ < A < p. This yields for all a € A adgb €

Aa) < pla) <1 <q(b) :

V

TT <1 b imply that there

Thus b € %B and%> 1,
Od

since a € 1A implies p(a) < 1 and B ope

exist a non-negative real number r < 1 wj
hence, ¢q(b) > 1.

The Separation Theorem, whi t proved, implies that the Scott-

continuous linear functiona e points of a continuous d-cone:

om a continuous d-cone C' into its bidual C** is an injective
morp¥gem of d-cones where, for a € C, we define d(a) to be the evaluation
map of a, i.e. §(a): C* — R, d(a)(A) := A(a). It is an open question in this
context whether ¢ is also a topological embedding.

The dual cone C* induces a weak topology on the d-cone C, namely the
coarsest topology such that all the Scott-continuous linear functionals A: C' —
R, are lower semicontinuous. The weak topology on C' is always coarser
than the Scott topology. It is not known whether the weak topology is equal
to the original Scott topology. Nevertheless, both of them have the same

specialisation order:
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Proposition 3.10.4 Let C be a continuous d-cone. For the weak topology on
C induced by C*, the principal ideals |a, a € C, are closed.

Proof. Take a € C. For every b € C'\ |a let A, be a linear Scott-continuous
functional with Ay(a) < 1 < A4(b) as has been shown to exist in Corol-
lary 3.10.3 and Theorem 3.10.2. Then |a is equal to (Ve |, A, ([0, 1]), and
therefore is closed with respect to the weak topology. O

3.11 A Strict Separation Theorem

We begin by considering the cone @f with the Scott@opoldly. DeMie the
additive norm |-|, ‘R, — Ry by:

Sbional; the sup norm is sublinear
and continuous, but not lipg Y that o is bounded if |z |, < +oo. We
have sz < x, for any b, @ iy s with 0 < s < 1. (This is not true

Wte thal’ < is additive on the cone @f. We set

a linear continuous functional h and an a > 1 such that
for all x in K.

« <1, we have |z|, > 1, for any = in K. But
Pact as the sup norm is continuous. So we get a b such that
b>1and |z]|,_ > bforall zin K. Now, setting s = 1/b, we get

, and, for all z in K, sx £ 1. Now set
V ={y |y > sz, for some r in K}.

Clearly V is open; it is convex as K is; and it is disjoint from |1 as sz £ 1 for
any x in K. So, by the separation theorem 3.10.2; there is a linear continuous
functional f such that f(z) > 1 for x in V and f(1) < 1.

The open set V' contains all bounded elements of K; however it may not
contain all its unbounded elements. The latter can be taken care of using the
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additive norm, and we combine that linearly with f to obtain h. Choose t
and r such that s <t <r <1, take a = 7 > 1, and set:

h(z) =rf(x)+ (1 — 7")m

n

Clearly h(1) < 1. We claim that h(z) > a for any z in K. For z unbounded
this is immediate as then |z |, = +oo. For  bounded we havegf g as
t > s and so tx is in V, implying f(z) > 1/t; this yields that >

a. a
Theorem 3.11.2 /(Strict Separation Theorem)] Le, contgnuous d-
cone. Suppose that K is a Scott-compact conver s nonempty

Scott-closed convex set disjoint from B. Then ntinuous lin-
ear functional f and an a in R, such tha

K and all y in A.

(y) for all x in

Proof. Consider an element v of

g(ﬂ;‘) = (91($>> s 7gn(x)) :

Scott-compact, convex, and disjoint from |1 (any z in K is in some
Ug,, (z) > 1, and we have that g(z) € 1).

Lemma 3.11.1 now yields a Scott-continuous linear functional A and an
a > 1 such that (1) <1 and h(z) > a for all z € g(K). Choosing f = heg,
we obtain the required functional f and constant a. O

SO

Corollary 3.11.3 Let C be a continuous d-cone. Suppose that K is a Scott-
compact conver set and that A is a nonempty Scott-closed convex set disjoint
from K. Then they can be separated by a convex Scott-open set; that is, there
s a convex Scott-open set V including K and disjoint from A.
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Proof. Take V := {z € C | f(z) > a}, with f and a given by Theo-
rem 3.11.2. O

Remark 3.11.4 The strict separation theorem and its proof still go through
with the weaker assumption that K is compact in the weak topology, as in
the proof one has a covering by sets open in that topology. In this connection,

note too that the conclusion of Corollary 3.11.3 can be strengthenade as the

Scott-open set produced is even open in the weak topology.

Proposition 3.11.5 Let () be a nonempty Scott-compa
subset of a continuous d-cone C. Then @ is the in ' ered
family of sets of the form Tconv F', where F' is a find

Q CHF.
Proof. Let U be a Scott-open set containi
F of U such that Q C #F. If U is conve
is also contained in U and ) C % conv F.

By the Strict Separation Th
Scott-open sets containing it. Hen

. We find a finite subset
too, then the Convex hull Tconv F'

tersection of the convex
intersection of sets of the form
ve to show that this family is filtered.
h that Q C 1F; for i« = 1,2. Then
taining P. We may choose a finite set
satisfies Tconv F' C Tconv F; N Tconv Fs. O

Tconv F' as in the first parag

¢ now have the following strong local convexity properties (the second
ich has been observed by A. Jung):

Corollary 3.11.7 Every Scott-compact saturated convex set in a continuous
d-cone C' has a neighborhood basis of Scott-compact saturated convex neigh-

borhoods and a neigborhood basis of Scott-open convex neighborhoods.

Proof. Let Q) be a Scott-compact convex saturated set in a continuous d-cone
C, and let U be any Scott-open set containing (). The previous corollary and
the Hofmann-Mislove theorem (see 1.3.1) imply that @ has a Scott-compact
convex saturated neigborhood K; contained in U. For the same reason, K;
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has a Scott-compact convex saturated neighborhood Ks contained in U. By
induction we obtain an increasing sequence of Scott-compact convex saturated
sets K, contained in U such that K, is in the interior of K, 1. It follows that
V =, K, is a Scott-open convex neighborhood of @ contained in U. O

3.12 An Extension Theorem

Definition 3.12.1 Let C be a continuous d-cone and D a subcgf . il
D is called a d-subcone of C if it has the following propertigs:

(1) D is closed under directed suprema,
(2) D is a continuous domain with respect to the indged
(3) the way-below relation on D is equal to th iction oNgffle way-below

relation on C.

Note, that this definition implies that e Scott #pology on a d-subcone D
is equal to the restriction of the Scott top v on (¥ Thus, D is topologically
embedded into C'.

Example 3.12.2 Each Scottaclose
subcone.

con® of a continuous d-cone is a d-

s of d-subcones of C consists exactly of
onvex subset A of a d-cone C' is called a face

®d we do not only need that the way-below relation on a contin-
uousycone is preserved by scalar multiplication, but also by addition. In the
previou¥ chapter we discussed when this property of the additivity of the way-
below relation holds. Now, we get to our second Hahn-Banach type theorem
for continuous d-cones:

Theorem 3.12.4 ((Extension Theorem)) Let C' be a continuous d-cone
with an additive way-below relation, and let D be a d-subcone of C. Moreover,
let A: D — R be linear and Scott-continuous, let p: C — R, be sublinear
and

d<a+c, djacD, ce C = Ad) <A(a) +plc).
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Then there is a Scott-continuous linear extension A: C' — R of A with A < p.

Proof. Let us first remark that A < pon D, sinced <0+dforall de D
implies A(d) < A(0) + p(d) = 0+ p(d) = p(d).

We want to apply the Sandwich Theorem 3.9.3 to a sublinear, monotone
function p < p and a superlinear Scott continuous function ¢ with ¢ < p on C
and §|p = A = p|p in order to get the desired extension A of A. We ne P,

and an auxiliary function ¢, which will be shown to be superling
and ¢|p = A, as follows:

p(a) :=inf {A(d) + p(c) |de D,ceCia<d+c}
q(a):=sup {A(d) —ple) |de D, ce C,p(c) < gpd c}
i(a) = \/ a(0).

ba

e claimed p®C — R, to have.
< 04 0 implies p(0) <
sing that multiplication

First, we prove all the properties th
We have p > 0, since A > 0 and p > 0.

