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Abstract

We present domain-theoretic models that support both probabilistic and nondeterministic choice.
In [36], Morgan and McIver developed an ad hoc semantics for a simple imperative language with
both probabilistic and nondeterministic choice operators over a discrete state space, using domain-
theoretic tools. We present a model also using domain theory in the sense of D.S. Scott (see e.g.
[15]), but built over quite general continuous domains instead of discrete state spaces.
Our construction combines the well-known domains modelling nondeterminism – the lower, upper
and convex powerdomains, with the probabilistic powerdomain of Jones and Plotkin [24] modelling
probabilistic choice. The results are variants of the upper, lower and convex powerdomains over
the probabilistic powerdomain (see Chapter 4). In order to prove the desired universal equational
properties of these combined powerdomains, we develop sandwich and separation theorems of
Hahn-Banach type for Scott-continuous linear, sub- and superlinear functionals on continuous
directed complete partially ordered cones, endowed with their Scott topologies, in analogy to the
corresponding theorems for topological vector spaces in functional analysis (see Chapter 3). In the
end, we show that our semantic domains work well for the language used by Morgan and McIver.

Keywords: Semantic Domains, Nondeterminism, Probabilistic Nondeterminism, Directed
Complete Partially Ordered Cones, Hahn-Banach Theorems, Denotational Semantics
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Foreword

This volume is based on Regina Tix’s 1999 doctoral dissertation [55], entitled

Continuous D-cones: Convexity and Powerdomain Constructions and submit-

ted to the Department of Mathematics of Technische Universität Darmstadt.

Only a small part of this thesis, namely three sections of Chapter 3, has pre-

viously been published (see [56]). Since then, the main body of the thesis,

Chapter 4 on powerdomains for modelling non-determinism, has become of

increasing interest: indeed the main goal of the thesis was to provide semantic

domains for modelling the simultaneous occurrence of probabilistic and or-

dinary non-determinism. It therefore seemed appropriate to make the thesis

available to a general audience.

There has been a good deal of progress in the relevant domain theory since

the thesis was submitted, and so Klaus Keimel has rewritten large parts of the

text, while maintaining the global structure of the original dissertation. As

well as making a great number of minor changes, he has incorporated some

major improvements.

Gordon Plotkin has proved a Strict Separation Theorem for compact sets:

all of Section 3.11 is new and essentially due to him. The Strict Separation

Theorem 3.11.2 enables us, in Chapter 4, to eliminate an annoying auxiliary

construction used in the original thesis for both the convex upper and the

biconvex powercones; one also gets rid of the requirement that the way-below

relation is additive, and the whole presentation becomes simplified and shorter.

Next, an annoying hypothesis of a non-equational nature is no longer re-

quired for the statement of the universal property of the biconvex powercone.

Further, the hypotheses for the lower powercone have been weakened: the uni-

versal property for this powercone remains valid without requiring the base

domain to be continuous. Finally, we have added Section 4.16 explicitly pre-

senting the powerdomains combining probabilistic choice and non-determinism

and their universal properties. Combining the extended probabilistic power-
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domain with the classical convex powerdomain was not possible when Tix’s

thesis was submitted: it was not known then whether the extended proba-

bilistic powerdomain over a Lawson-compact continuous domain is Lawson-

compact. Extending slightly a recent result from [3], we now know that the

extended probabilistic powerdomain is Lawson-compact over any stably lo-

cally compact space. For continuous domains the converse also holds. This

allows us in particular to include infinite discrete spaces. We have included

these new results in section 2.2.

There have also been some terminological changes. For the classical power-

domains we now speak of the lower, upper, and convex powerdomains instead

of the Hoare, Smyth, and Plotkin ones. Accordingly, for the new powerdo-

mains we speak of the convex lower, convex upper, and biconvex powercones,

rather than the convex Hoare, convex Smyth, and convex Plotkin powercones.

D. Varacca [57,58,59] took a related approach to combining probability

and nondeterminism via indexed valuations. His equational theory is weaker;

he weakens one natural equation, but the theory becomes more flexible. M.

Mislove [37] has introduced an approach similar to ours for the probabilistic

(not the extended probabilistic) powerdomain, his goal being a semantics for

probabilistic CSP. It is quite likely that our results can be used to deduce

analogous properties for the (restricted) probabilistic powerdomain.

Without the 2003 Barbados Bellairs Workshop on Domain Theoretic Meth-

ods in Probabilistic Processes and the inspiring discussions there, in particular

with Franck van Breugel, Vincent Danos, Josée Deharnais, Mart́ın Escardó,

Achim Jung, Michael Mislove, Prakash Panangaden, and Ben Worrell, this

work would not have been undertaken. Achim Jung’s advice has been most

helpful during the preparation of the manuscript.

The diagrams were drawn using Paul Taylor’s diagrams macro package.

Regina Tix

Klaus Keimel

Gordon Plotkin

December 2004
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Introduction

The semantics of programming languages has been intensively studied by

mathematicians and computer scientists. In the late sixties Dana S. Scott in-

vented appropriate semantic domains for that purpose [51,49,50]. Continuous

domains are directed complete partially ordered sets together with an order

of approximation, the so called way-below relation. As they allow one to rep-

resent ‘ideal objects’ and their ‘finite approximations’ within one framework,

continuous domains provide a suitable universe for denotational semantics.

The order can be thought of as an ‘information ordering’. That means the

greater an element the more information it carries about the object it approx-

imates. In this approach, computable functions are continuous functions on

domains. Moreover, within domains, recursion can be interpreted via least

fixed points of continuous functions. Domain theory has since attracted many

researchers and evolved in various directions. It owes much to the theory of

continuous lattices and domains, most notably [14,15].

An important problem in domain theory is the modelling of non-determi-

nistic features of programming languages and of parallel features treated in a

non-deterministic way. If a non-deterministic program runs several times with

the same input, it may produce different outputs. To describe this behaviour,

powerdomains were introduced by Plotkin [40,41] and Smyth [52]. A powerdo-

main over a domain X is a subset of the power set of X. Which subsets of X

constitute the powerdomain depends on the kind of non-determinism that is

be modelled. There are three classical powerdomain constructions, called the

convex, upper, and lower powerdomains, often referred to as Plotkin, Smyth,

and Hoare powerdomains.

Probabilistic non-determinism has also been studied and has led to the

probabilistic powerdomain as a model [47,42,24,23]. Different runs of a prob-

abilistic program with the same input may again result in different outputs.

In this situation, it is also known how likely these outputs are. Thus, a prob-
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ability distribution or continuous valuation on the domain of final states is

chosen to describe such a behaviour. Originally attention had been paid to

valuations with total mass ≤ 1. This leads to powerdomains carrying a convex

structure. The collection of all continuous valuations (bounded or not) on a

continuous domain X, ordered ‘pointwise’, leads to the extended probabilis-

tic powerdomain of X. The extended probabilistic powerdomain carries the

structure of a cone, more technically of a continuous d-cone [29], a structure

close to that of a an ordered cone in a topological vector space as considered

in functional analysis. This development led to an intrinsic interest in d-cones

(see also Chapter 2).

For Plotkin’s and Jones’ model of probabilistic computation the continu-

ous d-cone of lower semicontinuous, i.e., Scott-continuous, functions defined

on the domain X with values in the non-negative extended reals is also needed.

Integration of such lower semicontinuous functions with respect to a continu-

ous valuation plays a crucial role. One obtains a duality between the extended

probabilistic powerdomain over a continuous domain X and the continuous

d-cone of lower semicontinuous functions on X. One direction of this dual-

ity is given by a version of the Riesz’ Representation Theorem. This leads

to functional analytic questions about continuous d-cones and their duals for

example: whether there exist non-zero linear Scott-continuous functionals,

and whether these separate points. We will discuss this issue among other

Hahn-Banach type theorems in Chapter 3. It still is an open problem whether

there is a cartesian closed category of continuous domains which is closed un-

der the construction of probabilistic powerdomains. This issue is discussed in

[25]. Cartesian closure is essential in the denotational semantics of functional

languages.

There is a new challenge: What happens if non-deterministic choice coex-

ists with probabilistic choice? And how can the classical powerdomain con-

structions together with the probabilistic powerdomain be used for modelling

such situations? The Programming Research Group in Oxford [43] has tackled

various aspects of this problem. Out of this group, McIver and Morgan have

chosen a subdomain of the Plotkin powerdomain over the space of subprob-

ability distributions on discrete state spaces [36]. The subsets they allow are

the convex ones. Our approach to convex powercones was motivated by theirs.

We modify and generalize their construction to continuous Lawson-compact

d-cones. Therefore, we introduce and investigate a Hoare and Smyth style

R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1–1046
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powerdomain construction for continuous d-cones. Then the convex Plotkin

powercone can be defined as a combination of the other two constructions. It

is our goal to apply these constructions to the extended probabilistic power-

domain in Section 4.16.

More background information will be given in the introductory part of

each chapter. The course of the work is as follows:

Chapter 1 introduces briefly the prerequisites from domain theory used in

this work and it recalls the interplay between order and topology in domain

theory.

Continuous d-cones are the focus of Chapter 2. These are continuous do-

mains which carry the structure of a cone in such a way that addition and

scalar multiplication are Scott-continuous. The following examples of contin-

uous d-cones will be investigated: the non-negative extended real numbers,

the extended probabilistic powerdomain over a continuous domain, the cone

of lower semicontinuous functions on a core compact space with values in the

non-negative extended real numbers, and products of continuous d-cones. We

will see that continuous d-cones are always locally convex, in the sense that

each point has a neighbourhood basis of Scott-open convex sets (the notion

of convexity is that of convex sets in real vector spaces and has to be dis-

tinguished from order-convexity). Sometimes, the hypothesis of an additive

way-below relation is useful. We will show that this property is satisfied in all

of the above examples with one restriction: The d-cone of lower semicontinu-

ous functions has an additive way-below relation if and only if the underlying

space is coherent. We will also give a brief exposition on the relation between

continuous valuations and Borel measures.

In Chapter 3, Hahn-Banach type theorems for continuous d-cones will be

proved. We begin by proving a Sandwich Theorem. From this we obtain

Separation Theorems. Since continuous d-cones are locally convex, the Sepa-

ration Theorems imply that the Scott-continuous linear functionals separate

the points on a continuous d-cone. The Strict Separation Theorems will be

needed for the convex upper and biconvex powercones. Another application

of the Separation Theorem will be indicated in the Conclusion: in connec-

tion with semantics it can be used to show that a special map between two

models is injective. Extension Theorems are another type of Hahn-Banach

Theorems. We will prove a typical extension theorem for continuous d-cones

with an additive way-below relation.

R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1–104 7
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Chapter 4 introduces Hoare, Smyth and Plotkin style constructions for con-

tinuous d-cones with the intention to apply them to the extended probabilistic

powerdomain. However, the constructions are feasable and more transparent

in the general setting of continuous d-cones. First, we modify the topological

characterisation of the lower powerdomain by taking only those non-empty

Scott-closed subsets which are also convex. This allows us to lift addition

and scalar multiplication in such a way that we obtain a d-cone again, called

the convex lower powercone. In addition, binary suprema exist in the convex

lower powercone and the convex lower powercone is shown to be universal in

this context.

For the upper powerdomain we replace non-empty convex Scott-closed sets

by non-empty convex compact saturated sets. Again, this enables us to lift the

algebraic operations. We also obtain a d-cone, this one with binary infima as

extra semilattice operation. However, for this d-cone continuity is equivalent

to the existence of linear Scott-continuous functionals which separate compact

saturated convex sets from points. The convex upper construction is universal

in a suitable setting with respect to binary infima.

The biconvex powercone can be defined over Lawson-compact continuous

d-cones as a combination of the convex lower powercone and the convex upper

powercone. We prove that the biconvex powercone is also Lawson-compact,

and that it is universal in this setting with respect to a binary semilattice

operation, called formal union.

This work concludes with giving an idea on how its results can be used

for semantics in a situation, where non-deterministic features can be denoted

alongside probabilistic ones.

R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1–1048
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Chapter 1

Order and Topology

In this chapter we briefly review the prerequisites on order and topology nec-

essary for our further results. The focus will be on domain theory; however,

a complete introduction to this topic by far exceeds the scope of this work.

Thus, we present selected items only and omit all proofs as we go along to fix

our notation. We refer to [1,7,14,15,33] for more details.

1.1 Dcpos and Scott-Continuous Functions

We shall use the term ordered set in the sense of partially ordered set, that

is, it denotes a set X with a reflexive, antisymmetric and transitive binary

relation ≤, not necessarily linear. For any subset A of X we get the lower,

resp. upper, closure of A by

↓A := {x ∈ X | x ≤ a for some a ∈ A} ,

↑A := {x ∈ X | x ≥ a for some a ∈ A} .

We abbreviate ↓{a} to ↓a and ↑{a} to ↑a. A subset A with A = ↓A is called

a lower set; A = ↑A is called an upper set.

A subset D of an ordered set X will be called directed if it is nonempty and

if any two elements of D have a common upper bound in D. The dual notion

is that of a filtered set. An ordered set X will be called directed complete

or a dcpo, for short, if each directed subset D has a least upper bound
∨↑

D

in X. If this is true only for directed subsets that are bounded from above,

then we say that X is conditionally directed complete. If every subset A has a

least upper bound sup A =
∨

A, then X is a complete lattice. The least upper

R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1–104 9
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bound of any (directed) subset is also called its (directed) supremum. The set

R+ of non-negative real numbers with the usual total order is conditionally

directed complete, whilst R+ = R+ ∩ {+∞} is directed complete.

A function f : X → Y between ordered sets is order preserving or mono-

tone, if a ≤ b implies f(a) ≤ f(b) for all a, b ∈ X. If X and Y are (condi-

tionally) directed complete, then f : X → Y is called Scott-continuous, if it is

order preserving and if f(
∨↑

D) =
∨↑

f(D) for every (bounded) directed sub-

set D ⊆ X. When we talk about continuous functions between (conditionally)

directed complete partial orders, we always mean Scott-continuous functions.

We denote by DCPO the category of dcpos and Scott-continuous functions.

The least upper bound of a directed set D may be considered as a limit of

D. This explains the choice of the notion of continuity. This can be made pre-

cise with respect to an appropriate topology: A subset A of a (conditionally)

directed complete ordered set X will be called Scott-closed if A is a lower set

and if
∨↑

D ∈ A for every (bounded) directed set D ⊆ A. The complement

X \A of a Scott-closed set A will be called Scott-open. Thus, a set U is Scott-

open, if U is an upper set and if for every (bounded) directed subset D of X

the following holds: If
∨↑

D ∈ U , then d ∈ U for some d ∈ D. It is easily seen

that the Scott-open sets form a topology on X, the Scott topology. This topol-

ogy always fulfills the T0-separation axiom, but is non-Hausdorff unless the

(conditionally) directed complete partial order is ordered trivially. Through-

out this work, A will denote the closure of a subset A of a (conditionally)

directed complete partial order with repect to the Scott topology.

Scott continuity as defined above is consistent with the Scott topology: A

function f : X → Y between (conditionally) directed complete ordered sets

is Scott-continuous if and only if f is continuous with respect to the Scott

topologies on X and Y .