A(0) + p(0) = 0, and hence p(0) =

with r is an order isomorphism,

p(r - a) =inf {A(d) + plg

inf {]\(dg) + p(ca) } dy € D,co € Coag < dy + 02}
=inf {A(dy) + A(dz) + p(e1) + plez) | di,da € D,cyye0 € C,
a < dy+cp,a9 < d2+62}
> inf {A(dl + dy) + p(er + o) ‘ di,dy € D,cy,c0 € C,
a < dy+cp,a9 < d2+62}
> inf {A(dl +ds) + plc1 + ¢2) ‘ di,dy € D,cy,c0 € C,
a1+ ax <dy+dy+ e+ o}
>inf {A(d) +p(c) |d € D,c € Coay +ay < d+c}
=p(a1 + as).
Thus, p is subadditive and hence sublinear. To prove that p is monotone let

ar < as. Then {A(d) + p(c) |de D,ce Ciay <d+c} D {A(d) + p(e) |de
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D,ceClay <d+ c}, and hence p(a;) < p(ag). For all a € C, a < 0+ a and
thus (a) < A(0) + p(a) = p(a), which means p < p.

Let a,d € D and ¢ € C such that d < a+c. Foralle € D and f € C with
c<e+ f wehave d < (a+e)+ f. Thus, by hypothesis,

A(d) < Aa+e) +p(f) = Ma) + Ale) +p(f)-

This implies

So, p also fulfills that d < a+ ¢ always i

A <. Foralld € D, we have d < d + 0 ) < A(d) + p(0) = A(d).

We know 0 < a + 0 for _ ! i i (a) > 0. Since d < 0+ ¢
implies A(d) < p(c) wk ' o, is equivalent to A(d) — p(c) < 0,

a; < ay. Then {]\(d)—ﬁ(c) |de D,ceC,plc) <
d) — p(c) } de D,ce C,plc) < 0o,d < a2+c}, and
Let a € Candd < a+cwithd € D, c € C and

<p(d), since A < §
<p(a + c¢), since p is monotone
<p(a) + p(c), since p is sublinear.

For p(c) < oo this is equivalent to A(d) — p(c) < p(a), and hence g(a) < p(a),
respectively ¢ < pon C. For d € D, d < d + 0 implies ¢(d) > A(d) — 5(0) =
A(d). Moreover, ¢(d) < p(d) = A(d) for d € D, hence g|p = A.

By its definition, ¢ is the greatest Scott-continuous function below ¢q. Thus
G < pis clear. With Lemma 2.6.2 it follows immediately that ¢ is homoge-

neous. To show superadditivity of ¢ we calculate
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d(a1) +dlaz) =\ alb) + \/ " albe)

bi1<kay ba<a2

Z\/T{q(bﬂ +q(b2) | b1 < a1,by < as}, as + is Scott-cont.
< \/T{q(bl + b) | by K ap,by < ag}, as ¢ is superadditive

< \/T{Q(C) ‘ c < ap+ax}, as < is additive
=q(ar + az).

By definition, the d-subcone D is closed under directed suprega,

=\/"{A®) | b < aandbe D}

for a € D. This shows G|p = A and com

p fulfill the@ypothesis of the Extension Theorem 3.12.4 and we

In other words this corollary states that R, is injective in the category

of continuous d-cones with additive way-below relations and with respect to
d-subcone embeddings.
As another consequence of the Extension Theorem we obtain a Sum The-

orem for continuous d-cones:

Theorem 3.12.6 ((Sum Theorem)) Let C' be a continuous d-cone with an
additive way-below relation, let A: C — Ry be linear and Scott continuous,
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let p1,...,pn: C — Ry be sublinear, and for d,a,ci,...,c, € C,
d<a+c, k=1,....n = Ad) <Aa)+ Y pilcr).
k=1

Then Scott continuous linear functions Ap: C — R, exist with Ay < py,
k=1,...,n,and A=A+ ...+ A,.

Proof. First, remark that A < p; + ...+ p,, since ¢ <0+ ¢ iR

Ale) SAO)+ > pile) =pi(e) + ... +ll(c)
k=1
for all ¢ € C'. The main steps of the proof t t to be e similar to
the proof of [13, Theorem 1.4.1], a Sum Theorem re-ordered Abelian

semigroups.

For a continuous d-cone C' with addifive way-bflow relation, C™ is also a
continuous d-cone with additive wgy-belo ati y Proposition 2.6.6. The
diagonal A C C™ is a d-subcone a A R, Add,...,d) = A(d), is lin-
ear and Scott-continuous. The — Ry, pler, ... en) = >y Prlcr)
; Wise addition and order, (d,...,d) <

is sublinear.
(a,...,a)+(c1, ...
Thus,

k=1

thesis. This means that we can apply our Extension

y R, of A with A < p on C". We define Ay: C — R, by
| — A(Ak(c)), where Ag(c) := (0,...,0,¢,0,...,0) with ¢ at the k-
th comPonent and every other component is equal to zero. As A is linear,
Scott-continuous and A < p, it follows that Ay is linear, Scott-continuous and
Ay, < pi.. Moreover, for d € C,

Ad) = A(d, ., d) = Md, ... d) = A Sy Anld)) = Sy A(Aw(d))
= 2=t Ar(d).
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Chapter 4

Power Constructions

Consider non-deterministic behaviour of a c¢ progrgf. Naturally,

some kind of power set construction arisesd the different possi-

ble outcomes of the program for the samg input value.
deterministic features within the framevirk of doMain theory was given by
Plotkin in [40]. There, he introdu,
called Plotkin powerdomain) to ¢

The fact that only finitely & s are possible is also called bounded

th [52] proposed a simpler, half-sided

bse representations later when we modify them within the context of
continuous d-cones.

Winskel describes the classical powerdomains via modal assertions in [61].
The lower powerdomain is built up from assertions about possible behaviour
of a process, the upper powerdomain is built up from assertions about the
inevitable behaviour of a process, while the convex powerdomain is built up
from both kinds of assertions taken together. Heckmann studies these and
other powerdomain constructions in a general algebraic framework [17]. The
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topological concept of powerdomains is stressed by Smyth in [53]. There, he
highlights that open sets should be viewed as computable properties.

A different kind of non-determinism is given by probabilistic choice. We
already mentioned that a suitable model is given by the probabilistic pow-
erdomain, see [24,23]. What happens if we combine both kinds of non-
determinism? A research group in Oxford tackled various aspects of this

r power constructions. The

domains also become d-cones.

4.139The Convex Lower Powercone

As the lower powerdomain describes partial correctness, every element ap-
proximating the desired behaviour of a program can also be used for an in-
terpretation. An approximation usually means that the program terminates
for fewer input values. This does not matter since for partial correctness one
is only interested in a correct output whenever the program terminates. This
idea may give an intuition for the topological characterisation of the classical
lower powerdomain H.(X) as being the Scott-closed subsets of the underlying
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domain X ordered by subset inclusion. And — for the topologies we deal with
— closed sets are always lower sets. This explains the use of the term ‘lower’.

We will modify this characterisation of the classical lower powerdomain
to define the convex lower powercone H(C') over a d-cone C'. Then H(C')
will be a d-cone in which binary suprema exist and give an extra semilattice
operation. In this context, H(C') will be shown to be universal.

4.13.1  The Convex Lower Powercone Construction

For a d-cone (C,+,0, ) we consider the collection
H(C) :={A C C| A nonempty, Scott-

of all nonempty Scott-closed convex subsets

Addition and scalar multiplication are lift,

+, 0 H(C) x H(C) — H( A+ N:=A+ DB,

Ry x H(O) SA=re A,
where A+ B is the clogg {a+b]ae Abe B} in the Scott
topology, and r - A . ith these definitions we will prove in

this section:

Theorem
a d-cone, ower powercone (sometimes also the convex Hoare

. Bigary suprema (hence arbitrary suprema) exist in H(C')

=(A+ B)V(A+D)

TH(A\/B):T‘HA\/T'HB

If C 15 continuous d-cone, then H(C) is a continuous d-cone, too. If, in
addition, the way-below relation is additive on C, the same holds for H(C).

Let us note that, for a continuous d-cone C, the convex lower powercone
H(C') is a continuous lattice, hence Lawson-compact.

The proof of this theorem will be broken down in smaller steps. We hence-
forward suppose C to be a d-cone.

The intersection of a family of nonempty Scott-closed convex sets is again
a Scott-closed convex set, and nonempty, as 0 is contained in every nonempty
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Scott-closed set. Thus we have:
Proposition 4.13.2 The set H(C) ordered by inclusion is a complete lattice.

For every subset M C (|, there is a smallest Scott-closed convex subset
containing M: One first forms the convex hull conv M and then its Scott
closure conv M which is again convex by Proposition 2.6.10. Thus, binary
suprema in H(C) are formed as the Scott closure of the conve the
union of two sets,

AV B = comv(AUBJ,

and likewise for the supremum of an arbitrary family (@) ind®(C),
\/ A; = conv U A;

As the union of a directed family of con sets A; is again convex, directed

suprema in H(C') are given by the topol®@ical clos@e of the directed union

Most of the cone axioms are straightforward to check using the fact that

they are satisfied for the nonempty convex subsets by 2.6.11. For the asso-
ciativity of + , for example, we use the Scott continuity of the addition on

C' and Lemma 1.2.2: (A1 JrHAQ) +HA3 = A +Ay+ A3 = A+ A+ Ay =
A+ A+ A = Ay +H(A2 +HA3). O

Proposition 4.13.4 Addition + and scalar multiplication . on 3(C) are
Scott-continuous.
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Proof. Monotonicity of addition on H(C') is clear from its definition. Using
the Scott continuity of the addition on C' and Lemma 1.2.2 we have

A+ (V' A)y=A+U A =4+U"4
U+ 4)=UA+ 4 =V'(A+A4).

UTri A= \/T(ri}-IA). For a directed family (A;) in H
the relation réVTAi = \/T(rP-IAi) is straightforward.

suprema in H(C') distribute over the algebraic Opera

Proposition 4.13.5 For binary supremfll in H(C), AV'B = conv(AU B),
the following distributivity laws hold for B, D € W(C) and r € R,
A+ (BVD)=(A+B)V (A

r=a+rb+(1—r)d=r(a+b)+(1—-r)(a+d),

whence z € conv ((A+ B)U (A+ D)) C conv ((A+ B)U(A+ D)) = (A +,
B)V (A+ D).
We have 0. (AV B) = {0} = {0} v {0} = (0, A)Vv (0, B). Forr >0,
multiplication by 7 is an isomorphism and we conclude
7. (AV B)=r-conv(AUB) =r-conv(AU B)
=conv(r-AUr-B)=(r A)V(r.B).




R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1-104 61

Together with the Scott continuity of addition and scalar multiplication in
the cone H(C'), this proposition yields that arbitrary non-empty suprema are
preserved by these operations.

Proposition 4.13.6 If C is a continuous d-cone, then H(C) is a continuous
lattice, too. We have B <y A in H(C) if and only if there is a finite set
F such that B C conv F and F C {A. The sets conv F for none finite
F C C form a basis of the continuous lattice H(C').

Proof. Let C be a continuous d-cone. To show the conti

imitate the proof of Proposition 6.5 in [48]. First, we n C
implies |z <y |y in H(C). Let |y € |J'A4; for so (A)ier
in H(C). Since J'4; = {\/TS | S directed, S, ma 1.4.1,

x < y we conclude
that x < s for some s € S. As there is A;, we conclude
lz C |s C A;, hence |z < |y in H(C). ott-closed convex set A,
the continuity of C' yields A = (J{|d | 3a Qd. d <@} = V{ld | Ja e A. d <
a}. We just proved that |d < |4 ' d < Ain H(C). Thus, A

is the supremum of convex Scott-cly

s |d way-below it with respect
This implies that the lattice H(C)
nitely generated Scott-closed convex

Hary IV-8.7 in [15]). We define a continuous retraction-section
etween the convex lower powercone H(C') and the ordinary lower pow-
H.(C). Then H(C) is continuous as the retract of a continuous
domain. The retraction is defined in the obvious way r: H.(C) — H(C),
r(A) := conv A. The section is the inclusion map j: H(C) — H.(C), j(B) =
B.

Using the above characterisation of the way-below relation on H(C') we
can show that the additivity of the way-below relation is preserved:

Proposition 4.13.7 If the continuous d-cone C has an additive way-below
relation then H(C') does too.
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Proof. Let A; <y By and Ay <y By in H(C). By the above characterisation
there exist a finite set F; such that A; C conv F; and F; < B; fori =1,2. We
claim that F' := F}-+F5 is a finite set which is a witness for A; . Ay, <y By —&—HBQ.
For A; 4. Ay = A; + Ay C conv F it suffices to show A; + Ay C conv F'
since the latter set is Scott-closed. We have
Ai + Ay Cconv Fi + conv Fy
C (conv Fy) + (conv Fy), by Lemma 1.2.2
= conv(F, + F), by Lemma 2.6.11

=conv F'.
For e = e; +e5 € E there exist by € By and by € By wit 1 and es << bs.
Since the way-below relation on C' is additive we e by +by €
Od

By + Bs.

C conv(F) + Fy).
hat conv Fy + conv Fy C

convex, closed and con-

One step of the last proof was to show

Since the right hand side is closed, we
conv(Fy + F,). The left hand side of this

tains F} + F5; thus, the converse i ds. We conclude conv F} +

conv Fy = conv(F; + Fy). We will 199ct later for our convex Plotkin

type construction.

main, the convex lower powercone can also be

operty: the d-cone H(C') is the free V-d-cone over

the category CONEY we collect as objects those d-cones in
whi8@binary suprema (hence arbitrary suprema) exist and distribute over
additiol? and scalar multiplication as follows:

a+(bVe)=(a+b)V(a+c)

r-(avb)=r-aVr-b

Together with Scott continuity, these two conditions yield that arbitrary suprema
distribute over addition and scalar multiplication. The morphisms in the cat-
egory CONE" are the linear maps preserving arbitrary suprema. In Theorem
4.13.1 we have seen that the convex lower powercones are objects in the cat-
egory CONE".
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Proposition 4.13.8 The assignment C' — H(C') can be extended to a functor
J: CONE — CONE" by assigning to any Scott-continuous linear map f: C —
D between d-cones the linear map H(f): H(C) — H(D) preserving arbitrary

suprema defined by H(f)(A) := f(A).

Proof. For a Scott-continuous linear function f: C — D between d-cones
we have to show that H(f): H(C) — H(D) is linear and preserve

set A C C,
H(ide)(A) = ide(A) = A =

Regarding composition we use continuity of f

H(go f)(A) =g(f(A) =g(/ @) =

Lemma 4.13.9 Besides the funct
ful functor U: CONEY — C
mation j: Idcone — U o

ther direction and a natural transfor-
ach d-cone C, the morphism jo: C' —
H(C) maps an elem

=l(lz+ly)=loz+ly=lo+ly

D JD

H(D)

which is equivalent to the statement | f(x) = f(]2) which is straightforward.O
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Now, we can prove the following universal property

Theorem 4.13.10 The functor H: CONE — CONE" is left adjoint to the
forgetful functor U: CONEY — CONE. In other words, for every d-cone C
and every Scott-continuous linear map f from C into a d-cone L € CONEY,

there is a unique linear map f: H(C) — L preserving arbitrary s uch
that f = f o jo:

e Whist have f(lz) = f(z). In order
are forced to set f(A) := sup f(A).

Proof. To make the diagram _com

sup f(A) = sup f(A) = sup f(A) (1)
= sup f(conv A) = sup conv f(A) (2)

Indeed x is an upper bound of f(A) iff f(A) C |z and this is equivalent to
conv f(A) C |z, as |z is Scott-closed and convex. Thus, f(A) and conv f(A)
have the same upper bounds, hence the same least upper bound. As f(A) C
f(A) C f(A) C f(conv A) C conv f(A) by the continuity and linearity of f,
it follows that all the sups are the same as claimed.
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We will use this fact for proving the linearity of f. Let A, B € H(C):

f(A+ B) =sup f

=sup f

(A+,B)
(A+B)
= sup f(A+ B) by equation (1)
= sup (f(A) + f(B))
= sup f(A) +sup f(B) as addition distributgffver

= f(4) + f(B).

For any scalar r € R, we similarly have

A~

f(r.A)=sup f(r-A) = sup(r-f( T - Sup ) = T-f(A).
In order to finish the proof, we take any fhmily (Aghin H(C') and we have:

f(vAz) =Supf(conVUAi
:supf(UA-

</

ation (2)

~

f(A) =sup f(A) for every Scott-closed convex subset A C C'.

4.14 The Convex Upper Powercone

The upper powerdomain describes total correctness. As non-termination is
treated as the worst output, this view is quite opposite to the view of par-
tial correctness for the lower powerdomain. Thus, it is not surprising that



66 R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1-104

the topological characterisation of the upper powerdomain (also called Smyth
powerdomain) 8.(X) consists of nonempty compact saturated (= upper) sub-
sets ordered by reverse inclusion. This explains the ‘upper’ nomenclature.
Compactness is somewhat harder to motivate. It generalises finiteness, as
finitely generated upper sets form a basis for the upper powerdomain of a
continuous domain. As for the ordinary upper powerdomain, the universal
property of the convex upper powercone does not hold over arbj 0s.
One has to restrict to continuous domains.