A product X × Y of (conditionally) directed complete ordered sets X and

Y is again (conditionally) directed complete. A function f defined on X × Y

is Scott-continuous if, and only if, it is componentwise Scott-continuous, that

is, if x 
→ f(x, y) is Scott-continuous on X for every fixed y ∈ Y and similarly

for the second component. It is an unfortunate fact that the Scott topology

on X × Y may be strictly finer than the product of the Scott topologies on

X and Y , unless one of X and Y is continuous (see sec. 1.4 and [15, p. 197]).

Thus, a Scott-continuous function defined on X × Y need not be continuous

for the product topology unless one of X and Y is continuous.

R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1–10410
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For any topological space X we denote the collection of open sets by O(X).

Ordered by set inclusion, this gives a complete lattice. Especially, directed

suprema exist and O(X) itself can be viewed as a topological space with the

Scott topology.

1.2 The Specialisation Order

So far, we have seen how to equip a (conditionally) directed complete ordered

set with a T0-topology. Let us now change our point of view and consider a

T0-topological space X. Such a space always carries an intrinsic order, namely

the specialisation order. It is defined by x ≤ y if x is in the closure of {y} or,

equivalently, if the neighbourhood filter of x is contained in the neighbourhood

filter of y. This definition always yields a reflexive, transitive relation, which

is antisymmetric exactly for T0-spaces. For this reason, a topological space is

always supposed to satisfy the T0-separation axiom in this work. In the case

of a T1-space, where every singleton set is closed, the specialisation order is

trivial.

Continuous functions between topological spaces preserve the respective

specialisation orders. For the product of topological spaces with the product

topology, the specialisation order is equal to the product of the respective

specialisation orders. A closed set is always a lower set and every open set is

an upper set. The closure of a point is exactly its lower closure {a} = ↓a. Let

us recall the following result from [48, Corollary 1.6(i)]:

Lemma 1.2.1 Let f : X → Y be a continuous map between T0-topological

spaces and let A be a subset of X. With respect to the specialisation orders,

the supremum of f(A) exists in Y if and only if the supremem of f(A) exists

in Y . In this case,
∨

f(A) =
∨

f(A).

For a dcpo with the Scott topology the specialisation order coincides with

the originally given order.

The saturation of any subset A in a topological space is defined to be the

intersection of all the neighbourhoods of A. This is exactly the upper closure

↑A with respect to the specialisation order. Thus, an upper set will also

be called saturated. In T0-spaces all sets are saturated. It is an immediate

consequence of the definition that the saturation of any compact set is again

compact.

Compactness is defined by the Heine-Borel covering property: every cov-
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ering by open sets has a finite subcovering. For a monotone map f : X → Y

between two ordered sets, in particular, for a continuous map between topo-

logical spaces with their specialisation orders, ↑f(↑A) = ↑f(A) holds for any

subset A of X.

We will mainly apply this to compact saturated subsets and Scott-continuous

functions.

From general topology we know that the continuity of a function f : X →

Z can be characterized by the property that f(A) ⊆ f(A) or, equivalently,

f(A) = f(A), for every subset A ⊆ X. We will need the following consequence

which can be applied to dcpos and Scott-continuous functions on products,

which are only separately continuous with respect to the product topology

(see the remarks at the end of section 1.1):

Lemma 1.2.2 Let X, Y, Z be topological spaces and f : X × Y → Z be sep-

arately continuous, that is, x 
→ f(x, y) is continuous on X for every y ∈ Y

and similarly for the second coordinate. For all subsets A ⊆ X and B ⊆ Y

one then has f(A × B) = f(A × B) = f(A × B).

Proof. By separate continuity, we have f(A×{y}) ⊆ f(A × {y}) ⊆ f(A × B)

for all y ∈ Y , whence f(A × B) ⊆ f(A × B), and this implies f(A × B) =

f(A × B). The second equality follows in an analogous way. �

1.3 Sober Spaces

For a special class of T0-spaces every non-empty closed subset is either the

closure of a unique point or the union of two proper closed subsets. We

call such spaces sober. An equivalent formulation of sobriety is that every

completely prime filter of open sets on X is the open neighbourhood filter of

a unique point a ∈ X.

The collection of all nonempty compact saturated subsets of a topologi-

cal space is denoted by Sc(X) and will be ordered by reverse inclusion. An

important property of sober spaces X is the so called Hofmann-Mislove The-

orem (see [20,26], [15, Theorem II-1.20]). The following proposition (see [15,

TheoremII-1.21, Corollary II-1.22]) is a consequence of this theorem. It will

be used extensively in Section 4.14.

Proposition 1.3.1 Let X be a sober space. The intersection of a filtered

family (Qi) of nonempty compact saturated subsets is compact and nonempty.
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If such a filtered intersection is contained in an open set U , then Qi ⊆ U for

some i.

The first part of this proposition can be rephrased as follows: Sc(X) or-

dered by reverse inclusion is a dcpo for any sober space X.

It is another property of sober spaces that the specialisation order yields

a dcpo, with the original topology being coarser than the Scott topology.

However, a dcpo with the Scott topology is not always sober [22]. In the

next section we introduce special dcpos, called continuous domains, which are

always sober spaces with respect to the Scott topology [31].

1.4 Continuous Domains

On a (conditionally) directed complete partial order X we introduce a binary

relation � as follows: Let x and y be elements of X. We say that x approxi-

mates y or x is way-below y, and we write x � y, if for all (bounded) directed

subsets D of X, the inequality y ≤
∨↑

D implies x ≤ d for some d ∈ D. We

call � the order of approximation or way-below relation on X. It is immediate

that x � y implies x ≤ y, and w ≤ x � y ≤ z implies w � z, in particular,

the way-below relation is transitive. If x ∨ y exists, then x � z and y � z

imply x ∨ y � z. For any x ∈ X and for any subset A ⊆ X, we use the

notations

��x := {y ∈ X | x � y} , ��A := {y ∈ X | x � y for some x ∈ A} ,

��x := {y ∈ X | y � x} , ��A := {y ∈ X | y � x for some x ∈ A} .

A (conditionally) directed complete partial order X is called continuous if,

for all x ∈ X, the set ��x is directed and x =
∨↑��x. A continuous dcpo is

also called a continuous domain. A subset B of a continuous domain X is

called a basis of X if, for all x ∈ X, the set ��x ∩ B is directed and has x

as its supremum. In a continuous domain, a basis always exists, for example

take B = X. Moreover, in a continuous domain the so called interpolation

property holds: Whenever x � y, there is z ∈ X such that x � z � y. If a

basis of X is given, z can be chosen from this basis. We denote the category

of continuous domains and Scott-continuous functions by CONT.

The Scott topology of a continuous domain can be nicely described via

the way-below relation. The sets of the form ��x, x ∈ X, form a basis of this
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topology. Again, we can restrict ourselves to a basis B of X, i.e., the sets ��b,

b ∈ B, also form a basis of the Scott topology.

The Scott closure of a subset A of an arbitrary dcpo can be obtained in

the following way: Let A0 = A and define by transfinite induction An+1 to

be the set of all x such that x ≤
∨↑

D for some directed subset D of An; for

limit ordinals n, we let An =
⋃

m<n Am. For cardinality reasons there is an

ordinal n such that An = An+1, that is, An = A, the Scott closure of A. For

continuous domains, the procedure stops after the first step:

Lemma 1.4.1 In a continuous domain X the Scott closure of an arbitrary

subset A is

A =
{ ∨↑

D | D a directed subset of ↓A
}
.

For a continuous domain it is known how to obtain the largest Scott-

continuous function below a monotone one. The construction once again relies

on a monotone function defined on a basis only.

Proposition 1.4.2 Let B be a basis of a continuous domain X and let Y

be a dcpo. For every monotone function f : B → Y there is a largest Scott-

continuous function f̌ : X → Y such that f̌ |B ≤ f . It is given by f̌(x) =∨↑
{f(y) | y � x and y ∈ B}.

Let X and Y be dcpos. Then a pair of Scott-continuous functions r : X →

Y and s : Y → X is called a continuous retraction-section-pair if r ◦ s is the

identity on Y . Note that in this case r is surjective and s is injective. We

will call Y a retract of X, and it can be shown that a retract of a continuous

domain is again a continuous domain (see [15], p. 81).

We call a space locally compact if every point has a neighbourhood basis

of compact sets. Note that continuous domains are always locally compact.

Actually, a somewhat stronger condition holds:

Lemma 1.4.3 In a continuous domain each Scott-compact subset has a neigh-

bourhood basis of Scott-compact saturated sets.

1.5 Lawson-Compact Continuous Domains

According to Nachbin [39], an ordered topological space is a topological space

with an order ≤ such that the graph of the order relation is closed in X × X

with the product topology. In [14,15] (partially) ordered topological spaces
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are called pospaces. One immediately concludes that any pospace is Hausdorff.

Another property which can already be found in [39] is the following:

Lemma 1.5.1 Let X be a pospace. If A is a compact subset, then ↓A, ↑A

and ↓A ∩ ↑A are closed subsets of X.

For any ordered topological space X the collection U(X) of all open upper

sets is closed under finite intersections and arbitrary unions, that is, U(X) is a

topology on X which is T0 but not Hausdorff unless the order is trivial. Note

that the specialisation order with respect to the topology U(X) coincides with

the original order on X.

On the other hand, given a T0-topological space with its specialisation or-

der, one may define the co-compact topology which has the compact saturated

subsets as a subbasis for the closed sets. The open sets for the co-compact

topology are lower sets. The common refinement of a topology with its co-

compact topology is called the patch topology. Another way of creating a

topology which is coarser than the co-compact topology is by taking as a sub-

basis of closed sets the principal filters ↑x, x ∈ X. This weakest T0-topology

whose open sets are lower sets is called the lower topology.

There is an important one-to-one correspondance between compact ordered

spaces and certain classes of T0-spaces to be defined.

Definition 1.5.2 A topological space X is called coherent , if the intersection

of any two compact saturated subsets is compact. It is called stably locally

compact , if it is locally compact, sober, and coherent; if, in addition, X is a

compact space, then it is called stably compact .

Proposition 1.5.3 ([15, Proposition VI-6.8, Proposition VI-6.11]) Let X be a

stably compact space. With respect to the patch topology and the specialisation

order, X becomes a compact pospace; the patch-open upper sets are precisely

the open sets for the original topology. Conversely, let X be a compact pospace.

With respect to the topology U(X) of open upper sets, X becomes a stably

compact space the patch topology of which is the original compact topology on

X.

The corresponding result holds for stably locally compact spaces on the

one hand, and properly locally compact pospaces on the other hand, where a

pospace is called properly locally compact , if it is locally compact and if ↑K is

compact for every compact subset K. A locally compact pospace is far from
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being properly locally compact, in general; the real line with is usual order

and topology, for example, is a non-properly locally compact pospace.

We now apply these ideas to dcpos with the Scott topology. For any dcpo

the Lawson topology is defined to be the common refinement of the Scott

topology and the lower topology. In case the dcpo X is continuous the Scott

topology always is locally compact and sober. The Lawson topology and the

patch topology coincide (see [33]) and, with respect to the Lawson topology, X

is a pospace. We will be interested in continuous domains that are coherent ,

that is, which have the property that the intersection of any two Scott-compact

saturated sets is Scott-compact. By the above, coherence implies stable local

compactness for continuous dcpos.

Proposition 1.5.4 ([15, Theorem III-5.8]) For a continuous domain X the

following properties are equivalent:

(1) X is Lawson-compact.

(2) The Scott-compact saturated sets agree with the closed sets for the lower

topology on X, that is, the co-compact topology agrees with the lower topol-

ogy.

(3) X is compact and coherent, that is, X with the Scott topology is stably

compact.

By the above, a Lawson-compact continuous domain becomes a compact

pospace when endowed with the Lawson topology. Its Lawson-open upper sets

are precisely the Scott-open sets and its Lawson-closed upper sets are precisely

the Scott-compact saturated sets. In Section 4.15 we will apply Lemma 1.5.1

to reduce an order-convex Lawson-compact subset to its lower part, which is

Scott-closed, and its upper part, which is compact saturated with respect to

the Scott topology. Another important fact from [33] is

Lemma 1.5.5 Every Scott-continuous retract of a Lawson-compact continu-

ous domain is Lawson-compact.

Most continuous domains that occur in semantics are coherent. Thus,

it will not be a great restriction, if we restrict ourselves to Lawson-compact

continuous domains in section 4.15. But there are exceptions. The following

is an example of locally compact sober space which is not coherent. It is also

an example of a continuous domain that is not Lawson-compact.

Example 1.5.6 We take a trivially ordered infinite set Y and attach two new
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elements a and b as minimal elements, that is we let a < y and b < y for each

y ∈ Y , but a and b remain incomparable. This ordered set is a continuous

domain, hence, locally compact and sober for the Scott topology, but it is not

coherent: The subsets ↑a = {a} ∪ Y and ↑b = {b} ∪ Y are compact but their

intersection Y is not.
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Chapter 2

Directed Complete Ordered

Cones

The concept of a directed complete ordered cone (d-cone, for short) will be

introduced in this chapter. As these objects are not yet familiar in domain

theory, we do so at a leisurely pace. We take some care in developing their

properties, and we also study some classes of examples.

The abstract probabilistic domains APD of Jones and Plotkin [24,23] have

influenced the development of the notion of a d-cone. These objects turn out

to be the algebras of the monad given by the probabilistic powerdomain func-

tor in the category of continuous domains with respect to a ‘convex structure’.

Dealing with subprobabilities allows scalar multiplication by real numbers be-

tween 0 and 1 only, addition is replaced by convex combinations. To overcome

this inconvenience, Kirch introduced the extended probabilistic powerdomain

and showed that this functor is still monadic and has continuous d-cones as

algebras [29]. Although studying cones in a domain-theoretic setting is quite

new, ordered cones have long played a role in various contexts. For ordered

cones, it is natural to require addition, scalar multiplication and linear func-

tionals to be monotone. D-cones can be seen as a variant of ordered cones:

one requires the order to yield a dcpo and, accordingly, one requires addition,

scalar multiplication and linear functionals to be Scott-continuous.

Before we give detailed definitions we will name at least some previous

occurrences of ordered cones. In [13] Fuchssteiner and Lusky studied them in

a functional analytic setting. In Chapter 3 we will show that some of their

results still hold for continuous d-cones. Other results about ordered cones, of

which we will take advantage, are due to W. Roth [45]. He deals with ordered
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cones equipped with a quasiuniform structure proposed by Keimel and Roth

in [27]. In the context of harmonic analysis and abstract potential theory,

cones have been studied by Boboc, Bucur and Cornea [5]. Rauch has shown

in [44] that a special class of their ordered cones, their standard H-cones, can

also be viewed as continuous lattice-ordered d-cones with addition and scalar

multiplication being Lawson continuous. Most of these cones — as is the case

with d-cones — are not embeddable into real vector spaces as the cancellation

law does not hold for addition.

2.6 D-Cones and Their Basic Properties

We denote by R+ := {r ∈ R | r ≥ 0} the non-negative real numbers with their

usual linear order and endowed with the Scott topology the only proper open

sets of which are the intervals ]r,∞[, r ∈ R+.