4.14.1 The Convex Upper Powercone Construction

For a continuous d-cone (C,+,0, ) we consider t

inclusion D. Addition and scalar multipli

the following way:

=0andr P =r-Pifr>0. We will prove

Aiuous d-cone in which binary infima exist:

W exist in S(C') and satisfy the following distributivity laws:
(@QAR)=(P Q) A(PHR)

r(PANQ)=(r.P)N(r.Q)
If the way-below relation is additive on C, the same holds for 8(C). If C is

Lawson-compact, then 8(C) is a continuous lattice, hence Lawson-compact,
too.

Most of this section is devoted to the proof of this Theorem. We will sup-
pose henceforeward that C' is a continuous d-cone.
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A family (P;);es of nonempty Scott-compact convex saturated subsets of C
which is directed for reverse inclusion, is filtered for inclusion. Hence, (., P;
is again nonempty Scott-compact convex and saturated by Proposition 1.3.1.
As it is the biggest such set contained in all the P;, it is their infimum with

respect to the order of reverse inclusion.

\/TPi:ﬂPi-

i€l i€l

convex sets is again such; hence, §(C') is even a co
shown:

Proposition 4.14.2 In 8§(C) directed sufgema and@inary infima with respect

to the order of reverse inclusion en by

.14.3 The above defined (8(C), + C’,S-) s a cone.

) S?

Proo irst, we show that the operations +; and . are well-defined. The
sum of two Scott-compact sets is again Scott-compact since addition on C' is
Scott-continuous. The sum of any two convex sets is again convex. Taking
the upper set (P + Q) preserves compactness and convexity. Surely, this set
is also nonempty whenever P and @ are nonempty. Multiplication by r = 0
yields 0 P = {0} = C, a non-empty compact saturated subset of C'. Since
multiplication by r > 0 is an order-isomorphism, we have r . P = r - P and
nonempty Scott-compact convex saturated subsets are mapped to sets with
the same properties.
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The associativity of addition on 8(C') is straightforward to check using that
addition on C'is monotone. Commutativity of addition is immediate. The
original cone C' is the neutral element for addition in §(C') since it contains
the neutral element 0 of C' and because addition is monotone on C. We
have 1. P = P and 0; P = C, the neutral element in §(C). The equation
(r-s).P =r:(s;P)is immediate. Similarly, we obtain r;(P+.Q) = (r;P)+(r;Q)

distributivity law (r+s): P = (r; P) +,(s; P), one needs §
set P is convex (see 2.6.11).

We continue with

Proposition 4.14.4 Addition and scalar mult®lica

on 8(C).

Proof. For the Scott continuity of addifon on S(W), we have to show that
(V'P) Q= V(P +Q), that is

P+ Q).

cott-open set U containing 7 (ﬂ Lpi) +
of a dcpo is the intersection of its Scott-open

W, respectively, such that V +W CU. As () B CV,

; at P; C V by Proposition 1.3.1. Thus, P,+Q C V+W C U,
g+ Q) CU.

W, respect to scalar multiplication, we have to show that \/l i(ri Py) =

(\/Ti ri) (\/Tj p;). If \/TZ. r; = 0, then r, = 0 for all 7, and the equation

is trivially true. Thus we may suppose that r; > 0 for all i. The desired

equation can be rewritten in the following form
T
N2 =N (N, P
irj i J
That scalar multiplication ; on 8(C') is monotone follows directly from the
monotonicity of scalar multiplication on C'. This implies that the left hand
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side is contained in the right hand side. For the reverse inclusion, the argument
is similar to the one for addition. The saturated set (\/ Ti ri) - (N L P;) is the
intersection of the Scott-open sets U in which it is contained. If we can show
that lM(ri - P;) C U for all those open sets, we are finished. Thus, let

U be a Scott-open set with (\/TZ. Ti) - (mi'Pj) C U. Scalar multiplication
j

on C' is jointly Scott-continuous, hence, the inverse image of U under scalar

multiplication {(r,z) € Ry x C | r -z € U} is Scott-open 4 Nins

(T\/Ti i) X (mL‘Pj)' As (T\/Ti r;) and (ﬂle are both Scopt-SQa by
j j

have Scott-open neighborhoods V' and W respectively, tha® C

U. As supr; € V there is an i such that r; € V, a , by

Proposition 1.3.1 there is a j such that P; C W.
V - W C U which completes the proof.

Lemma 4.14.5 For binary infima on 8 distributivity laws
hold:

by Lemma 2.6.11
since the convex hull operator is monotone

“(P A = (r- Teconv(P U Q))
r-conv(PUQ)), since scalar multiplication on C' is monotone
=Tconv ((r- P)U (r-Q))
= Tconv (T(r -P)u1(r- Q)), since the convex hull operator is monotone
=r;:PAr.Q.
a

We will use the following characterisation of the way-below relation on the
classical upper powerdomain 8.(C') of all nonempty compact saturated sets
(see [1, Proposition 4.2.15] or [15, Proposition 1-1.24.2]):
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Lemma 4.14.6 For nonempty compact saturated subsets P and Q of a con-
tinuous domain, one has P g Q) with respect to the order of reverse inclusion
on the depo 8.(C) if and only if P is a neighborhood of Q, that is, if and only
if Q is contained in the interior of P.

As the convex upper powercone §(C') is contained in the classical upper

powerdomain 8.(C), two elements P, Q) € §(C') are still way-below aagh other
if the previous condition is fulfilled. We will prove the stronger si
the way-below relation on 8§(C')is the restriction of the way-
8.(C). This implies that the Scott topology on 8§(C')4
the Scott topology on 8.(C). For this we will need
separation theorems of chapter 3.

Lemma 4.14.7 For P,Q € 8(C), the followind are
(i) P<s @ in 8(C).
(ii) P is a neighborhood of Q.

(iii) There is a convexr Scott-ope 2UDQ.

Proof. (1) =
its compact

" We have U = |, ., T 2 Q. Compactness of @ implies that U
a finite subset F’ such that Tconv F' O $F O (. Since U is open and
PDOUDF, for each e € F, there exists p € P with p < e.

(4) = (2) : For every f € F choose p € P with p < f and let E be the
collection of these finitely many p. Then, % conv F is open and P O Tconv £ D
Ffconv £ D Teconv F D Q.

In order to show continuity, pick @ € §(C). By 3.11.6, every neighborhood
of () contains a neighborhood of the form Tconv F' for a finite set F'. Thus
the sets of this kind form a filtered system with @) as intersection. By the
above, Tconv F' <5 Q. Thus, 8§(C) is a continuous d-cone and the sets of form
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Tconv F' for finite F' form a basis. O

Lemma 4.14.8 If C is a continuous d-cone with an additive way-below rela-

tion, then the way-below relation on 8(C) is additive, too.

Proof. Let P, <5 @1 and P, <g Q3 in §(C). Then there are Scott-open
sets Uy, Uy such that P, C U; C @1 and P, C U; C ()5. Then P, +. P =
P+ P) C UL+ U2) € Q1+ Q) = Q1+, Qa2 As 1(Uy also
Scott-open by Proposition 2.6.4, we conclude P, + P, <s Q4 O

4.14.2  Universal Property of the Convex Upper Powe e

Let CCONE denote the category of continuous d- ject d Scott-
continuous linear maps as morphisms. In the s " we collect

those continuous d-cones which admit bin

following identities:

a+ (bAc)=(a+Db)A(a+c)
r-(aANb)=(r-a)A(r-b).

a of filite nonempty sets.

heorem 4.14.1 that the convex upper powercone is an

.14.9 The assignment C' +— 8(C) can be extended to a functor
NE — CCONE" by assigning to a Scott-continuous linear function

f:C =YD the map 8(f): 8(C) — 8(D) with 8(f)(P) :=Tf(P).

Proof. Let us show that, for a Scott-continuous linear map f: C' — D be-
tween continuous d-cones, 8(f): 8(C) — 8(D) is Scott-continuous, linear, and
preserves binary infima. For P € §(C), 1f(P) is compact, since P is compact
and f continuous, it is saturated by definition and convex since P is convex
and f linear. Clearly, 8(f) is order preserving. It follows that

sUH(N),P) = 1£(N,2) SN, 1B) =), 8()(P).
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To show the other inclusion we use that the compact convex saturated set
$(AH(N lpi) =1f(N ipi) is the intersection of its compact convex saturated
neighborhoods P. For each of those one has ﬂlPi C f7YP) and the latter
set is a neighborhood of iPi by the continuity of f. Thus, there is an ¢
such that P; C f~*(P) by Proposition 1.3.1. We conclude that f(P;) C P,
whence 1f(P;) C P and consequently ﬂle(Pz) - Tf(ﬂlPZ) which completes

that 8(f) is linear and preserves binary infima. One uses that
monotone and that addition and scalar multiplication o
Overall, 8(f) is a morphism in CCONE”. To finish the p of

O
Lemma 4.14. \es theQunctor §: CCONE — CCONE”, we have the
forgetful fu : " — CCONE in the other direction. Then, i: Idccone —

transformation where, for each continuous d-cone C, the

e show that, for every continuous d-cone C', the map i¢ is
ntinuous and linear, hence, a morphism between d-cones. As x < y
implies %o (x) = T2 O Ty = ic(y), the map ic is monotone. Now, we show
ic(\/ij) = (1 ic(z;), that is T(\/Ta:j) = (N, Tz;. Indeed, y € () Ta; is
equivalent to y > z; for all j, ie., y > \/Ta:j or equivalently y € T(\/Ta:j) =

ic(\/ij). To show linearity we calculate

ic(r +y)=1z+y) =112+ Ty) = ic(z) +ic(y)
io(r-x)=1r-2)=1r-(12)) =7 ic(z).

It remains to prove that, for any Scott-continuous linear function f: C' — D
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between continuous d-cones, the following diagram commutes

o $(C)
f 3(f)
D" $(D)

From the monotonicity of f it follows immediately hat e (x =

1f(Tz) = US(f)(ic(x) for all elements z € C. O

A continuous domain L in which binary meets exg tinuous
A-semilattice. As, in a continuous domain, every, ghborhood
basis of open filters, the meet operation in a continuo -semilattice is Scott-

continuous. But we have more:

(b)Iff: L —
L and M whic

Q= ml{TF | F finite and TF < Q} .

As binary infima exist in L, all finite nonempty subsets also have a greatest
lower bound, and the set {inf F' | F' finite and 1F < @} is directed. Let

a:= \/T{ian | F finite and TF < Q}.

It is clear that a is a lower bound of ). In order to show that a is the greatest
lower bound, let b be any lower bound of (). For every x < b, we have Tz < @,
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whence z = inf Tx < a. As this holds for every = < b, we conclude b < a.

The continuity of the map @ +— inf Q) follows from the following obser-
vation: Let Q be compact saturated and b < inf (). Then Tb is a compact
saturated set containing @) in its interior, whence 16 < @ in the domain 8.(L),
and b = inf Tb.

(b) Considering the representation of inf ) proved in (a), the claim follows
from the fact that f preserves directed sups and infima of no ite
sets. d

We now restrict our attention to continuous d-con ary
infima exist. As the meet operation is Scott-continug nempty
Scott-compact convex saturated subset also has e previous

lemma and, as the Scott topology on 8(L) is th
ogy on 8.(L) by 4.14.7, the map @ + inf

But we have more:

e Scott topol-

Scott-continuous.

Lemma 4.14.12 Let L be an objgct of E4V For all P,Q € 8§(L) and
r € Ry we have

inf(P+@Q). For the converse, consider any b < inf(P+@Q). Then 10 < P+.Q.
As the finitely generated convex saturated sets form a basis and as addition is
Scott-continuous on §(L), there are finite sets G and H such that Tconv(G) <
P, Tconv(H) < @ and Tconv(G) + Tconv(H) C $b. We conclude that b <
inf(Tconv(G) + Tconv(H)) = inf(G + H) = inf G+ inf H <inf P +inf Q. As
this holds for every b < inf(P + @), we conclude inf(P + Q) < inf P + inf Q.
For the third equation, recall that PAQ = Tconv(PUQ). Hence inf(PAQ) =
inf conv(P U Q) = inf(P U Q) = inf P Ainf Q. O
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Now, we can prove the following universal property

Theorem 4.14.13 The functor §: CCONE — CCONE" is left adjoint to the
forgetful functor W: CCONE”" — CCONE. In other words, for every continu-
ous d-cone C and every Scott-continuous linear map f from C into a d-cone
L € CCONE", there is a unige Scott-continuous linear map f: S(C) — L

preserving binary infima such that f = fo ic:

Proof. Let C be a continuous d-cone, L i s d-cone in which binary
nuous linear map. Applying
the functor 8, we obtain a Scott-c inear map 8(f): 8(C) — S(L)
preserving binary infima i S8(f)(P) = T1f(P). We compose this
map with the linear ap @ — inf Q: 8§(L) — L preserving
binary infima by t Q2 lemma 4.14.12. We obtain a Scott-continuous
Wi binary infima defined by f (P) =inf f(P).
utes as f(ic(z)) = inf f(12) = f(z). Moreover, f is
tinuous' linear map preserving binary infima such that the
tes. Indeed, for @ € 8(C), one has Q = infgy{Tq | q €
— L is a Scott-continuous map preserving binary infima

linear map f :
The above dd

(Q) = g(infsy{Tq | ¢ € Q}) = infr{g(Tq) | ¢ € Q} =
= f(Q). O

As a special case for the universal property we may consider a Scott-
continuous linear functional f: C' — R,. Then there is a unique Scott-
continuous linear functional f: §(C) — R, preserving finite infima such that

~

fojc=f,and this functional is defined by

f(Q) = inf f(Q) for every Scott-compact convex saturated subset @ C C'.
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4.15 The Biconvex Powercone

A topological characterisation of the classical convex powerdomain is known
for Lawson-compact continuous domains X. In this case the convex power-
domain (also called Plotkin powerdomain) P.(X) consists of the nonempty
Lawson-compact order-convex subsets with the Egli-Milner order. Union of
subsets followed by order-convex closure gives an extra binary senydgiligee op-
eration. As before, we will modify this characterisation to ma, hin
the context of d-cones.

4.15.1  The Biconver Powercone Construction

In this section, C' always stands for a Lawson-c t cont d-cone.

Definition 4.15.1 A nonempty Lawson-cq t ord nvex subset A of C'
will be called a lens. We define
P(C) :={P CC | P Qgonvexgkns},

to be the collection of all convex 1 Wsrdered by the Egli-Milner order

as in the classical case.

Let us recall that,
order is defined by,

P(C) = P(C), A+ B:=(lA+ |B)N(TA+1B)
Ry xP(C) = P(C), r A= (1 JA)N (1 TA)
:P(C) xP(C) = P(C), AU B :=(lAVy |B)N (1A As 1B).

Note that A+ B, r - A and A & B are indeed convex lenses, as each is the
intersection of a convex Scott-closed set and of a Scott-compact saturated
convex set. Using the explicit definitions of addition and scalar multiplication

in the lower and upper powercones, we can simplify:

A+ B=A+DB N {(A+B)
T‘I;A:T“A
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We use a seemingly more complicated definition, however, to reduce proofs
about the convex Plotkin-type construction to its lower and upper part.

The main theorem of this section is:

Theorem 4.15.2 Let (C,+,0,-) be a continuous Lawson-compact d-cone. Then
(iP(C), +, {0}#») with the Egli-Milner order is a also a Lawson-compact con-

tinuous d-cone called the biconvex powercone (or convex Plotkin pg one ).

The finitely generated convex lenses k(F') = |conv F' N Tconv
for the continuous d-cone P(C'). It carries a semilattice op
P(C) — P(C), called formal union, which is Scott-contj
following distributivity laws:

A+ (A2 U Az) = (Ay +,49) & (A1 + A3),

TI_;(Al dJ Az) = (T};Al) J (T};Ag),

for all Ay, Ay Az € P(C) and all r € R,. 4Fthe way-belo®relation is additive
on C, then it is additive on P(C'), too.

closed sets is just

Moreover, if A
H(C) is ord

(C) and A Cgy B, then A € H(C). Thus
into P(C) as a lower set. The embedding preserves
ma); in particular, it is Scott-continuous.

ct saturated subsets of C' are Lawson-compact, the con-

nsidered on 8§(C). Moreover, if A € P(C), P € §(C) and P Cgy A,
H(C). Thus 8(C) is order embedded into P(C) as an upper set.
The embedding preserves directed suprema and binary infima (even arbitrary
suprema and infima).