Definition 2.6.1 A set C is called a cone if it is endowed with two operations,

an addition +: C × C → C and a scalar multiplication · : R+ × C → C such

that the following hold: there is a neutral element 0 ∈ C for addition making

(C, +, 0) into a commutative monoid, that is, for all a, b, c ∈ C one has:

(a + b) + c= a + (b + c)

a + b = b + a

a + 0 = a.

Moreover, scalar multiplication acts on this monoid as on a vector space: for

a, b ∈ C and r, s ∈ R+, one has

1 · a = a

0 · a = 0

(r · s) · a = r · (s · a)

r · (a + b) = (r · a) + (r · b)

(r + s) · a = (r · a) + (s · a).

A function f : C → D between cones is called linear if, for all a, b ∈ C and

r ∈ R+, one has

f(a + b) = f(a) + f(b)

f(r · a) = r · f(a).

A cone C is an ordered cone if it is also endowed with a partial order ≤

such that addition and scalar multiplication considered as maps C × C → C

and R+ × C → C, respectively, are order preserving in both variables. If

the order is directed complete and if addition and scalar multiplication are
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Scott-continuous, then C is called a d-cone. Thus, a d-cone is at the same

time a cone and a dcpo. In the case that C is a continuous domain, C is

called a continuous d-cone. Note that we are using here the notions of Scott

topology and continuity developed in Section 1.1 for conditionally directed

complete partial orders; indeed it was precisely in order to define d-cones that

we introduced these notions.

The category of d-cones as objects and Scott-continuous linear maps as

morphisms is denoted by CONE, and the full subcategory of continuous d-

cones is called CCONE

In the literature ordered cones are used in a slightly more general sense: For

scalar multiplication one only requires x 
→ r · x : C → C to be monotone for

every fixed r ≥ 0, whilst we require also that all the maps r 
→ r · x : R+ → C

are order preserving. This stronger requirement implies that 0 is the least

element, as 0 = 0 · x ≤ 1 · x = x for any x ∈ C. A d-cone also has a greatest

element since the monotonicity of addition implies that the cone as a whole

is directed and, hence, has a supremum which the is the greatest element.

D-cones also have a topological flavour, but they are not necessarily topo-

logical cones: A topological cone is a cone C endowed with a topology such

that both operations, addition (x, y) 
→ x + y : C × C → C and scalar multi-

plication (r, x) 
→ r · x : R+ × C → C are jointly continuous. In contrast with

classical analysis, we take R+ to have the Scott topology here. As noted in sec-

tion 1.1, the Scott topology on a product of (conditionally) directed complete

partial orders need not be the product of the Scott topologies on the factors,

and so a Scott-continuous function defined on a product of (conditionally) di-

rected complete partial orders need not be jointly continuous for the product

of their Scott topologies. In particular, addition need not be jointly contin-

uous on a d-cone. This phenomenon cannot occur if one of the two factors

is a continuous (conditionally) directed complete partial order. Thus, scalar

multiplication is jointly continuous on any d-cone, and addition is jointly con-

tinuous for continuous d-cones which, consequently, are topological cones for

the Scott topology.

We have discussed the relations between ordered cones, d-cones and topo-

logical cones in some detail as we will apply results about topological cones

and, especially, ordered cones to continuous d-cones.

A simple example of a continuous d-cone is R+ := R+∪{∞} with its usual
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linear order, addition and multiplication, extended to ∞ as follows:

x + ∞ = ∞ = ∞ + x, x ∈ R+

x · ∞ = ∞, x ∈ R+ \ {0}

0 · ∞ = 0.

With this convention, addition and multiplication are Scott-continuous on R+.

For any d-cone, scalar multiplication – which was supposed to be defined

for r ∈ R+ only – can be extended to r = ∞ by defining ∞·x :=
∨↑

{r ·x|r ∈

R+}. The cone axioms will also hold for the extended scalar multiplication.

It is straightforward to see that direct products of (continuous) d-cones

are again (continuous) d-cones. Other examples are the extended probabilistic

power domain, the space of lower semicontinuous functions and the dual d-

cone. We postpone the definition and a more detailed discussion of these

examples first examining some general properties of d-cones.

2.6.1 The Way-Below Relation

It is a useful property of d-cones that scalar multiplication preserves the way-

below relation. We will see later that this is not true for addition, in general.

Lemma 2.6.2 Let a, b be elements of a d-cone C with a � b and let r ∈ R+.

Then r · a � r · b holds.

Proof. For r > 0 this follows from the fact that a 
→ ra is an order-

isomorphism of C. If r = 0 then r · a = r · b = 0 is the least element of

the d-cone and therefore compact. �

For some of our results we will need continuous d-cones where also addition

preserves the way-below relation. We give a name to this property:

Definition 2.6.3 The way-below relation on a d-cone is called additive, if

a1 � b1 and a2 � b2 imply a1 + a2 � b1 + b2.

The additivity of the way-below relation is equivalent to the property that

addition is an almost open map in the following sense:

Proposition 2.6.4 Let C be a continuous d-cone. Then the way-below rela-

tion is additive if and only if, for all Scott-open subsets U, V , the set ↑(U +V )

is Scott-open, too.
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Proof. Suppose first that � is additive. Let x ∈ ↑(U + V ). Then there are

elements u ∈ U, v ∈ V such that u + v ≤ x. As C is continuous, there are

elements u′ ∈ U , v′ ∈ V such that u′ � u, v′ � v. By the additivity of

the way-below relation, u′ + v′ � u + v ≤ x. This shows that ↑(U + V ) is

Scott-open. For the converse, let u′ � u and v′ � v. Then u + v ∈ ��u′ + ��v′.

As now the upper set generated by ��u′ + ��v′ is supposed to be Scott-open,

there is an x in this set with x � u + v. It follows that u′ + v′ ≤ x � u + v.�

It will turn out that most of our examples of continuous d-cones have an

additive way-below relation.

Proposition 2.6.5 The way-below relation on R+ is additive.

Proof. On R+ the way-below relation is characterised by x � y if and only

if x < y or x = y = 0. It is straightforward that addition preserves this

condition, and thus the way-below relation. �

The additivity of the way-below relation is preserved under products:

Proposition 2.6.6 The way-below relation is additive on a product of con-

tinuous d-cones with additive way-below relations.

Proof. The way-below relation � on a product
∏

i∈I Xi of dcpos Xi with a

smallest element ⊥i ∈ Xi can be characterised by the way-below relations �i

on Xi via (xi)i∈I � (yi)i∈I if and only if there exist a finite subset E ⊆ I with

xi = ⊥i for i �∈ E and xi �i yi for i ∈ E. The least element in a continuous d-

cone is the neutral element 0. Thus, addition preserves the way-below relation

in a product if this holds in each component. �

The way-below relation on the probabilistic powerdomain and on the cone

of lower semicontinuous functions will be discussed later. There, we will also

see an example of a continuous d-cone where the way-below relation is not

additive.

2.6.2 Convex Sets

On d-cones one has two notions of convexity:

Definition 2.6.7 A subset M of a cone C is called convex if a, b ∈ M implies

r ·a+(1− r) · b ∈ M for all r ∈ [0, 1]. A subset M of a poset C is called order-

convex if a, b ∈ M and a ≤ x ≤ b imply x ∈ M . A d-cone C is called locally
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convex if every point has a neighbourhood basis of Scott-open sets which are

convex and order-convex.

Principal filters ↑a and principal ideals ↓a are convex and order-convex for

any a ∈ C, since scalar multiplication and addition on a d-cone are monotone.

Together with the fact that the union of an increasing sequence of convex,

order-convex sets is convex and order-convex, we see that a continuous d-cone

is always locally convex. This was pointed out to us by J.D. Lawson:

Proposition 2.6.8 Every continuous d-cone C is locally convex. Indeed, ev-

ery point in C has a neighborhood basis of Scott-open convex filters.

Proof. For a ∈ C let U be a Scott-open neighbourhood of a. Since C is con-

tinuous we can find a sequence (an)n∈N in U satisfying a1 � a and an+1 � an

for all n ∈ N. Then V :=
⋃

n∈N ��an =
⋃

n∈N
↑an is a Scott-open neighbourhood

of a which is convex and order-convex and contained in U . �

In case the way-below relation is additive we can show even more:

Lemma 2.6.9 For a continuous d-cone with an additive way-below relation,

the Scott interior of any convex saturated set M is convex.

Proof. Let x, y ∈ int M and r ∈ [0, 1]. Then, there exist x′, y′ ∈ M with

x′ � x and y′ � y. Using that the way-below relation is additive, we conclude

r ·x+(1−r)·y � r ·x′+(1−r)·y′ ∈ M , as M is convex; hence, r ·x+(1−r)·y ∈

int M . �

There are other operations which preserve convexity.

Lemma 2.6.10 Let M be a convex subset of a d-cone C. Then:

(i) The Scott closure M is convex.

(ii) The saturation ↑M and the lower closure ↓M are convex.

Proof. For the first claim we use the formation of the Scott closure indicated

before Lemma 1.4.1. In a first step we form the set M1 of all x ∈ C such

that there is a directed family (ai) in M with x ≤
∨↑

ai. The set M1 is

convex. Indeed, for x, y ∈ M1 there are directed sets (ai) and (bj) in M such

that x ≤
∨↑

ai and y ≤
∨↑

bj . For 0 ≤ r ≤ 1, the family
(
rai + (1 − r)bj

)
is also directed in M and rx + (1 − r)y ≤ r ·

∨↑
ai + (1 − r) ·

∨↑
bj =∨↑ (

rai + (1− r)bj

)
, whence rx + (1− r)y ∈ M1. We continue this procedure

by transfinite induction defining convex sets Mn for ordinals n. (For limit
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ordinals n we define Mn =
⋃

m<n Mm.) For cardinality reasons there is an n

such that Mn = Mn+1. Then Mn is the Scott closure of M which consequently

is convex.

That the saturation and lower closure of a convex set are convex is an

immediate consequence of the fact that addition and scalar multiplication of

a d-cone are monotone. �

For nonempty subsets P and Q of any cone C and r ∈ R+, we may define

r · P = {ra | a ∈ P} and P + Q = {a + b | a ∈ P, b ∈ Q} .

Clearly, addition of subsets is associative, commutative, and the singleton

zero set is a neutral element. Scalar multiplication satisfies all the cone axioms

except that (r+s)P �= rP +sP in general. Indeed, let C = R+ and P = {1, 2},

then 2P = {2, 4} but P + P = {2, 3, 4}, whence 2P �= P + P . The situation

changes, when we pass to convex subsets:

Lemma 2.6.11 Let P, Q be subsets of a cone C and r ∈ R+. Then we have:

(i) The convex hull of a scalar multiple is given by conv(r · P ) = r · conv P .

(ii) The convex hull of the sum is given by conv(P + Q) = conv P + conv Q.

(iii) If P, Q are convex, then r · P and P + Q are convex, too.

(iv) With the straightforward addition and scalar multiplication as defined

above, the collection of all nonempty convex subsets of C is a cone.

(v) If P and Q are convex, then the convex hull of the union is given by

conv(P ∪ Q) =
{
r · p + (1 − r) · q

∣∣ p ∈ P, q ∈ Q, r ∈ [0, 1]
}
.

The first and second statements of this lemma are straightforward and they

imply the third statement. For the fourth statement the only noteworthy part

is the equality

(r + s)P = rP + sP :

Indeed, if r = s = 0, then the equation is trivial. If one of r and s is nonzero,

then c ∈ r · P + s · P implies that there are elements a, b ∈ P such that

c = ra+sb = (r+s) ·
(

r
r+s

a+ s
r+s

b
)
∈ (r+s) ·P . Hence r ·P +s ·P ⊆ (r+s) ·P

by the convexity of P . The converse inclusion is clear. The last item is again

straightforward.

If we apply the second part of the previous lemma to two singleton sets

{x} and {y} we see that the convex hull of the two element set {x, y} is

indeed the ‘line segment’ connecting x and y. By a simple induction over the
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cardinality of a finite set F we conclude conv F =
{ ∑

x∈F rxx
∣∣ x ∈ F, rx ∈

[0, 1],
∑

x∈F rx = 1
}
.

For any natural number n ∈ N, the standard simplex ∆n :=
{
(ri)

n
i=1 ∈

[0, 1]
∣∣ ∑n

i=1 ri = 1
}

is compact Hausdorff with respect to the topology induced

by the Scott topology on [0, 1]n. Indeed, the induced topology is equal to the

usual compact Hausdorff topology on ∆n. We need this observation for n = 2

to show

Lemma 2.6.12 For compact convex subsets P and Q of a topological cone,

conv(P ∪Q) is also compact. This applies in particular to continuous d-cones

with the Scott topology.

Proof. The set ∆2 =
{
(r, 1 − r)

∣∣ r ∈ [0, 1]
}

is compact with respect to

the Scott topology on [0, 1]2. The map from ∆2 × C × C to C, defined by(
(r, 1 − r), x, y

)

→ r · x + (1 − r) · y is continuous. The convex hull of P ∪ Q

is equal to the image of the compact set ∆2 × P × Q. Thus, conv(P ∪ Q) is

also compact. �

We can apply this lemma to two singleton sets and, by induction over the

cardinality, to finite sets F and we obtain that the convex closure conv F and

consequently also ↑conv F are Scott-compact in a continuous d-cone.

2.7 The Extended Probabilistic Powerdomain

In this section we introduce our most prominent examples of d-cones: the

extended probabilistic powerdomains over topological spaces.

Definition 2.7.1 Let X be a topological space and O(X) the collection of all

open subsets. A function µ : O(X) → R+ is called a valuation on X if, for all

U, V ∈ O(X), it satisfies:

• µ(∅) = 0 (µ is strict)

• U ⊆ V ⇒ µ(U) ≤ µ(V ) (µ is monotone)

• µ(U) + µ(V ) = µ(U ∪ V ) + µ(U ∩ V ) (µ is modular)

If, in addition, µ is Scott-continuous, that is, if

• µ
(⋃↑

i∈I Ui

)
=

∨↑

i∈I µ(Ui) for all directed families (Ui)i∈I in O(X),

then µ is called a continuous valuation. The set of all continuous valuations

on X is denoted by V(X) and will be called the extended probabilistic power-
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domain on X. For a dcpo X, valuations are always defined with respect to

the Scott topology.

Valuations may be considered to be a topological variant of a measure or a

probability distribution. In connection with order theory it is quite natural to

impose Scott continuity as an additional condition on valuations as was done

by Lawson in [32]. From a measure theoretical background, one might only

impose the weaker condition of countable continuity, that is, for any increasing

sequence of open sets, µ
(⋃↑

n∈N
Un

)
=

∨↑

n∈N
µ(Un). The obvious question

on the relation between continuous valuations and classical measures arises:

when can a continuous valuation be extended to a Borel measure? A positive

answer has been given for various spaces using quite different techniques. We

discuss this question in some detail in Section 2.7.1 below.

Probabilities correspond to normalized valuations, i.e., µ(X) = 1. This is

the case for the dcpo of probability distributions on an ω-algebraic domain of

states considered by Saheb-Djahromi in [47] in order to model programs with

finite probabilistic branching. In [42], Plotkin talks about all sub-probability

distributions on measurable spaces to describe predicate transformers and

state transformation functions with probabilities. Sub-probability distribution

means that the measures are bounded by 1 instead of being normalized. In

this context the value µ(X) gives the probability of termination. The set of all

such measures defined on the Borel algebra of an ω-continuous dcpo X with

the Scott topology, ordered by µ � ν if µ(U) ≤ ν(U) for all Scott open sub-

sets U of X, has been called the probabilistic powerdomain by Plotkin. The

essential stucture regarding this order theoretic model of probabilistic non-

determinism is adequately described by the values on open sets. Therefore, it

is not suprising to find in [24,23] that Jones and Plotkin replaced measures by

continuous valuations in order to define the probabilistic powerdomain as the

set of all continuous valuations µ such that µ(X) ≤ 1. They introduce a simple

imperative language with a probabilistic construct and use the probabilistic

powerdomain of continuous valuations to give its denotational semantics. For

this they have to study the internal structure of the probabilistic powerdo-

main quite well. Most of their results carry over to the extended probabilistic

powerdomain (see [29]). Various classes of valuations are also surveyed by

Heckmann in [18]. Although the interest in the probabilistic powerdomain

originated in denotational semantics, more recently Edalat found applications

inside mathematics, e.g. the the generalised Riemann integral [9], iterated
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function systems with probabilities [11], dynamical systems and fractals [10].

We now recall some special valuations. For any element x ∈ X, the point

valuation ηx : O(X) → R+ is defined by

ηx(U) :=

⎧⎪⎨
⎪⎩

1, if x ∈ U

0, if x �∈ U.

A point valuation is always continuous.

Given continuous valuations µ and ν on any topological space X and r ∈

R+, it is straightforward to check that µ + ν and r · µ defined ‘pointwise’ by

(µ+ν)(U) := µ(U)+ν(U) and (r ·µ)(U) := r ·µ(U) for all open sets U of X are

again continuous valuations. Especially, we can take finite linear combinations

of point valuations, which will be called simple valuations. They have the form

µ =
∑n

i=1 ri ·ηxi
with ri ∈ R+ and xi ∈ X for i = 1, . . . , n. Likewise, we define

an order on V(X) as the ‘pointwise’ order µ ≤ ν if µ(U) ≤ ν(U) for all U ∈

O(X). The supremum
∨↑

i∈I µi of a directed family of continuous valuations

(µi)i∈I always exists and is given by (
∨↑

i∈I µi)(U) =
∨↑

i∈I µi(U), U ∈ O(X).

The following Theorem summarizes important properties of the extended

probabilistic powerdomain. Part (a) of the Theorem is straightforward to

check using Scott continuity of addition and scalar multiplication on R+. A

proof that every bounded continuous valuation on a continuous domain can be

approximated by simple valuations way-below has been given by C. Jones [23].

It has been extended to unbounded valuations by Kirch [29]. For a proof see

also [15, Theorem IV-9.16]. The continuity of V(X) for a continuous domain

X can be derived from this and we have (b). Assertion (c) of the Theorem is

a slight generalisation of Theorem 38 including the remark preceding it in [3].

We include a proof here. As to part (d), Jung and Tix [25] have shown that

the probabilistic powerdomain over a Lawson-compact continuous domain is

Lawson-compact. It follows from (c) that this result can be generalized to

coherent domains. The converse is new. The proof has been communicated

to us by J.D. Lawson.

Theorem 2.7.2 (a) For a topological space X, the extended probabilistic

powerdomain V(X) with pointwise addition, scalar multiplication and or-

der is a d-cone.

(b) If X is a continuous domain, then V(X) is a continuous d-cone; the
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simple valuations form a basis.

(c) For a stably locally compact space X, the extended probabilistic powerdo-

main V(X) is stably compact for the weak topology, that is, the weakest

topology rendering Scott-continuous the maps µ 
→ µ(U) : V(X) → R+

for all open subsets U .

(d) Let X be a continuous domain. Then V(X) is Lawson-compact if and

only if X is coherent.

Proof. It remains to prove the last two statements.

(c) We start with the stably compact space P =
∏

U∈O(X) R+, where each

copy of R+ is equipped with the Scott topology. The corresponding patch

topology is just the product topology where each copy of R+ is endowed with

the usual Hausdorff topology. The set MV(X) of all (not necessarily continu-

ous) valuations µ : O(X) → R+ is patch closed in P , as one easily verifies. By

invoking Proposition 1.5.4 we have thus shown that MV(X) is stably compact

when equipped with the weak topology.

In order to restrict further to continuous valuations, we remember that,

for a locally compact space X, the lattice O(X) of open subsets is continuous.

We now use a standard technique to associate to an arbitrary valuation µ its

Scott-continuous envelope

Φ(µ)(U) = sup{µ(V ) | V � U}

It is clear that Φ(µ)(∅) = 0 holds, and that Φ(µ) is monotone. For the

modular law, we exploit stable local compactness which gives us that U ∩ U ′

is approximated by sets of the form V ∩ V ′ where V � U and V ′ � U ′. We

see that Φ(µ) is a continuous valuation.

Thus Φ is a projection operator on MV(X) with image V(X). In order

to see that Φ is continuous with respect to the weak topology on MV(X),

observe that Φ(µ)(U) > r, if and only if µ(V ) > r for some V � U . Hence

the preimage under Φ of the subbasic open set {µ ∈ MV(X) | µ(U) > r}

equals
⋃

V �U{µ ∈ MV(X) | µ(V ) > r}.

As a (continuous) retract of the stably compact space MV(X), the space

V(X) with the weak topology is stably compact (see e.g. [3, Proposition 16]).

(d) Let X be a continuous domain. Let L denote its upper powerdomain,

that is, the collection of all Scott-closed subsets of X ordered by inclusion. It

is well known that L is a completely distributive lattice. The natural injection
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x 
→ ↓x of X into L preserves the way-below relation and is an embedding

both for the respective Scott and Lawson topologies. Identifying the elements

x with there images ↓x, we may view X as a subspace of L.

We now suppose that X is not coherent. Then X⊥ = X∪{⊥} is not Lawson

compact. As L is Lawson compact, there is a net (pi) in X that converges to

an element a ∈ L \ X⊥ with respect to the Lawson topology. We claim that

the extended probabilistic powerdomain V(X) is not Lawson-compact.

Suppose by contradiction, that V(X) is Lawson-compact. Then the prob-

abilitic powerdomain V≤1(X) – as a Scott-closed subset – is also Lawson-

compact. The net (ηpi
) of point valuations has a Lawson-convergent subnet.

By replacing the original net by this subnet, we may suppose that the net (ηpi
)

converges to a valuation µ ∈ V≤1(X) with respect to the Lawson topology.

We prove the following two statements which are contradictory:

µ(X \ ↓a) = 0: As L is linked bicontinuous, we may choose an element b

way-above a (i.e., way-below for the opposite order). As the set of elements

c with b way-above c is Lawson-open, we have pi ≤ b eventually, whence

ηpi
(X \↓b) = 0 eventually. Going to the limit we get µ(X \↓b) = 0. As X \↓a

is the union of the directed family of open sets X \ ↓b for b way-above a, we

conclude µ(X \ ↓a) = 0 by the continuity of µ.

µ(X \ ↓a) = 1: We note that X ∩ ↓a is nonempty and Scott-closed in X.

As X is sober and a �∈ X, this closed set is not irreducible. Then X ∩ ↓a is

the union of two nonempty Scott-closed proper subsets B and C. We choose

elements b ∈ B \C and c ∈ C \B. As X \C and X \B are Scott-open in X,

there are elements b1 ∈ X\C and c1 ∈ X\B with b1 � b and c1 � c. As in the

preceding paragraph, we conclude that b1 ≤ pi and c1 ≤ pi eventually, whence

ηb1 ≤ ηpi
and ηc1 ≤ ηpi

eventually. It follows that ηb1 ≤ µ and ηc1 ≤ µ. This

implies 1 = ηb1(X \ C) ≤ µ(X \ C) ≤ 1 and 1 = ηc1(X \ B) ≤ µ(X \ B) ≤ 1.

It follows that

1 ≥ µ(X \ ↓a) = µ
(
(X \ B) ∩ (X \ C)

)
= µ(X \ B) + µ(X \ C) − µ

(
(X \ B) ∪ (X \ C)

)
≥ 1 + 1 − 1 = 1.

�

Every continuous map f : X → Y of topological spaces induces a Scott-

continuous linear map V(f) : V(X) → V(Y ). To every continuous valuation
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µ on X we associate its image V(f)(µ) defined by V(f)(µ)(V ) = µ
(
f−1(V )

)
for every open set V ⊆ Y . In this way we have defined a functor V from

the category of topological spaces to the category of d-cones. Restricting this

functor to the category of dcpos (with the Scott topology), we obtain a functor

V : DCPO → CONE

from the category of dcpos to the category of d-cones. This functor is monadic,

but the algebras of this monad are not known. By the previous theorem, we

may restrict V to a functor

V : CONT → CCONE

from the category of continuous domains to the category of continous d-cones.

The algebras of this monad are the continuous d-cones by the following uni-

versal property (see [23], [29], [54], [15, Theorem IV-9.24]):

Theorem 2.7.3 Let X be a continuous domain. The map ηX : X → V(X)

that to every x ∈ X assigns the point valuation ηx is a topological embedding

and, for every Scott-continuous map f from X into a d-cone C, there is a

unique Scott-continuous linear map f̂ : V(X) → C such that f̂ ◦ ηX = f .

A special case of this theorem is the following: For a lower semicontinuous

(= Scott-continuous) function f : X → R+, there is a unique Scott-continuous

linear map f̂ : V(X) → R+ such that f̂ ◦ ηX = f . The map f̂ has a natural

interpretation through integration:

f̂(µ) =

∫
fdµ for every continuous valuation µ ∈ V(X) .

For an elementary definition and the properties of this integral independant

of the universal property see [23,29,54,18].

Because of the interpretation of f̂(µ) as integral
∫

fdµ in the case of real-

valued functions f , it makes sense to say in general that f̂(µ) is the integral

of the Scott-continuous function f defined on a continuous domain X with

values in a d-cone C with respect to the continuous valuation µ on X.

2.7.1 Valuations and Measures

In this section we present some results on the relation between valuations

and classical measures. Indeed, for the spaces we deal with here a continuous
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valuation can always be extended to a Borel measure. The results collected

in this section are not used later; however, a reader who is more familiar with

measure theory may find them helpful.

A measure is a function µ : A → R+ defined on a σ-algebra A with values in

the non-negative extended real numbers, which is strict and σ-additive. This

is equivalent to being strict, monotone, modular and countably continuous.

Thus, whenever a measure is defined on the Borel algebra of a topological

space, its restriction to the open sets yields a countably continuous valuation.

A sufficient condition for the Scott continuity of this restriction is the inner

regularity of the original measure. This is the case for all finite measures on

Polish spaces, see e.g. [6, Proposition 8.1.10]. An obvious class of examples,

where countable continuity and Scott continuity are equivalent for open sets,

are Borel measures on second countable topological spaces. However, there

are examples of Borel measures that are not Scott-continuous when restricted

to the open sets: For example take an uncountable set equipped with the

discrete topology. Then the Borel algebra is the whole power set. A function

that maps every countable subset to 0 and every uncountable subset to ∞ is

clearly a measure, but it is not Scott-continuous.

In the remainder of this section we present some answers to the question:

when can a continuous valuation be extended to a Borel measure? We present

a brief summary of some unpublished work [28]. Notation and results on the

measure theoretical background are taken from [4,16].

For metric spaces an affirmative answer can be given using outer measures

and Carathéodory’s condition:

Proposition 2.7.4 On a metric space every countably continuous valuation

can be extended to a Borel measure. The extension is unique, if it is required

to be outer regular.

However, this method cannot be applied to non-Hausdorff spaces directly.

We continue with the non-Hausdorff case and consider extensions to finitely

additive measures first: The fact that a valuation is strict and modular implies

that it is finitely additive. Thus, it makes sense to ask for finitely additive

extensions. We do not impose any additional continuity condition for the

moment. The lattice of open sets O(X) of a topological space X can be
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extended to a Boolean ring R(X) of sets, which consists of all finite unions

R =

n⋃
i=1

Ui \ Vi

with Ui, Vi ∈ O(X) and Vi ⊆ Ui for all i = 1, . . . , n ; moreover, one may

suppose that the sets Ui \ Vi are mutually disjoint.

For a finite valuation µ : O(X) → R+, it is clear how a finitely additive

extension µ̄ : R(X) → R+ has to look like if it exists:

µ̄(R) =

n∑
i=1

µ(Ui) − µ(Vi) .

The following standard result is sometimes called the Smiley–Horn–Tarski

Theorem:

Proposition 2.7.5 Every finite valuation µ on a lattice of open sets O(X)

has a unique extension to a finitely additive measure µ̄ on the ring R(X)

generated by O(X).

In case the valuation is unbounded, an extension is still possible but not

necessarily unique. Among all the possible extensions there is always a maxi-

mal one ([29], [15, p. 377]).

We return to our question of σ-additive extensions of continuous valu-

ations. The following classical result is useful in this context, see e. g. [4,

page 164]:

Proposition 2.7.6 Let R be a ring of sets. If the function µ : R → R+ is

strict, finitely additive and countably subadditive on R, then µ can be extended

to a measure on the σ-algebra generated by R. The extension is unique, if µ

is σ-finite on R(X).

If we apply this to our situation, it remains to show that the finitely addi-

tive extension µ̄ : R(X) → R+ from Proposition 2.7.5 is countably subadditive

in order to obtain an extension to a Borel measure. And this is indeed the

crucial step that could be performed for various spaces using quite different

techniques. Using ideas from [47], the authors from [2] could verify countable

subadditivity in the following situation:

Proposition 2.7.7 Let X be a dcpo with the Scott topology and let (µi)i∈I be

a directed set of simple valuations on X with µ =
∨↑

i∈I µi. If µ is σ-finite
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then µ has a unique extension to a measure on the Borel algebra generated by

the Scott topology.

The proof of the proposition also applies to sober spaces X. The reason

is that the specialisation order of a sober space always yields a dcpo with the

original topology being coarser than the Scott topology.

By Proposition 2.7.2, the simple valuations are a basis for the extended

probabilistic powerdomain of a continuous domain. Thus, Proposition 2.7.7

implies:

Corollary 2.7.8 Every σ-finite continuous valuation on a continuous domain

with the Scott topology can be extended to a Borel measure in a unique way.

In [2] a negative example is also provided, showing that such an extension

does not exist in general. For this the authors consider the following example

of a non-sober dcpo [22]: X = N ×
(
N ∪ {∞}

)
with (j, k) � (m, n) if either

j = m and k ≤ n or n = ∞ and k ≤ m. It is easy to check that this gives a

dcpo and that every nonempty Scott-open set contains all but a finite number

of points (m,∞). They define a function on the Scott topology ν : O(X) → R+

by

ν(U) =

⎧⎨
⎩1, if U �= ∅

0, if U = ∅.