The Egli-Milner order can be seen as the intersection of the lower and upper
orders. Indeed, for a Lawson-compact convex subset A of C, the sets | A and
TA are also Lawson-compact and convex by Lemma 1.5.1 and Lemma 2.6.10.
Thus |A is convex and Scott-closed and TA is convex, Scott-compact and
saturated. For A, B € P(C), one has by definition A Cgy B if, and only if,
lA C | B in the convex lower powercone and |A T |B in the convex upper
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powercone. This tells us that the maps

A |A:P(C) — H(C) and A TA: P(C) — §(C)
are order preserving retractions and that the map

e: A (JATA): P(C) — H(C) x §(C)

is an order embedding. The following lemma shows that these 1@ t-
continuous:
Lemma 4.15.3 With the Egli-Milner order, P(C') is ol he supremum

of a directed family (A;); in P(C) is given by

V' =T 14,

W that | B = UTlAi. The inclusion | B C UTlAi is straightfor-

or the reverse inclusion, it suffices to show that UTlAi C | B, since

| B is Sott-closed. Let x € |A; for some i. Then there is a y € A; such

that x < y. For every index j such that A; Cga Aj, there is a z € A;

such that y < z, whence Tz N UTlAi N TA; # 0. As the intersection of a

filtered family of non-empty Lawson-compact sets is nonempty, we conclude
that TzN B =TznU"|4; N ﬂlTAi # (), whence x € | B.

In a second step, let us show that 1B =) lTAZ'. Again the inclusion 1B C

N lTAi is straightforward. For the reverse inclusion choose any = € ) lTAZ-.

Then |z N UTAZ- N TA; is nonempty for every index i. As the intersection of
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a filtered family of nonempty Lawson-compact sets is nonempty, we conclude
that lzNB = lznU"|4; N ﬂlTAi # (), whence x € 1B.

The equalities proved in the two previous paragraphs show that B is the
least upper bound of the directed family of the (A;) with respect to the Egli-
Milner order. Indeed, if A; & B’ for all ¢, then |A; C |B’ and TA; D 15,
whence |B=J"|4; C | B and 1B = N, 4 2 1B, that is, BC B'. m

Note, that throughout this section A still denotes the Scq a
set A and not its Lawson closure.

One might think that A U B is the convex, order- and
B. However, this hull is not always Lawson-compact, eason is
that scalar multiplication is not jointly Lawson-co ontinuous

d-cones. Hence, the convex hull of the union mpact sets is

not necessarily Lawson-compact. The exa: ates this. It shows
the convex hull of two singleton sets in R ich happens to be equal

to its order-convex hull, but is not Laws

® (y1,92)

Ry

that P(C) is a continuous d-cone we want to take advantage
efinition via the lower and upper cone operations. For this, we need
ing observations:

Lemma 4.15.4 For A, B € P(C) and r € R, the following properties hold:

(A+B)= A4 1B, NA+B)=14+15,
l(?”PA) = rl:ll’A7 T(T’PA) = 7”5' TA,
W(AUB)=|Avy |B, JAUB)=1ANAs1B.

Proof. By definition of A + B one has [(A+ B) C |A+ |B. Lawson com-
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pactness of A+ B implies that (A +, B) is Scott-closed. Together with the
monotonicity of addition on C' and A+ B C A + B this implies

A+ |B=|A+|B=|A+B)=A+BC|[(A+B).

The two inequalities together yield [(A + B) = |A + |B. The proofs of the
other equations are quite similar. O

These equations can be rephrased by saying that
e: P(C) — H(C) x §(C)

preserves addition, scalar multiplication and formal us can de-

duce the following proposition immediately from corresQud i results for

the lower and upper powercones (see 4.13.5 an@4.1

15 a Scott-continuous semilattice operat
tributivity laws:

At (A2 9 Az) =

T, (A1 Y Ap) =

for all Ay, Ay, Az € P(

. Note, that, as a consequence of Lemma 2.6.12,
cott-closed, and Tconv F' is convex, Scott-compact and

is indeed Lawson-compact.

4.15.6 Let A,B € P(C). If |[A <y |B in the lower powercone
H(C) and TA <5 1B in the upper powercone 8(C), then A <gy B in the
biconvezr powercone P(C').

This lemma follows immediately from the fact that ¢: P(C) — H(C) x
8(C) is a Scott-continuous order embedding and that the way-below relation
an a finite product is the product of the way-below relations on the factors.

The next lemma tells us that the finitely generated lenses k(F') can be

approximated from below.
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Lemma 4.15.7 Let F' be a finite subset of C'. Consider the sets G obtained by
selecting exactly one element y < x in C for every x € F. Then k(G) <gm
kE(F) and the family of the k(G) is directed in P(C') and k(F) is the (directed)
supremum of this family.

Proof. Once again we use what we know for the convex lower and upper
powercones. Consider the sets G as in the statement of the Lepsss The
lemmas 4.13.6 and 4.14.7 show that |conv G <y |conv F' in
ercone and that Tconv G <g Tconv F' in the upper powerc
conclude that k(G) <gn k(F). By the proof of Prop

conv F' = UTconv G, using that addition and scalar mu

uous on C. Proposition 4.14.7 tells us Tconv F' = ¥ con
k(F)=conv F' N Tconv F
= UTconv GnN ﬂchonv G
= \/T (conv G N Tconv G)

=\/ k(@)

a

Lemma 4.15.8 The b4

finitely generated cgfber W

P(C) and, for P(C) c has A <gy B if and only if |A <y | B and
TA <5 1B.

Nowsuppose A < gy B. Then there is a basic set k(F), F' finite, such
that A <gp k(F) <pp B. By Lemma 4.15.7 there is a finite set G, obtained
by by selecting an element y < x in C' for every z € F| such that A <gpu
k(G) <gm k(F) <gum B. As in the proof of Lemma 4.15.7 we have | k(G) =
conv G <y conv F' = |k(F) and Tk(G) = Tconv G g Tconv F' = |k(F). We
conclude that |A <y | B and TA <g TB. Together with Lemma 4.15.6 this
finishes the proof of the Lemma. O

Lemma 4.15.9 If the way-below relation on C' is additive, then the way-below
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relation on P(C') is additive, too.

Proof. First, we show that the way-below relation is additive on a basis. Let
k(Gh) <gm k(Fy) and k(Gs) <gu k(Fy), where Gy, Fy and Gy, Fy are chosen
as in Lemma 4.15.7 Using additivity of the way-below relation on C| one sees
that Gy + G5 and I} + F, witness

k(Gh) +k(G2) = k(Gy + G2) <pum k(Fy + Fy) = k(F1) 4

Now, we apply Lemma 2.7.15 and conclude that the w clow ghatig@#on
P(C) is additive. O

Lemma 4.15.10 The biconvex powercone P(C') 4 ct.

compact. Recall that P.(X) is the set o
order. A basis is given by the fini
finite subset of X.

We want to define a Scg s retraction 7: P.(C) — P(C'). Then
e that P(C) is Lawson-compact.
k(F). Then 7 is a monotone map on

the basis of P( (F) ¢ 7(G) means |F C |G and TF 2 7G. This
implies conv F C ¢onv |G = convG and Tconv F' = Tconv TF D

Teonv TG is equivalent to 7(h(F)) = k(F) Cpy k(G) =
r(h(G)) an apply Proposition 1.4.2 and get a Scott-continuous
fungg

= P(C), r(A) =\ {k(F) | F finite, h(F) < g A}.

We wilgshow that this function is a retraction. The section that goes with it
is the inclusion map j: P(C) — P.(C), j(B) := B. The only property left to
show is 7 0 j = idgp(c.

Let G be a finite subset of C. By definition

(ro ) (k(@) = \/ ' {k(F) | F finite, h(F) <par k(G)}.

For h(F) <gm k(G) we have h(F) Cgpy k(G) which is equivalent to |F' C
convG and TF D convG. It follows conv F' = conv |F C conv (conv G) =




R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1-104 83

conv G and fconv F' = Jconv [F D Tconv (Tconv G) = Tconv GG, or equiva-
lently, k(F) Cpy k(G). This implies (r o j) (k(G)) Cpu k(G).

To show the other inequality we show that whenever we take a finite set £
with k(E) <gum k(G) then there exist a finite set F such that h(F) <gy k(G)
and k(F) = k(E). From k(E) <gm k(G) it follows that fconv E D k(G).
Since k(G) is compact there exists a finite set £’ C conv E such that $E’ D
k(G). Set F':= E U E'. By definition k(F) = k(E), and |h(F
LEk(E) <y k(G) and Th(F) 2 th(F) D Tk(G). Hence, h(F
This implies (r o j) (k(G)) Duam V {E(E) | k(E <pu k
we see that (7 o j) (k(G)) = k(G) for all finite subsets

If a Scott-continuous function is equal to the i

ements of a basis, then it is in fact the identi ion. ce, we have
r o j = idypc) and P(C) is a Scott-continuous retract

The last lemma completes the proof @ Theorega4.15.2.