Then ν is modular since the intersection of any pair of nonempty Scott-open

sets is again nonempty. Strictness, monotonicity and Scott continuity are

easily verified; therefore, ν is a bounded continuous valuation. But ν cannot be

extended to a Borel measure. In fact, Un = X \
( ⋃n

j=0 ↓(j,∞)
)

is a decreasing

sequence of open sets with
⋂

↓n∈N
Un = ∅ but limn ν(Un) = 1.

Another situation where the finitely additive extension of a continuous

valuation to the ring R(X) can be shown to be countably subadditive is that

of properly locally compact pospaces. Recall from section 1.5 that these are

locally compact ordered spaces X in which ↑K is compact for every compact

subset K. There we have also seen that the open upper sets form a topology

which we denoted by U(X). A continuous valuation µ : U(X) → R+ is called

locally finite if µ(U) < ∞ for all U ∈ U(X) with U � X with respect to the

order of subset inclusion on U(X). Equivalently, U � X iff there is a compact

set Q ⊆ X containing U . In this situation one has:

Proposition 2.7.9 Let X be a properly locally compact ordered space and
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µ : U(X) → R+ a locally finite continuous valuation defined on the collection

U(X) of all open upper sets. Then µ can be extended to a regular Borel measure

on the locally compact pospace X in a unique way.

For the compact case, this result is due to Lawson [32]. It has been ex-

tended to the properly locally compact case by Weidner [60] and Keimel [28].

In particular, Proposition 2.7.9 can be applied to locally compact Hausdorff

spaces: Equipped with the trivial order, Hausdorff spaces can be viewed as

ordered topological spaces. Then, every subset is an upper set and, trivially,

the space is a properly locally compact ordered space. Hence, we have:

Corollary 2.7.10 On a locally compact Hausdorff space, every locally finite

continuous valuation can be extended to a regular Borel measure in a unique

way.

In 1.5.3 and the subsequent remark we have seen that there is a one-to-one

correspondance between properly locally compact pospaces and stably locally

compact spaces: the open upper sets of a properly locally compact pospace

X form a locally stably compact topology and, vice-versa, the patch topology

on a stably locally compact space yields a properly locally compact pospace.

Using all of the above and the extension result of Proposition 2.7.9, we

have the following:

Proposition 2.7.11 Every locally finite continuous valuation on a stably lo-

cally compact space can be extended in a unique way to a regular Borel measure

on the properly locally compact ordered space that one obtains by passing to

the patch topology.

2.7.2 Additivity of the Way-Below Relation on the Extended Probabilistic

Powerdomain

We are interested in the additivity of the way-below relation on the extended

probabilistic powerdomain V(X) over a continuous domain X. In [23] Jones

provides a useful characterisation of the order relation for simple valuations.

Her characterisation is known as Splitting Lemma:

Lemma 2.7.12 For two simple valuations ξ, χ on a dcpo X, one has:

ξ =

n∑
i=1

riηxi
≤

m∑
j=1

sjηyj
= χ
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if and only if there exist tij ∈ R+ such that tij = 0 whenever xi �≤ yj and

m∑
j=1

tij = ri for all i

n∑
i=1

tij ≤ sj for all j .

The original proof in [23] uses a directed version of the graph theoretic

Max-flow Min-cut Theorem. A more direct argument can be found in [25].

Jones’ Splitting Lemma yields a similar characterisation for the way-below

relation between simple valuations as she pointed out in [23]:

Lemma 2.7.13 For two simple valuations ξ, χ on a continuous domain

ξ =
n∑

i=1

riηxi
�

m∑
j=1

sjηyj
= χ

if and only if there exist tij ∈ R+ such that tij = 0 whenever xi �� yj and

m∑
j=1

tij = ri for all i

n∑
i=1

tij <sj for all j .

Using this characterisation of the way-below relation we can show that

addition preserves the way below relation between the simple valuations of

a continuous domain X. In a second step, we prove that this is sufficient

for the way-below relation on V(X) to be additive. Let us remark, that the

simple valuations are closed under addition. Thus, it makes sense to restrict

our problem to this subset of V(X).

Lemma 2.7.14 Addition preserves the way-below relation on the simple val-

uations of a continuous domain.

Proof. The main reason for this is that the way-below relation on simple

valuations can be characterized by the Splitting Lemma as a transport prob-

lem. The disjoint union of two of these transport problems corresponds to the

sum of the simple valuations. Thus the sums are also way-below each other

whenever the summands are pairwise way-below. Formally, we can write the
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proof like this: Let

ξ1 =

n1∑
i=1

riηxi
, ξ2 =

n∑
i=n1+1

riηxi
, χ1 =

m1∑
j=1

sjηyj
, χ2 =

m∑
j=m1+1

sjηyj

be simple valuations with ξ1 � χ1 and ξ2 � χ2. Lemma 2.7.13 gives rise to

tij ∈ R+ with tij = 0 whenever xi �� yj and
m1∑
j=1

tij = ri , i = 1, . . . , n1

n1∑
i=1

tij < sj , j = 1, . . . , m1

m∑
j=m1+1

tij = ri , i = n1 + 1, . . . , n

n∑
i=n1+1

tij < sj , j = m1 + 1, . . . , m.

For the sums ξ1 + ξ2 =
∑n

i=1 riηxi
and χ1 + χ2 =

∑m

j=1 sjηxj
we take these

tij and set tij := 0 in case i = n1 + 1, . . . , n, j = 1, . . . , m1 or i = 1, . . . n1,

j = m1 + 1, . . . , m. Then
m∑

j=1

tij =

m1∑
j=1

tij = ri , i = 1, . . . , n1

m∑
j=1

tij =
m∑

j=m1+1

tij = ri , i = n1 + 1, . . . , n

n∑
i=1

tij =
n1+1∑
i=1

tij < sj , j = 1, . . . , m1

n∑
i=1

tij =
n∑

i=n1+1

tij < sj , j = m1 + 1, . . . , m.

Thus, we can apply Lemma 2.7.13 and conclude ξ1 + ξ2 � χ1 + χ2. �

Our next step is to extend the additivity of the way-below relation on a

basis to the whole d-cone.

Lemma 2.7.15 Let C be a continuous d-cone and B a basis of C which is

closed under addition. If the way-below relation is additive on B, then it is

also additive on C.

Proof. Let x1 � y1, x2 � y2 in C. Using the interpolation property we

R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1–10436

RETRACTED



find b1, c1, b2, c2 ∈ B with x1 ≤ b1 � c1 ≤ y1 and x2 ≤ b2 � c2 ≤ y2.

Monotonicity of addition and additivity of the way-below relation on B yield

x1 + x2 ≤ b1 + b2 � c1 + c2 ≤ y1 + y2 and thus, x1 + x2 � y1 + y2 follows. �

We apply these results to the basis of simple valuations of the extended

probabilistic powerdomain and conclude:

Proposition 2.7.16 The extended probabilistic powerdomain over a contin-

uous domain has an additive way-below relation.

2.8 Lower Semicontinuous Functions

and Dual Cones

There is another important class of d-cones closely related to the extended

probabilistic powerdomain. They consist of all non-negative real-valued lower

semicontinuous functions on a topological space.

Definition 2.8.1 Let X be a topological space and let R+ be equipped with

the Scott topology. The set of all continuous functions f : X → R+ is denoted

by L(X); they are also called lower semicontinuous functions on X since on

R+ the Scott topology is equal to the lower topology.

Special elements in L(X) are the characteristic functions χU : X → R+ of

open sets U ⊆ X, defined by

χU(x) :=

⎧⎪⎨
⎪⎩

1, if x ∈ U

0, if x �∈ U.

Given continuous functions f and g on any topological space X and r ∈ R+,

the functions f + g and r · f defined ‘pointwise’ by (f + g)(x) := f(x) + g(x)

and (r · f)(x) := r · f(x) for all x ∈ X are also continuous. This allows us to

take finite linear combinations of characteristic functions,
∑n

i=1 ri · χUi
with

Ui ∈ O(X), ri ∈ R+ for i = 1, . . . , n. We call them simple functions. We

define an order ‘pointwise’ on L(X) by f ≤ g if f(x) ≤ g(x) for all x ∈ X.

It is straightforward to show that for a directed subset (fi)i∈I of continuous

functions a least upper bound
∨↑

i∈I fi exists in L(X) and turns out to be

the pointwise supremum (
∨↑

i∈I fi)(x) =
∨↑

i∈I fi(x), x ∈ X. To make the

set L(X) of functions into a continuous domain we do not need a hypothesis

as strong as the underlying space X to be continuous, but only its topology
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O(X), see [14]. We call such a space, whose lattice of open sets is a continuous

domain, core compact.

Proposition 2.8.2 Let X be a topological space. Then the set of lower semi-

continuous functions L(X) with pointwise addition, scalar multiplication and

order is a d-cone. If X is core compact, then L(X) is a continuous d-cone

and the simple functions form a basis.

Lower semicontinuous functions have an integral with respect to every

continuous valuation. Three different approaches to integration have been

developed and can be found in [24,23,29], in [54], and in [18]. Integration

plays an important role in Jones and Plotkin’s model for probabilistic non-

determinism. There, integrals arise if one looks at the probabilistic powerdo-

main functor V : CONT → CCONE as being monadic. For continuous domains

X there is also a duality between V(X) and L(X).

Definition 2.8.3 For a d-cone C the set of continuous linear maps into R+

is called the dual cone of C, denoted

C∗ := {Λ: C → R+ | Λ linear, continuous} ⊆ R+
C
.

With respect to pointwise addition, scalar multiplication and the pointwise

order, the dual cone is indeed a d-cone.

There is a duality between V(X) and L(X). One half of this duality

between is given by the Riesz Representation Theorem which holds for any

topological space X and states that V(X) is isomorphic to the dual d-cone

L(X)∗. This isomorphism is given by integration µ 
→ (f 
→
∫

fdµ), see

[29,54]. Vice versa, unless X is continuous, only a linear injection results

by the map f 
→ (µ 
→
∫

fdµ) given analogously from L(X) into V(X)∗.

The Riesz Representation Theorem also provides us with an example that the

dual cone of a continuous d-cone is not always continuous; take X = [0, 1]

with the usual Hausdorff topology. Then the Lebesque measure restricted to

the open sets is a continuous valuation which cannot be approximated from

below. On the other hand, there exist plenty of continuous d-cones for which

the dual cone is also continuous. Thus, an interesting question remains to find

a characterisation of those continuous d-cones whose dual cone is continuous.

For the remainder of this section we look at L(X) as a d-cone in its own

right and we answer the question when its way-below relation is additive.

Thereby, we restrict our attention to core compact spaces X, since, for exactly
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those, L(X) becomes continuous. For characteristic functions of open sets the

way-below relation is characterised as follows:

Lemma 2.8.4 Let X be a core compact space, let U, V ∈ O(X) and tU , tV ∈

R+. Then tUχU � tV χV if and only if tU < tV and U � V (or tU = 0).

However, core compactness is not sufficient to obtain an additive way-

below relation on the function space. Recall from section 1.5 that a topological

space is called stably locally compact if it is sober and locally compact and if

the intersection of any two compact saturated subsets is compact.

In stably locally compact spaces we can apply the characterisation of the

way-below relation on function spaces from [12]. We denote by suppf :=

{x ∈ X | f(x) �= ⊥} the support of a continuous function f : X → L, where

L is a bounded complete continuous domain and ⊥ the least element of L.

Obviously, suppf is open. Using this notation, [12, Theorem 8] states:

Proposition 2.8.5 Let X be a stably locally compact space and L a bounded

complete continuous domain with the Scott topology. For f, g ∈ [X → L], the

following statements are equivalent:

(i) f � g

(ii) (a) suppf � X, and

(b) there are finitely many Vi ∈ O(X), Qi ∈ Q(X), ti ∈ L, for i = 1, . . . n,

such that

(i) ti � g(v) for all v ∈ Vi,

(ii) f(w) ≤ ti for all w �∈ Qi,

(iii) X =
⋃n

i=1 Vi \ Qi.

Now we can show:

Proposition 2.8.6 If X is a stably locally compact space, then L(X) has an

additive way-below relation.

Proof. Since R+ is a bounded complete continuous domain, we can use the

previous characterisation for the way-below relation on the function space

L(X). Let fk � gk for k = 1, 2, which is equivalent to

(a) suppfk � X, and

(b) there are finitely many V k
i ∈ O(X), Qk

i ∈ Q(X), tki ∈ L, for i = 1, . . . nk,

such that

(i) tki � gk(v) for all v ∈ V k
i ,
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(ii) f(w) ≤ tki for all w �∈ Qk
i ,

(iii) X =
⋃nk

i=1 V k
i \ Qk

i .

For the sums f1 + f2 and g1 + g2 we deduce

(a) supp(f1 + f2) = suppf1 ∪ suppf2 � X, and

(b) the finitely many Vij := V 1
i ∩ V 2

j ∈ O(X), Qij := Q1
i ∪ Q2

j ∈ Q(X),

tij := t1i + t2j ∈ R+ for i = 1, . . . , n1 and j = 1, . . . , n2, satisfy

(i) tij = t1i + t2j � g1(v) + g2(v) = (g1 + g2)(v) for all v ∈ V 1
i ∩ V 2

j = Vij,

since the way-below relation is additive on R+,

(ii) (f1 +f2)(w) = f1(w)+f2(w) ≤ t1i + t2j = tij for all w �∈ Q1
i ∪Q2

j = Qij ,

since addition is monotone,
(iii)

X =
( ⋃

i=1,...,n1

V 1
i \ Q1

i

)
∩

( ⋃
j=1,...,n2

V 2
j \ Q2

j

)
=

⋃
i=1,...,n1

j=1,...,n2

(
V 1

i \ Q1
i

)
∩

(
V 2

j \ Q2
j

)

=
⋃

i=1,...,n1

j=1,...,n2

(
V 1

i ∩ V 2
j

)
\

(
Q1

i ∪ Q2
j

)

=
⋃

i=1,...,n1

j=1,...,n2

Vij \ Qij .

Thus, f1+f2 and g1+g2 fulfill the characterising condition of f1+f2 � g1+g2.�

The assumption that X is stably locally compact is necessary.

Proposition 2.8.7 If a locally compact space X is not stably locally compact,

then the way-below relation on L(X) is not additive.

Proof. Because of the duality between the category of stably locally compact

spaces and the category of arithmetic lattices, see e.g. Theorem 7.2.19 in [1], we

know that if X is locally compact but not stable, we can find open sets U, V, W

with U � V and U � W , but U �� V ∩ W . Thus, there exists a directed

set (Oi)i∈I of open sets with
⋃↑

i∈I Oi = V ∩ W , but U �⊆ Oi for all i ∈ I.

Lemma 2.8.4 tells us χU � (1 + ε)χV and χU � (1 + ε)χW for any 0 < ε < 1.

But 2χU �� (1 + ε)χV + (1 + ε)χW , since (1 + ε)χV + (1 + ε)χW =
∨↑

i∈I (1 +

ε)χV ∪W + (1 + ε)χOi
, and for all i ∈ I is 2χU �≤ (1 + ε)χV ∪W + (1 + ε)χOi

. �
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Chapter 3

Hahn-Banach Type Theorems

In this chapter we consider continuous d-cones in a functional analytic context.

For a d-cone C, we already introduced linear Scott-continuous functionals

Λ: C → R+. All these functionals are collected in the dual cone C∗. In the

special case that we take the d-cone L(X) of lower semicontinuous functions

on a topological space X a version of the Riesz Representation Theorem can

be shown [29,54]. It states that the dual cone L(X)∗ can be viewed as the

extended probabilistic powerdomain V(X), i.e., the two are isomorphic as d-

cones. If in addition X is a continuous domain we have full duality, meaning

that V(X)∗ is isomorphic to L(X), too. This gives us an understanding the

linear functionals for some d-cones and the question arises: What does the dual

cone of an arbitrary continuous d-cone look like? We do not even yet know if

in general any linear continuous functional exists besides the constantly zero

function. It seems to be appropriate to restrict this investigation to continuous

d-cones, since they are locally convex by Lemma 2.6.8, and we know from

classical functional analysis that Hahn-Banach Theorems yield especially nice

results for locally convex topological vector spaces.

As a tool we will first prove a version of the Sandwich Theorem for contin-

uous d-cones. From this, we obtain a Separation Theorem which implies that,

for a continuous d-cone C, the Scott continuous linear functionals separate

the points. This information is complemented by a Strict Separation Theo-

rem. Other Hahn-Banach type theorems are extension theorems. We obtain

an Extension Theorem in our context under the additional hypothesis of an

additive way-below relation. We have seen in the previous chapter that this

hypothesis is fulfilled for a broad class of examples. We close this chapter with

a Sum Theorem which is a consequence of our Extension Theorem.
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3.9 A Sandwich Theorem

We start with a version of the Sandwich Theorem for continuous d-cones. For

its proof we will take advantage of existing results for ordered cones. First,

we introduce sublinear and superlinear functionals:

Definition 3.9.1 Let C be a d-cone. A map p : C → R+ is called sublinear if

it is homogeneous and subadditive, that is, if p(r · a) = r · p(a) and p(a + b) ≤

p(a) + p(b) for all a, b ∈ C and all r ∈ R+.

A map q : C → R+ is called superlinear if it is homogeneous and superad-

ditive, that is, if q(r · a) = r · q(a) and q(a + b) ≥ q(a) + q(b) for all a, b ∈ C

and all r ∈ R+.

We quote a sandwich theorem due to W. Roth (see [45], Theorem 2.6) for

ordered cones:

Theorem 3.9.2 Let C be an ordered cone. Let p : C → R+ be a sublinear

and q : C → R+ a superlinear functional such that a ≤ b ⇒ q(a) ≤ p(b). (The

latter is satisfied if q ≤ p and one of p, q is order preserving.) Then there

exists an order-preserving linear functional Λ: C → R+ such that q ≤ Λ ≤ p.

Indeed, among the order preserving sublinear functionals f : C → R+ such

that q ≤ f ≤ p there are minimal ones, and all of these are linear.

Proof. Step 1: Without loss of generality we can assume that both p and q are

order-preserving. Simply set p′(a) := inf{p(b) | a ≤ b} and q′(a) := sup{q(b) |

b ≤ a}. It is easy to see that p′ is sublinear, q′ superlinear, both are order

preserving and q′(a) ≤ p′(a) for all a ∈ C.

Step 2: In the set of all order preserving sublinear functionals f : C → R+

such that q ≤ f ≤ p we can choose a maximal chain F by the Hausdorff

maximality principle. The pointwise defined infimum p(x) = inf{f(x) | f ∈

F} is again order preserving and sublinear, hence minimal in the set of all

order preserving sublinear functionals f : C → R+ such that q ≤ f ≤ p. In

the same way, one finds an order preserving superlinear functional q which is

maximal in the set of all order preserving superlinear functionals g : C → R+

such that q ≤ g ≤ p.

Step 3: Assuming that p is sublinear and order-preserving, the set C ′ :=

{a ∈ C | p(a) < +∞} is again a cone and a lower set in C. If µ is an order

preserving linear functional below p on C ′, then it can be extended to a linear

R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1–10442

RETRACTED



order preserving functional on all of C by setting it equal to +∞ outside C ′.

For the task at hand we can therefore assume that both p and q take values

below +∞.

Step 4: We claim that p = q, which implies that Λ := p = q is linear. For

this, choose any fixed a ∈ C and let

q′(x) := sup{q(c) − p(b) | b, c ∈ C, c ≤ x + b} and

p′(x) := inf{p(d) + λq′(a) | λ ∈ R+, d ∈ C, x ≤ d + λa} .

Setting c = x, b = 0 in the first definition we see that q ≤ q′, likewise by

setting d = x, λ = 0 in the second we have p′ ≤ p. A simple calculation shows

that superlinearity, resp. sublinearity, are preserved. By the minimality and

maximality property of p, resp. q, we deduce p′ = p and q′ = q. By setting

x = a, d = 0, λ = 1 in the second definition we see that p′(a) ≤ q′(a) and this

implies p(a) = q(a) by the previous inequalities. As this is true for all a ∈ C,

we conclude p = q. �

For continuous d-cones this sandwich theorem can be strengthened:

Theorem 3.9.3 ((Sandwich Theorem)) Let C be a continuous d-cone, let

p : C → R+ be sublinear and let q : C → R+ be superlinear and Scott-continuous

with q ≤ p. Then there is a Scott-continuous linear map Λ: C → R+ such

that q ≤ Λ ≤ p.

Proof. Since every d-cone is an ordered cone, we can apply Roth’s sandwich

theorem 3.9.2 to our situation. As q is supposed to be Scott-continuous, hence

order preserving and as q ≤ p, the hypotheses of Roth’s sandwich theorem are

indeed satisfied. Thus, there is an order preserving linear functional Λ such

that q ≤ Λ ≤ p. Moreover, Λ can be chosen to be minimal in the set X of all

sublinear order preserving maps s : C → R+ with q ≤ s ≤ p. We now show

that Λ is Scott-continuous.

For a continuous domain, it is known how to find a largest Scott-continuous

function below a monotone one, see Proposition 1.4.2. If we apply this to Λ

we get the Scott-continuous function Λ̌ defined by Λ̌(a) :=
∨↑

b�a Λ(b). As

q ≤ Λ and as q is Scott-continuous, we conclude that q ≤ Λ̌. We also have

Λ̌ ≤ Λ ≤ p. If we can show that Λ̌ is also sublinear, then it is an element of X.

From the minimality of Λ in X, we then can conclude that Λ̌ = Λ; therefore,

Λ̌ is linear.

R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1–104 43

RETRACTED



Lemma 2.6.2 implies that Λ̌ is homogeneous. For subadditivity observe

that z � a + b implies that there are a′ � a and b′ � b such that z � a′ + b′.

Now, we can calculate

Λ̌(a) + Λ̌(b) =
∨↑

a′�a

Λ(a′) +
∨↑

b′�b

Λ(b′)

=
∨↑

a′�a,b′�b

Λ(a′) + Λ(b′)

=
∨↑

a′�a,b′�b

Λ(a′ + b′)

≥
∨↑

z�a+b

Λ(z)

= Λ̌(a + b).

Thus Λ̌ is subadditive and the proof is complete. �

Before concluding this section let us ask whether the Sandwich Theorem

3.9.3 remains valid, if one replaces the cone R+ by other target cones. More

precisely we ask:

Question 3.9.1 Which continuous d-cones P have the Sandwich Property

that for any continuous d-cone C, any Scott-continuous superlinear q : C → P

and any (Scott-continuous) sublinear p : P → C with q ≤ p, there is a Scott-

continuous linear map Λ: C → P such that q ≤ Λ ≤ p?

As R+ has the Sandwich Property, the same holds for every power R
I

+.

But one can easily find continuous d-cones P that do not have the Sandwich

Property.

Example 3.9.4 In R+×R+ we consider the subcone P of all pairs (a, b) with

a ≤ b with the induced ordering. Then P is a continuous d-cone in its own

right. We show that P does not have the Sandwich Property.

Let π1, π2 : R+ × R+ → R+ be the canonical projections π1(a, b) = a and

π2(a, b) = b. Define

q =
(
inf(π1, π2), π2

)
and p =

(
π1, sup(π1, π2)

)
.

More explicitly

q(a, b) =
(
min(a, b), b

)
and p(a, b) =

(
a, max(a, b)

)
.

Then p and q are Scott-continuous maps from R+×R+ → P , they are sublinear
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and superlinear, respectively, they fulfill q ≤ p and, moreover, p|P = q|P = id.

But there is no linear map from R+ × R+ to P which is the identity when

restricted to P . This is not only obvious, but can be easily proved: Suppose

that there is an additive map Λ: R+ × R+ → P with Λ|P = id. As (1, 1) and

(0, 1) are in P , we have (1, 1) = Λ(1, 1) = Λ(1, 0) + Λ(0, 1) = Λ(1, 0) + (0, 1).

It follows that Λ(1, 0) = (1, 0) which is not in P .

There is a second question related to the previous one: Is there a parame-

trized Sandwich Theorem? More precisely:

Question 3.9.2 Let X be any continuous domain and C a continuous d-

cone. Let q̂, p̂ : X × C → R+ be Scott-continuous maps such that q̂ ≤ p̂

and such that q̂(x,−) : C → R+ and p̂(x,−) : C → R+ are superlinear and

sublinear, respectively, for all x ∈ X. Is there a Scott-continuous function

Λ̂ : X × C → R+ such that q̂ ≤ Λ̂ ≤ p̂ and such that Λ̂(x,−) : C → R+ is

linear for all x?

The relation of this question to the previous one is the following: Let

L(X) denote the d-cone of all Scott-continuous functions from X into R+ (see

Section 2.8). There is a natural order isomorphism of dcpos

[X × C → R+] ∼= [C → L(X)] .

For functions q̂, p̂ : X×C → R+ with the properties as in the second question,

the corresponding functions q, p : C → L(X) under this isomorphism satisfy

the hypotheses of the Sandwich Theorem. Thus, the answer to the second

question is affirmative if and only if the cone L(X) has the Sandwich Property.

This is the case, if X is a discrete domain, i.e., a set with the discrete order,

as then we have L(X) ∼= R
X

+ . But if we choose X to be the two element

Sierpinski space, then L(X) ∼= P , the d-cone which has been shown not to

have the Sandwich property in the example above.

3.10 A Separation Theorem

To prove our Separation Theorem we need the following:

Lemma 3.10.1 If B is a Scott-open subset of a d-cone C then r · B is also

Scott-open for all r > 0.

Proof. This is an immediate consequence of the fact that scalar multiplication

by a real number r > 0 is an order-isomorphism. �
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Theorem 3.10.2 (Separation Theorem) Let C be a continuous d-cone

with two disjoint nonempty convex subsets A and B. If, in addition, B is

Scott-open, then there exists a Scott-continuous linear functional Λ: C → R+

such that Λ(a) ≤ 1 < Λ(b) for all a ∈ A and all b ∈ B.

Proof. Without loss of generality we can assume A to be a lower set, since

↓A is also nonempty convex and disjoint from B.

To apply the Sandwich Theorem we have to define functions p and q sat-

isfying all assumptions of Theorem 3.9.3:

p(a) := inf
{
λ

∣∣ λ ∈ R+, a ∈ λA
}

q(a) := sup
{
λ

∣∣ λ ∈ R+, a ∈ λB
}
.

Let us show that p is sublinear. For r = 0 we have

p(0 · a) = p(0) = inf
{
λ

∣∣ 0 ∈ λA
}

= 0,

because 0 · A = {0}. For r > 0 we calculate

p(r · a) = inf
{
λ

∣∣ r · a ∈ λA
}

= inf
{
r ·

λ

r

∣∣∣ a ∈
λ

r
A

}
= r · inf

{
λ′

∣∣ a ∈ λ′A
}

= r · p(a).

This shows that p is homogeneous. Subadditivity holds because

p(a1) + p(a2) = inf
{
λ1

∣∣ a1 ∈ λ1A
}

+ inf
{
λ2

∣∣ a2 ∈ λ2A
}

= inf
{
λ1 + λ2

∣∣ a1 ∈ λ1A, a2 ∈ λ2A
}

≥ inf
{
λ1 + λ2

∣∣ a1 + a2 ∈ λ1A + λ2A
}

= inf
{
λ1 + λ2

∣∣ a1 + a2 ∈ (λ1 + λ2)A
}
, since A is convex

= inf
{
λ′

∣∣ a1 + a2 ∈ λ′A
}

= p(a1 + a2).

Thus, p is sublinear. The steps to show that q is superlinear are nearly the

same. To show homogeneity for r = 0, we use the fact that 0 �∈ B implies

that 0 ∈ λB if and only if λ = 0. To show monotonicity of q, let a1 ≤ a2.

Since B and hence λB is an upper set for λ > 0, we conclude that {λ | a1 ∈

λB} ⊆ {λ | a2 ∈ λB}. Thus q(a1) ≤ q(a2) holds. Now, let D be a directed

subset of C. Then q(
∨↑

D) ≥
∨↑

d∈D q(d) because q is monotone. By definition

q(
∨↑

D) = sup{λ |
∨↑

D ∈ λB}. Lemma 3.10.1 states that for λ > 0, λB is

open. Therefore,
∨↑

D ∈ λB implies that an element d ∈ D exists such that
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d ∈ λB. Then

λ ≤ sup{µ | d ∈ µB} ≤
∨↑

d∈D

sup{µ | d ∈ µB} =
∨↑

d∈D

q(d),

which yields q(
∨↑

D) ≤
∨↑

d∈D q(d), hence q is Scott continuous.

Finally, we need to show that q ≤ p. This holds if a ∈ λA, a ∈ µB imply

µ < λ. Assume µ ≥ λ. Then λA ⊆ µA, because A is a convex lower set. Thus

a ∈ λA implies a ∈ µA. But then a ∈ µB contradicts A ∩ B = ∅.

Now, we apply the Sandwich Theorem to get a linear Scott-continuous

function Λ with q ≤ Λ ≤ p. This yields for all a ∈ A and b ∈ B

Λ(a) ≤ p(a) ≤ 1 < q(b) ≤ Λ(b),

since a ∈ 1A implies p(a) ≤ 1 and B open, b =
∨↑

r<1 r · b imply that there

exist a non-negative real number r < 1 with r ·b ∈ B. Thus b ∈ 1
r
B and 1

r
> 1,

hence, q(b) > 1. �

The Separation Theorem, which we just proved, implies that the Scott-

continuous linear functionals separate the points of a continuous d-cone:

Corollary 3.10.3 Let C be a continuous d-cone and a �≥ b elements of C.

Then a linear Scott-continuous function Λ: C → R+ exists such that Λ(a) <

Λ(b).