4.15.2  Universal Property of the rcone

plied to the Lawson-compact continu-
e category CCONE€. The morphisms
aps. The second category involved is
are the Lawson-compact continuous d-cones L

a,b,c € L and all € R,.. The morphisms in CCONE® are those
tinuous linear maps which also preserve formal union. Note that the
semilattice operation U is not defined in terms of the order relation on the
d-cone L. The element a U b is neither the least upper nor the greatest lower
bound of @ and b with respect to the order < on L. But, as for any semilattice
operation, there is another order relation on L derived from the semilattice
operation Y that we denote by C and that is defined by a Cbiff abb=10.
For any Lawson-compact continuous d-cone C, the convex powercone P(C')
belongs to the category CCONE® by Theorem 4.15.2. The semilattice oper-

ation U forms the smallest convex lens containing two given lenses, and the
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order relation derived from it is simply subset inclusion which is very different
from the Egli-Milner order.

Proposition 4.15.11 The assignment C' +— P(C') can be extended to a func-
tor P: CCONE® — CCONE® by assigning to a Scott-continuous linear function

f:C — D the map P(f): P(C) — P(D) with P(f)(A) := f(A) N Tf(A).

Proposition 4.14.9 using P(f)(A) = H(f)(lA) N 8(f)(TA) a
HF)LA), TP(F)(A) = 8(f)(TA).

Lemma 4.15.12 In addition to the functor P: CCON
the forgetful functor U: CCONE® — CCONES. In

U o P is a natural transformation where for
morphism ic: C — P(C) maps an element

Proof. As z <y in C holds if and onl
immediately that ic is Scott-continuous.

{y} in P(C), it follows
an be calculated just as
easily. The diagram

PC)
Pf)
)
f({ff ):{f(:):)} for all z € C. 0

the universal property we need two lemmas. It will be
se the notation 4 F := a1 U ... Y a, for a finite subset

Lemma 4.15.13 For two nonempty finite subsets F' and G of a d-cone L €
CCONE® we have:

(a) For every a € conv F, one hasaJdJ F =Y F.
(b) k(G)Cem k(F) = HG<UYF.
() UF =V'{UG|G finite and k(G) <par k(F)}.

Proof. (a) It suffices to prove this statement for a convex combination a =
rb + sc of two elements b and ¢, where r and s are nonnegative real numbers



R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1-104 85

such that r + s = 1. Using that scalar multiplication and addition distribute
over J we have:
bdc=rbYc)+s(bLc)
= (rbYrc)+ (sbY sc)

(b—|— sbgsc) rc—!— sbesc

= (rb+sb) Y (rb+ sc) Y (re+ sb) Y
=bYcd (rb+ sc) Y (rc+ sb)
=bUcHa

(b) The hypothesis k(G) Cgy k(F that fi F C TconvG and
secondly G C conv F.

First, let a be any element of F'. Thd® a > b {88 some b € conv F' by the
first part of the hypothesis. As U jg order erydb. we conclude a U4 G >
bUlJG =4 G by (a). As thish a € F, we conclude

>G.

Secondly, let b € G 4By t cond part of the hypothesis, there is a directed

family of eleme ach b some convex combination d; of the elements

of F such th

IN

As U is Scott-continuous, we conclude

F<\'e)ol =\ (cul)r).

F, we conclude ¢; U J F < d; U F = F for all i,
st U is order preserving and (a). We conclude that b J 4 F' <
. H F) <Y F. As this holds for every b € G, we have proved

Hevlr<ije.
The two inequalities yield the desired result.
(c) For fixed F, the sets k(G) with G finite and k(G) <gn k(F') form a
directed family in P(L) for the Egli-Milner ordering. By (b), the corresponding

elements | G form a directed family in L bounded above by I F. We now
restrict our attention to the finite sets G obtained by selecting exactly one

element b; < a; for each 7. From 4.15.7 we know that, for these restricted sets
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G, one has k(G) <gm k(F). As a; = \/T{bi | b < a;}, the Scott-continuity
of U implies that \/TG (J G) = 4 F. Thus the desired equality is proved. O

Lemma 4.15.14 For every d-cone L € CCONE®, there is a unique Scott-
continuous linear map rr: P(L) — L preserving J such that rp oiy, =idy.

Proof. For singletons {a}, we have to define

ri(fa}) = a

in order to satisfy r; oiy =idy. Now let F' = {ay,...,

S

finite subset of L. If we want r¢ to preserve Y, for k(Fq
we have to define

rp(k(F))=a1Y...Ya,

By Lemma 4.15.13(b), 7, is well-defined
of finitely generated lenses k(F'), which fofgn a basisf the biconvex powercone
P(L). By Lemma 4.15.13(c), the ngy
Proposition 1.4.2 there is a uniqud antinuous extension of rp to all of
P(L) defined by

E(F)JE(G)=k(FUG)
and the distributivity laws holding in L. O

Now, we are ready to prove the universal property for the biconvex pow-

ercone:

Theorem 4.15.15 The functor P: CCONE® — CCONEF is left adjoint to the
forgetful functor U: CCONE® — CCONES. In other words, for every Lawson-
compact continuous d-cone C' and every Scott-continuous linear map from C
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into a d-cone L € CCONE®, there is a unique Scott-continuous linear map
f: P(X) — L preserving formal union such that f = foic:

7

—— ()
> X
@& |3/ e CCONE®
>
L

C

Proof. Given a Scott-continuous linear map f: C —4¥ we t to
a Scott-continuous Y-preserving linear map P(f): cording
to Proposition 4.15.11 and we then compose it the S¢ inuous Y-

4.15.Y4, that is, we
tt-continuous Y -

preserving linear retraction rp: P(L) — L fro
define f: P(C) — L by f = rp o P(f), n f is
preserving and linear. Moreover foiC = 1foP(f)oi@= rpoirof =idyof = f.
The uniqueness of f is straightforward. O

As a special case for the unive we may consider the biconvex
R 1s the set of all closed intervals [a, b]
gli-Milner order [a,b] Cgy [d, V] iff
E embedded into PR,. Thus, for every
(. C — R,, there is a unique Scott-continuous
) — PR, such that fo ic = f. For every

ge f(A) is convex in R, hence an interval. f(A)

powercone PR over the dag

a<a and b < V.

Scott-continuous

Choice and Non-Determinism

The extended probabilistic power domain V(X) over a topological space X is
a d-cone which is continuous whenever X is a continuous domain (with the
Scott topology), and which is Lawson-compact, whenever X is stably locally
compact, by Theorem 2.7.2. We thus may apply our three convex powerdo-
main constructions to the extended probabilistic power domain. We obtain
three types of powerdomains modelling ‘uncertain’ or ‘non-determistic’ prob-
ability distributions.
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Lower. HV(X) is the d-cone of all nonempty Scott-closed convex subsets
of V(X) with the order of subset inclusion. By Theorem 2.7.2, Proposition
2.7.16 and Theorem 4.13.1 we have:

Theorem 4.16.1 Let X be a topological space. Then HV(X) is a d-cone,
even a complete lattice, where binary suprema distribute over addition and

scalar multiplication. If X is a continuous domain, then HV(X) i

wous d-cone, even a continuous lattice, with an additive way-be

We now may combine the universal property of the\Qgtended powerdomain

functor V in Theorem 2.7.3 and the uniyffSal¥propertyf the convex lower

powerdomain functor H in Theorem 4.1810 and have:

Theorem 4.16.2 Let X be a co
dZ’l’Lg Ex = jV(X) onNx: X — V(X

ous WV There is a natural embed-

assigning to every x € X the
lower set |n, generated by ation n, such that the following holds:
a which distribute over addition and
ontinuous function f: X — L, there is

o function f: HV(X) — L preserving binary

Upper. SV(X) is the d-cone of all nonempty compact saturated convex
subsets of V(X)) with the order reverse to subset inclusion. By Theorem 2.7.2
Proposition 2.7.16 and Theorem 4.14.1 we have:

Theorem 4.16.3 Let X be a a continuous domain. Then SV(X) is a con-
tinuous d-cone with binary infima which distribute over addition and scalar
multiplication. The way-below relation is additive on SV(X). If, in addition,
X is coherent, then SV(X) is a continuous lattice, whence Lawson-compact.
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As § and V are functors, we even have a functor 8V from the category
CONT of continuous domains to the category CCONE” of continuous d-cones
defined at the beginning of subsection 4.14.2. We now may combine the uni-
versal property of the extended powerdomain functor V in Theorem 2.7.3 and
the universal property of the convex upper powercone functor 8 in Theorem
4.14.13 and we have:

Theorem 4.16.4 Let X be a continuous domain. There is a

For every continuous d-cone L with binary infima whyg

tion and scalar multiplication and every Scott-contilous
there is a unique Scott-continuous linear functy V(X)

binary infima such that f = fo ex:

As ¥ and V are functors, we even have a functor PV from the category

CONTE® of coherent continuous domains to the category CCONE® of d-cones
defined at the beginning of subsection 4.15.2. We now may combine the uni-
versal property of the extended powerdomain functor V in Theorem 2.7.3 and
the universal property of the biconvex powerdomain functor P in Theorem
4.15.15 and we have:

Theorem 4.16.6 Let X be a coherent continuous domain. There is a natural
embedding ex = iyx)onx: X — V(X) — PV(X) assigning to every x € X
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the singleton set {n,} consisting of the point valuation 1, such that the follow-
ing holds:

For every d-cone L € CCONE® and every Scott-continuous function f: X —
L, there is a unique Scott-continuous linear fu@ction f: PV(X) — L preserv-

ing the semilattice operation d such that f = fo ex:
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Conclusion: Some Connections
with Semantics

The results of the previous chapters can be used tational
semantics of a simple imperative language with and proba-

deterministic choice were pioneered by Programming Research

Group [43]; chapter 4 was motivat n particular, McIver and
Morgan [36] introduced a special ¢ biconvex powerdomain: more pre-

cisely their space of subprob utioms over a countable discrete state

ex powercone over the extended prob-

> A Smyth style semantics of non-determinism

non-determinism can also be found in their work:

initial state, the execution of a probabilistic program no longer results
e state; instead, the possible outcomes are described by a probabil-
ity distribution or continuous valuation. Such behaviours have been modeled
using the probabilistic powerdomain [24]. Non-deterministic choice between
executing programs P and P’, written P M P’, means that one of P or P’
will be executed, but we do not know which. In combination with probabilis-
tic choice, Mclver and Morgan interpret non-deterministic choice as picking
a probability p in [0, 1] arbitrarily and then running program P ,+ P’. They
illustrate this by saying, ‘...a demon could resolve the choice by flipping a
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coin of arbitrary bias’. Once the coin is chosen, the possible outcome follows
a fixed probability distribution. However, it is not known in advance which
one this will be. Thus, the set of all probability distributions or valuations
associated with the programs P ,+ P’ (p in [0, 1]) executed at a given state de-
scribes the possible outcomes. In this way, we obtain all convex combinations

of the denotations of P and P’ at that state (we are assuming, for the sake

procedure in Chapter 4, where convexity emerged as
making powerdomains into d-cones.

We now follow [36] but generalise their cou

The denotation of a program P will be a
PV(X), assigning to every state z in X a
the denotations and discuss

their meaning afterwards. For any , we have

) =0, for all U € O(X)

for a continuous function f: X — X
- (1=p) ; [P](=)

) Y [P](z)

ﬂ o[P], (see below how [P'] is lifted)

[P](z), if [B](z) = true
f Bthen Pelse P'](x):= { [P'](z), if [B](z) = false

(
{L}(=)

otherwise
Finally [while B do P] is interpreted as the least fixed point or the functional
F: [X - PV(X)] = [X — PV(X)]

defined by -

f([[P]](x)% if [B](z) = true
Ff)(z) =

e {n.}, if [B](z) = false
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for f: X - PV(X) and z € X.

The first three commands are purely deterministic; hence, their denotation
yields a singleton point valuation for each state x in X. Probabilistic choice
forms a convex combination of the sets denoting the arguments. Note too that
[P ,+ P'](x) will have a singleton value if [P](z) and [P'](z) have.

Now, we look at the denotation of non-deterministic choice. If we start

and [P'](z). Obviously, this is a convex set. In gener

to contain all convex combinations of elements in [P

nctor as stated in Theorem
4.16.6. Indeed, if the denotagi WX — PV(X) are given, we can-
not form their compositig ight away. But we can replace [P’] by

its unique formal u ear extension m: PV(X) - PV(X)
with [[737]] oex . Quow have the situation indicated by the dia-

gram below, sequential composition P; P’ can be interpreted by

PY(X)

The conditional works the way one expects it to work. As usual for while
loops, we take the least fixed-point semantics.
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Note that one can also give a semantics using either of the other two
powercones (by taking the lower or upper closure of the denotations given
as sets of valuations as above). Addition and scalar multiplication would be
calculated within HV(X) and 8V(X), respectively, to define the denotation of
probabilistic choice; formal union would be replaced by suprema in the convex

lower powercone and by infima in the convex upper powercone to define the

of sequential composition.

All these models support the view of programs as st

the state space X. A state is said to
within the corresponding open set. If t of a program is a con-
tinuous function g: X — X, then the in function maps open sets
to open sets, that is, it transfor i predicates. Hence, we may

consider g71: O(X) — O(X Yote that taking inverse images

state satisfying the desired predicate. Recall that
one-to-one correspondence with {0, 1}-valued Scott-

are Scott-continuous functions from the d-cone L(X) of all lower semicontin-
uous functions f: X — R, (see 2.8) into itself. In [36], McIver and Morgan
give a second semantics using expectation transformers. Let us show, how
we can achieve this in our more general situation. Par abus de langage every
Scott-continuous function r: X — PV(X) will be called a (non-deterministic
probabilistic) program.

Following Dijkstra’s weakest preconditions, one defines a Scott-continuous
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function wp: [X — PV(X)] — [L(X) — L(X)]. For a program interpreted
as a function r: X — PV(X), its weakest pre-expectation with respect to
post-expectation f in L(X) and state x in X is given by

wp(r)(f)(@) = inf { [ Fdu | j € ()}

of lower semicontinuous functions with respect to con
be found in [29,54,18].

The programming logic obtained by takinggffe ctations can
be defined as above not only for the biconvezgaowercorNgand r: X — PV(X),

but also for the convex upper powercone @hd programs r2 X — 8V(X). This
logic describes the total correctness pro on-deterministic proba-
bilistic program.

The biconvex powercone and
i al correctness. For this we define a
PV(X)] — [L(X) — L(X)]. For a

tation with respect to post-expectation

logic which is suited to dgg

given by

nt for Mclver and Morgan in [36] to use the biconvex power-
order to to treat partial and total correctness within the same frame-
work Qgr this purpose they generalised the notion of expectation by admitting
expectations with positive and negative real values. This approach leads to
a treatment of partial correctness which is equivalent to the one given above,
but which looks quite ad hoc within domain theory. We now show how to
avoid negative expectations.

We generalise the notion of an expectation in another direction. We use
the d-cone P(R.) of all closed intervals [a,b],a < b,a,b € Ry with the Egli-
Milner order [a,b] Egy [o/,V] iff a < o’ and b < ¥'. We note that P(R,)
is the biconvex powercone over the d-cone R,. A bi-expectation will be an
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interval-valued expectation defined on the state space X; more precisely, it is
defined to be a Scott-continuous function f: X — P(R,). In a straightforward
way, the bi-expectations on X form a d-cone JL(X), with addition, scalar

multiplication and order being defined pointwise. We are going to define a
Scott-continuous function wpb: [X — PV(X)] — [L(X) — IL(X)] giving

for every program r and every post-expectation f a weakest pre-bi-expectation

X
.
X
7
R, —— P(Ry)
i®,

’. containing the set

{[fdp|per(z)}.

(This
we apply the universal properties established in these two theorems to the
special case of the reals.) Note that wp(r)(f)(z) and wip(r)(f) are the lower

and upper boundary points of this interval, respectively, as

ows by combining the information following 4.15.15 and 2.7.3, where

wp(r) (f)(x) = inf {f fdp | € r(x)} = minwpb(r)(f)(x)
wip(r)(f)(x) = sup {[ fdu | p € r(2)} = maxwpb(r) () (@)

Above we have constructed the weakest pre-bi-expectation wpb(r)(f) for
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every post-expectation f: X — R,. We may extend this construction to
arbitrary post-bi-expectations f: X — P(R,). Indeed, by the universal prop-
erty 4.16.6, there is a unique Scott-corltinuous, linear, Y-preserving function

fA: PV(X) — PR, such that f = ey of\. For every program r we now define

wpb(r)(f) :fo r and we obtain a Scott-continuous function

wpb: [X — PV(X)] — [IL(X) — IL(X)].

more general setting.

A
&
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