Proof. By Proposition 2.6.8 the continuous d-cone C is locally convex. Hence

a convex Scott-open neighbourhood B of b exists such that a �∈ B. Using this

B and A := {a}, we can apply Theorem 3.10.2 to get the desired function Λ.�

From this last corollary it follows by a standard procedure that the map

δ : C → C∗∗ from a continuous d-cone C into its bidual C∗∗ is an injective

morphism of d-cones where, for a ∈ C, we define δ(a) to be the evaluation

map of a, i.e. δ(a) : C∗ → R+, δ(a)(Λ) := Λ(a). It is an open question in this

context whether δ is also a topological embedding.

The dual cone C∗ induces a weak topology on the d-cone C, namely the

coarsest topology such that all the Scott-continuous linear functionals Λ: C →

R+ are lower semicontinuous. The weak topology on C is always coarser

than the Scott topology. It is not known whether the weak topology is equal

to the original Scott topology. Nevertheless, both of them have the same

specialisation order:
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Proposition 3.10.4 Let C be a continuous d-cone. For the weak topology on

C induced by C∗, the principal ideals ↓a, a ∈ C, are closed.

Proof. Take a ∈ C. For every b ∈ C \ ↓a let Λb be a linear Scott-continuous

functional with Λb(a) ≤ 1 < Λb(b) as has been shown to exist in Corol-

lary 3.10.3 and Theorem 3.10.2. Then ↓a is equal to
⋂

b∈C\↓a Λ−1
b ([0, 1]), and

therefore is closed with respect to the weak topology. �

3.11 A Strict Separation Theorem

We begin by considering the cone R
n

+ with the Scott topology. Define the

additive norm || · ||1 :R
n

+ → R+ by:

||x ||1 :=
n∑

i=1

xi

and the sup norm by:

||x ||∞ := maxi=1,...,nxi

The additive norm is a linear continuous functional; the sup norm is sublinear

and continuous, but not linear. We say that x is bounded if ||x ||∞ < +∞. We

have sx � x, for any bounded x and any s with 0 ≤ s < 1. (This is not true

for unbounded elements.) Note that � is additive on the cone R
n

+ . We set

1 = (1, . . . , 1) ∈ R
n

+ .

Lemma 3.11.1 Let K be a convex Scott-compact subset of R
n

+ disjoint from

↓1. Then there is a linear continuous functional h and an a > 1 such that

h(1) ≤ 1 and h(x) > a for all x in K.

Proof. As x ≤ 1 iff ||x ||∞ ≤ 1, we have ||x ||∞ > 1, for any x in K. But

||K ||∞ is compact as the sup norm is continuous. So we get a b such that

+∞ > b > 1 and ||x ||∞ > b for all x in K. Now, setting s = 1/b, we get

0 < s < 1, and, for all x in K, sx �≤ 1. Now set

V = {y | y >> sx, for some x in K} .

Clearly V is open; it is convex as K is; and it is disjoint from ↓1 as sx �≤ 1 for

any x in K. So, by the separation theorem 3.10.2, there is a linear continuous

functional f such that f(x) > 1 for x in V and f(1) ≤ 1.

The open set V contains all bounded elements of K; however it may not

contain all its unbounded elements. The latter can be taken care of using the
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additive norm, and we combine that linearly with f to obtain h. Choose t

and r such that s < t < r < 1, take a = r
t

> 1, and set:

h(x) = rf(x) + (1 − r)
||x ||1

n

Clearly h(1) ≤ 1. We claim that h(x) > a for any x in K. For x unbounded

this is immediate as then ||x ||1 = +∞. For x bounded we have tx >> sx as

t > s and so tx is in V , implying f(x) > 1/t; this yields that h(x) ≥ rf(x) >

a. �

Theorem 3.11.2 ](Strict Separation Theorem)] Let C be a continuous d-

cone. Suppose that K is a Scott-compact convex set and that A is a nonempty

Scott-closed convex set disjoint from B. Then there is a Scott-continuous lin-

ear functional f and an a in R+ such that f(x) > a > 1 ≥ f(y) for all x in

K and all y in A.

Proof. Consider an element v of K. As v is not in A, by local convexity

there is a convex Scott-open set U containing v and disjoint from A. So, by

the separation theorem 3.10.2, there is a Scott-continuous linear functional g

such that g(v) > 1 and for all y in A, g(y) ≤ 1. So

Ug := {x | g(x) > 1}

is a Scott-open set containing v and disjoint from A. As K is Scott-compact

we can cover it by a finite collection Ug1
, . . . , Ugn

of such open sets. Now define

g :C → R
n by:

g(x) = (g1(x), . . . , gn(x)) .

Then g is linear and Scott-continuous. So we have that g(A) ⊂ ↓1 and that

g(K) is Scott-compact, convex, and disjoint from ↓1 (any x in K is in some

Ugi
, so gi(x) > 1, and we have that g(x) �≤ 1).

Lemma 3.11.1 now yields a Scott-continuous linear functional h and an

a > 1 such that h(1) ≤ 1 and h(x) > a for all x ∈ g(K). Choosing f = hog,

we obtain the required functional f and constant a. �

Corollary 3.11.3 Let C be a continuous d-cone. Suppose that K is a Scott-

compact convex set and that A is a nonempty Scott-closed convex set disjoint

from K. Then they can be separated by a convex Scott-open set; that is, there

is a convex Scott-open set V including K and disjoint from A.
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Proof. Take V := {x ∈ C | f(x) > a}, with f and a given by Theo-

rem 3.11.2. �

Remark 3.11.4 The strict separation theorem and its proof still go through

with the weaker assumption that K is compact in the weak topology, as in

the proof one has a covering by sets open in that topology. In this connection,

note too that the conclusion of Corollary 3.11.3 can be strengthened, as the

Scott-open set produced is even open in the weak topology.

Proposition 3.11.5 Let Q be a nonempty Scott-compact saturated convex

subset of a continuous d-cone C. Then Q is the intersection of a filtered

family of sets of the form ↑conv F , where F is a finite subset of C such that

Q ⊆ ��F .

Proof. Let U be a Scott-open set containing Q. We may find a finite subset

F of U such that Q ⊆ ��F . If U is convex, too, then the convex hull ↑conv F

is also contained in U and Q ⊆ �� conv F .

By the Strict Separation Theorem, Q is the intersection of the convex

Scott-open sets containing it. Hence, Q is the intersection of sets of the form

↑conv F as in the first paragraph. We have to show that this family is filtered.

Thus, let F1 and F2 be finite sets such that Q ⊆ ��Fi for i = 1, 2. Then

V = ��F1 ∩ ��F2 is a Scott-open set containing P . We may choose a finite set

F in V such that Q ⊆ ��F . It satisfies ↑conv F ⊆ ↑conv F1 ∩ ↑conv F2. �

As ↑conv F is saturated and Scott-compact by 2.6.12, we conclude:

Corollary 3.11.6 A Scott-compact saturated convex set in a continuous d-

cone is the intersection of a filtered family of Scott-compact convex saturated

neighborhoods.

We now have the following strong local convexity properties (the second

one of which has been observed by A. Jung):

Corollary 3.11.7 Every Scott-compact saturated convex set in a continuous

d-cone C has a neighborhood basis of Scott-compact saturated convex neigh-

borhoods and a neigborhood basis of Scott-open convex neighborhoods.

Proof. Let Q be a Scott-compact convex saturated set in a continuous d-cone

C, and let U be any Scott-open set containing Q. The previous corollary and

the Hofmann-Mislove theorem (see 1.3.1) imply that Q has a Scott-compact

convex saturated neigborhood K1 contained in U . For the same reason, K1
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has a Scott-compact convex saturated neighborhood K2 contained in U . By

induction we obtain an increasing sequence of Scott-compact convex saturated

sets Kn contained in U such that Kn is in the interior of Kn+1. It follows that

V =
⋃

n Kn is a Scott-open convex neighborhood of Q contained in U . �

3.12 An Extension Theorem

Definition 3.12.1 Let C be a continuous d-cone and D a subcone of C. Then

D is called a d-subcone of C, if it has the following properties:

(1) D is closed under directed suprema,

(2) D is a continuous domain with respect to the induced order, and

(3) the way-below relation on D is equal to the restriction of the way-below

relation on C.

Note, that this definition implies that the Scott topology on a d-subcone D

is equal to the restriction of the Scott topology on C. Thus, D is topologically

embedded into C.

Example 3.12.2 Each Scott-closed subcone of a continuous d-cone is a d-

subcone.

Remark that this class of examples of d-subcones of C consists exactly of

the closed faces of C, where a convex subset A of a d-cone C is called a face

if, for r ∈]0, 1[ and a, b ∈ C, r · a + (1 − r) · b ∈ A implies a, b ∈ A.

Example 3.12.3 The diagonal is a d-subcone of Cn for a continuous d-cone

C and n ∈ N.

In order to show that linear Scott-continuous functionals on a d-subcone

can be extended we do not only need that the way-below relation on a contin-

uous d-cone is preserved by scalar multiplication, but also by addition. In the

previous chapter we discussed when this property of the additivity of the way-

below relation holds. Now, we get to our second Hahn-Banach type theorem

for continuous d-cones:

Theorem 3.12.4 ((Extension Theorem)) Let C be a continuous d-cone

with an additive way-below relation, and let D be a d-subcone of C. Moreover,

let Λ̃ : D → R+ be linear and Scott-continuous, let p : C → R+ be sublinear

and

d ≤ a + c, d, a ∈ D, c ∈ C =⇒ Λ̃(d) ≤ Λ̃(a) + p(c).
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Then there is a Scott-continuous linear extension Λ: C → R+ of Λ̃ with Λ ≤ p.

Proof. Let us first remark that Λ̃ ≤ p on D, since d ≤ 0 + d for all d ∈ D

implies Λ̃(d) ≤ Λ̃(0) + p(d) = 0 + p(d) = p(d).

We want to apply the Sandwich Theorem 3.9.3 to a sublinear, monotone

function p̄ ≤ p and a superlinear Scott continuous function q̌ with q̌ ≤ p̄ on C

and q̌|D = Λ̃ = p̄|D in order to get the desired extension Λ of Λ̃. We define p̄, q̌

and an auxiliary function q, which will be shown to be superlinear, monotone

and q|D = Λ̃, as follows:

p̄(a) := inf
{
Λ̃(d) + p(c)

∣∣ d ∈ D, c ∈ C, a ≤ d + c
}

q(a) := sup
{
Λ̃(d) − p̄(c)

∣∣ d ∈ D, c ∈ C, p̄(c) < ∞, d ≤ a + c
}

q̌(a) =
∨↑

b�a

q(b).

First, we prove all the properties that we claimed p̄ : C → R+ to have.

We have p̄ ≥ 0, since Λ̃ ≥ 0 and p ≥ 0. Moreover, 0 ≤ 0 + 0 implies p̄(0) ≤

Λ̃(0) + p(0) = 0, and hence p̄(0) = 0. For r > 0, using that multiplication

with r is an order isomorphism, we calculate:

p̄(r · a) = inf
{
Λ̃(d) + p(c)

∣∣ d ∈ C, c ∈ C, r · a ≤ d + c
}

= inf
{
r · Λ̃

(1

r
· d

)
+ r · p

(1

r
· c

) ∣∣∣ d ∈ D, c ∈ C, a ≤
1

r
· d +

1

r
· c

}
= r · inf

{
Λ̃(d′) + p(c′)

∣∣ d′ ∈ D, c′ ∈ C, a ≤ d′ + c′
}

= r · p̄(a).

This shows that p̄ is homogeneous. Now, we prove subadditivity:

p̄(a1) + p̄(a2) = inf
{
Λ̃(d1) + p(c1)

∣∣ d1 ∈ D, c1 ∈ C, a1 ≤ d1 + c1

}
+ inf

{
Λ̃(d2) + p(c2)

∣∣ d2 ∈ D, c2 ∈ C, a2 ≤ d2 + c2

}
= inf

{
Λ̃(d1) + Λ̃(d2) + p(c1) + p(c2)

∣∣ d1, d2 ∈ D, c1, c2 ∈ C,

a1 ≤ d1 + c1, a2 ≤ d2 + c2

}
≥ inf

{
Λ̃(d1 + d2) + p(c1 + c2)

∣∣ d1, d2 ∈ D, c1, c2 ∈ C,

a1 ≤ d1 + c1, a2 ≤ d2 + c2

}
≥ inf

{
Λ̃(d1 + d2) + p(c1 + c2)

∣∣ d1, d2 ∈ D, c1, c2 ∈ C,

a1 + a2 ≤ d1 + d2 + c1 + c2

}
≥ inf

{
Λ̃(d) + p(c)

∣∣ d ∈ D, c ∈ C, a1 + a2 ≤ d + c
}

= p̄(a1 + a2).

Thus, p̄ is subadditive and hence sublinear. To prove that p̄ is monotone let

a1 ≤ a2. Then
{
Λ̃(d) + p(c)

∣∣ d ∈ D, c ∈ C, a1 ≤ d + c
}
⊇

{
Λ̃(d) + p(c)

∣∣ d ∈
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D, c ∈ C, a2 ≤ d + c
}
, and hence p̄(a1) ≤ p̄(a2). For all a ∈ C, a ≤ 0 + a and

thus p̄(a) ≤ Λ̃(0) + p(a) = p(a), which means p̄ ≤ p.

Let a, d ∈ D and c ∈ C such that d ≤ a + c. For all e ∈ D and f ∈ C with

c ≤ e + f we have d ≤ (a + e) + f . Thus, by hypothesis,

Λ̃(d) ≤ Λ̃(a + e) + p(f) = Λ̃(a) + Λ̃(e) + p(f).

This implies

Λ̃(d)≤ inf
{
Λ̃(a) + Λ̃(e) + p(f)

∣∣ c ≤ e + f
}

= Λ̃(a) + inf
{
Λ̃(e) + p(f)

∣∣ c ≤ e + f
}

= Λ̃(a) + p̄(c).

So, p̄ also fulfills that d ≤ a+ c always implies Λ̃(d) ≤ Λ̃(a)+ p̄(c). Especially,

Λ̃ ≤ p̄. For all d ∈ D, we have d ≤ d + 0 and thus p̄(d) ≤ Λ̃(d) + p(0) = Λ̃(d).

The last two inequalities together tell us that p̄|D = Λ̃.

Secondly, we prove all the properties that we claimed q : C → R+ to have.

We know 0 ≤ a + 0 for all a ∈ C, which implies q(a) ≥ 0. Since d ≤ 0 + c

implies Λ̃(d) ≤ p̄(c) which, for p̄(c) < ∞, is equivalent to Λ̃(d) − p̄(c) ≤ 0,

we conclude that q(0) ≤ 0. Therefore q(0) = 0 holds. Homogeneity for r > 0

holds because multiplication with r is an order-isomorphism. Superadditivity

of q follows from a similar calculation like the one for subadditivity of p̄. To

prove that q is monotone let a1 ≤ a2. Then
{
Λ̃(d)− p̄(c)

∣∣ d ∈ D, c ∈ C, p̄(c) <

∞, d ≤ a1 + c
}
⊆

{
Λ̃(d) − p̄(c)

∣∣ d ∈ D, c ∈ C, p̄(c) < ∞, d ≤ a2 + c
}
, and

hence q(a1) ≤ q(a2). Let a ∈ C and d ≤ a + c with d ∈ D, c ∈ C and

p̄(c) < ∞. Then

Λ̃(d)≤ p̄(d), since Λ̃ ≤ p̄

≤ p̄(a + c), since p̄ is monotone

≤ p̄(a) + p̄(c), since p̄ is sublinear.

For p̄(c) < ∞ this is equivalent to Λ̃(d) − p̄(c) ≤ p̄(a), and hence q(a) ≤ p̄(a),

respectively q ≤ p̄ on C. For d ∈ D, d ≤ d + 0 implies q(d) ≥ Λ̃(d) − p̄(0) =

Λ̃(d). Moreover, q(d) ≤ p̄(d) = Λ̃(d) for d ∈ D, hence q|D = Λ̃.

By its definition, q̌ is the greatest Scott-continuous function below q. Thus

q̌ ≤ p̄ is clear. With Lemma 2.6.2 it follows immediately that q̌ is homoge-

neous. To show superadditivity of q̌ we calculate
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q̌(a1) + q̌(a2) =
∨↑

b1�a1

q(b1) +
∨↑

b2�a2

q(b2)

=
∨↑{

q(b1) + q(b2)
∣∣ b1 � a1, b2 � a2

}
, as + is Scott-cont.

≤
∨↑{

q(b1 + b2)
∣∣ b1 � a1, b2 � a2

}
, as q is superadditive

≤
∨↑{

q(c)
∣∣ c � a1 + a2

}
, as � is additive

= q̌(a1 + a2).

By definition, the d-subcone D is closed under directed suprema, it is a contin-

uous d-cone with respect to the induced order, and the way-below relation on

D is the restriction of the way-below relation on C. These properties together

with the facts that q|D = Λ̃ and that Λ̃ is Scott-continuous imply

q̌(a)=
∨↑{

q(b)
∣∣ b � a and b ∈ C

}
=

∨↑{
q(b)

∣∣ b � a and b ∈ D
}

=
∨↑{

Λ̃(b)
∣∣ b � a and b ∈ D

}
= Λ̃(a),

for a ∈ D. This shows q̌|D = Λ̃ and completes the proof. �

In the case that only a linear Scott-continuous functional Λ̃ : D → R+ is

given without a sublinear dominating p : C → R+, we still obtain an extension

of Λ̃ to the whole d-cone C. To see this define p : C → R+ by

p(a) :=

⎧⎨
⎩Λ̃(a), if a ∈ D

∞, if a �∈ D.

Then, Λ̃ and p fulfill the hypothesis of the Extension Theorem 3.12.4 and we

get as an immediate consequence:

Corollary 3.12.5 Let C be a continuous d-cone with an additive way-below

relation. Let D be a d-subcone of C and let Λ̃ : D → R+ be linear and Scott-

continuous. Then there is a Scott-continuous linear extension Λ: C → R+ of

Λ̃.

In other words this corollary states that R+ is injective in the category

of continuous d-cones with additive way-below relations and with respect to

d-subcone embeddings.

As another consequence of the Extension Theorem we obtain a Sum The-

orem for continuous d-cones:

Theorem 3.12.6 ((Sum Theorem)) Let C be a continuous d-cone with an

additive way-below relation, let Λ: C → R+ be linear and Scott continuous,
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let p1, . . . , pn : C → R+ be sublinear, and for d, a, c1, . . . , cn ∈ C,

d ≤ a + ck, k = 1, . . . , n =⇒ Λ(d) ≤ Λ(a) +
n∑

k=1

pk(ck).

Then Scott continuous linear functions Λk : C → R+ exist with Λk ≤ pk,

k = 1, . . . , n, and Λ = Λ1 + . . . + Λn.

Proof. First, remark that Λ ≤ p1 + . . . + pn, since c ≤ 0 + c implies

Λ(c) ≤ Λ(0) +
n∑

k=1

pk(c) = p1(c) + . . . + pn(c)

for all c ∈ C. The main steps of the proof turn out to be quite similar to

the proof of [13, Theorem 1.4.1], a Sum Theorem for pre-ordered Abelian

semigroups.

For a continuous d-cone C with additive way-below relation, Cn is also a

continuous d-cone with additive way-below relation by Proposition 2.6.6. The

diagonal ∆ ⊆ Cn is a d-subcone and Λ̃: ∆ → R+, Λ̃(d, . . . , d) := Λ(d), is lin-

ear and Scott-continuous. The map p : Cn → R+, p(c1, . . . , cn) :=
∑n

k=1 pk(ck)

is sublinear. By definition of pointwise addition and order, (d, . . . , d) ≤

(a, . . . , a)+(c1, . . . , cn) is equivalent to d ≤ a+ck, k = 1, . . . , n, for a, b, ck ∈ C.

Thus,

Λ̃(d, . . . , d) = Λ(d) ≤ Λ(a) +
n∑

k=1

pk(ck) = Λ̃(a, . . . , a) + p(c1, . . . , cn)

follows from the hypothesis. This means that we can apply our Extension

Theorem 3.12.4 to this situation and obtain a linear Scott-continuous exten-

sion Λ̄ : Cn → R+ of Λ̃ with Λ̄ ≤ p on Cn. We define Λk : C → R+ by

Λk(c) := Λ
(
∆k(c)

)
, where ∆k(c) := (0, . . . , 0, c, 0, . . . , 0) with c at the k-

th component and every other component is equal to zero. As Λ is linear,

Scott-continuous and Λ ≤ p, it follows that Λk is linear, Scott-continuous and

Λk ≤ pk. Moreover, for d ∈ C,

Λ(d) = Λ̃(d, . . . , d) = Λ̄(d, . . . , d) = Λ̄
( ∑n

k=1 ∆k(d)
)

=
∑n

k=1 Λ̄
(
∆k(d)

)
=

∑n

k=1 Λk(d).

�
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Chapter 4

Power Constructions

Consider non-deterministic behaviour of a computer program. Naturally,

some kind of power set construction arises in modelling the different possi-

ble outcomes of the program for the same input value. A semantics of non-

deterministic features within the framework of domain theory was given by

Plotkin in [40]. There, he introduced the so-called convex powerdomain (also

called Plotkin powerdomain) to capture finite non-deterministic branching.

The fact that only finitely many choices are possible is also called bounded

non-determinism. Shortly after this, Smyth [52] proposed a simpler, half-sided

powerdomain, the upper (or Smyth) powerdomain. This one describes a de-

monic view of bounded non-determinism, while an angelic view is modelled

by the lower (or Hoare) powerdomain. Unlike the convex powerdomains, the

lower powerdomain cannot be attributed to a single person. It received its

name from its connection to Hoare’s work on partial correctness [19]. The

upper powerdomain can also be used to model total correctness, while the

convex powerdomain combines both approaches. Under certain conditions on

the underlying space there exist nice topological characterisations for these

classical powerdomains as special subsets of the whole power set. We will

recall these representations later when we modify them within the context of

continuous d-cones.

Winskel describes the classical powerdomains via modal assertions in [61].

The lower powerdomain is built up from assertions about possible behaviour

of a process, the upper powerdomain is built up from assertions about the

inevitable behaviour of a process, while the convex powerdomain is built up

from both kinds of assertions taken together. Heckmann studies these and

other powerdomain constructions in a general algebraic framework [17]. The
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topological concept of powerdomains is stressed by Smyth in [53]. There, he

highlights that open sets should be viewed as computable properties.

A different kind of non-determinism is given by probabilistic choice. We

already mentioned that a suitable model is given by the probabilistic pow-

erdomain, see [24,23]. What happens if we combine both kinds of non-

determinism? A research group in Oxford tackled various aspects of this

problem. From this group, Morgan, McIver, and Seidel introduced proba-

bilistic predicate transformers in [38] where non-determinism coexists with

probabilistic choice. In [36], Morgan and McIver built a Plotkin style pow-

erdomain over the space of probability distributions on a dicrete state space.

We modify their approach in this chapter and develop for all three classical

power constructions a version for the extended probabilistic powerdomain over

continuous state spaces. Actually, it turns out that the more general structure

of continuous d-cones suffices for these constructions. We will use the topolog-

ical characterisations of the classical powerdomains and modify them by using

convex subsets. This takes the cone structure into consideration and enables

us to lift addition and scalar multiplication to our power constructions. The

lifting happens in such a way that the powerdomains also become d-cones.

We call them convex powercones.

It is another important property of the classical powerdomains that they

are universal with respect to an additional semilattice operation. Develop-

ing this point of view, Main related free constructions of powerdomains with

semiring modules[35]. Abramsky and Jung studied free continuous domain-

algebras in [1]. In this chapter we will also show our convex d-cones to be

universal in a suitable setting. Note that even if applied to subsets of a d-cone

C, the symbols ↓, ↑, �� and �� will always refer to the order on C and not to the

order on any powerdomain over C.

4.13 The Convex Lower Powercone

As the lower powerdomain describes partial correctness, every element ap-

proximating the desired behaviour of a program can also be used for an in-

terpretation. An approximation usually means that the program terminates

for fewer input values. This does not matter since for partial correctness one

is only interested in a correct output whenever the program terminates. This

idea may give an intuition for the topological characterisation of the classical

lower powerdomain Hc(X) as being the Scott-closed subsets of the underlying

R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1–104 57

RETRACTED



domain X ordered by subset inclusion. And – for the topologies we deal with

– closed sets are always lower sets. This explains the use of the term ‘lower’.

We will modify this characterisation of the classical lower powerdomain

to define the convex lower powercone H(C) over a d-cone C. Then H(C)

will be a d-cone in which binary suprema exist and give an extra semilattice

operation. In this context, H(C) will be shown to be universal.

4.13.1 The Convex Lower Powercone Construction

For a d-cone (C, +, 0, ·) we consider the collection

H(C) := {A ⊆ C | A nonempty, Scott-closed, convex}

of all nonempty Scott-closed convex subsets of C ordered by inclusion ⊆.

Addition and scalar multiplication are lifted to H(C) in the following way:

+
H
: H(C) × H(C) → H(C), A +

H
B := A + B,

·
H

: R+ × H(C) → H(C), r ·
H

A := r · A,

where A + B is the closure of A + B = {a + b | a ∈ A, b ∈ B} in the Scott

topology, and r · A = {r · a | a ∈ A}. With these definitions we will prove in

this section:

Theorem 4.13.1 Let (C, +, 0, ·) be a d-cone. Then
(
H(C), +

H
, {0}, ·

H

)
is also

a d-cone, called the convex lower powercone (sometimes also the convex Hoare

powercone of C). Binary suprema (hence arbitrary suprema) exist in H(C)

and satisfy the following distributivity laws:

A +
H
(B ∨ D)= (A +

H
B) ∨ (A +

H
D)

r ·
H

(A ∨ B)= r ·
H

A ∨ r ·
H

B.

If C is a continuous d-cone, then H(C) is a continuous d-cone, too. If, in

addition, the way-below relation is additive on C, the same holds for H(C).

Let us note that, for a continuous d-cone C, the convex lower powercone

H(C) is a continuous lattice, hence Lawson-compact.

The proof of this theorem will be broken down in smaller steps. We hence-

forward suppose C to be a d-cone.

The intersection of a family of nonempty Scott-closed convex sets is again

a Scott-closed convex set, and nonempty, as 0 is contained in every nonempty
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Scott-closed set. Thus we have:

Proposition 4.13.2 The set H(C) ordered by inclusion is a complete lattice.

For every subset M ⊆ C, there is a smallest Scott-closed convex subset

containing M : One first forms the convex hull conv M and then its Scott

closure conv M which is again convex by Proposition 2.6.10. Thus, binary

suprema in H(C) are formed as the Scott closure of the convex hull of the

union of two sets,

A ∨ B = conv(A ∪ B) ,

and likewise for the supremum of an arbitrary family (Ai) in H(C),

∨
i

Ai = conv
⋃
i

Ai .

As the union of a directed family of convex sets Ai is again convex, directed

suprema in H(C) are given by the topological closure of the directed union

∨↑
Ai =

⋃
↑Ai .

Finally {0} is the least element of H(C).

Now we check the cone properties. Immediately from the definition we see

that {0} is the neutral element for addition in H(C).

Proposition 4.13.3
(
H(C), +

H
, {0}, ·

H

)
as defined above is a cone.

Proof. Let us start by showing that the operations +
H

and ·
H

are well-defined.

For convex sets A and B the sum A + B is also convex by 2.6.11. Its Scott

closure is convex by Lemma 2.6.10. Multiplication of A by an r ∈ R+ is either

{0}, the neutral element of H(C), for r = 0; or else r ·
H

A = r · A is again

convex and Scott-closed since multiplication by r > 0 is an order isomorphism

of the d-cone C.

Most of the cone axioms are straightforward to check using the fact that

they are satisfied for the nonempty convex subsets by 2.6.11. For the asso-

ciativity of +
H
, for example, we use the Scott continuity of the addition on

C and Lemma 1.2.2: (A1 +
H
A2) +

H
A3 = A1 + A2 + A3 = A1 + A2 + A3 =

A1 + A2 + A3 = A1 +
H
(A2 +

H
A3). �

Proposition 4.13.4 Addition +
H

and scalar multiplication ·
H

on H(C) are

Scott-continuous.
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Proof. Monotonicity of addition on H(C) is clear from its definition. Using

the Scott continuity of the addition on C and Lemma 1.2.2 we have

A +
H
(
∨↑

Ai) = A +
⋃↑Ai = A +

⋃↑Ai

=
⋃↑(A + Ai) =

⋃↑A + Ai =
∨↑

(A +
H
Ai) .

We use that scalar multiplication on C is Scott-continuous and calculate for

A ∈ H(C), (
∨↑

ri) ·
H

A = {(
∨↑

ri) · a | a ∈ A} = {
∨↑

(ri · a) | a ∈ A} =⋃↑ri · A =
∨↑

(ri ·
H

A). For a directed family (Ai) in H(C) and fixed r ∈ R+,

the relation r ·
H

∨↑
Ai =

∨↑
(r ·

H
Ai) is straightforward. �

This proposition concludes our proof that H(C) is a d-cone. Binary

suprema in H(C) distribute over the algebraic operations:

Proposition 4.13.5 For binary suprema in H(C), A ∨ B = conv(A ∪ B),

the following distributivity laws hold for A, B, D ∈ H(C) and r ∈ R+,

A +
H
(B ∨ D)= (A +

H
B) ∨ (A +

H
D)

r ·
H

(A ∨ B)= r ·
H

A ∨ r ·
H

B.

Proof. From the monotonicity of addition we get immediately (A +
H

B) ∨

(A +
H
D) ⊆ A +

H
(B ∨ D). For the other inclusion we use the Scott continuity

of addition on C and Lemma 1.2.2 in order to see that

A +
H
(B ∨ D) = A + conv(B ∪ D) = A + conv(B ∪ D) .

Now it suffices to show that A + conv(B ∪ D) ⊆ (A +
H
B) ∨ (A +

H
D). So, let

x ∈ A + conv(B ∪ D) be arbitrary. Then there are elements a ∈ A, b ∈ B,

d ∈ D and a real number 0 ≤ r ≤ 1 such that

x = a + rb + (1 − r)d = r(a + b) + (1 − r)(a + d) ,

whence x ∈ conv
(
(A + B) ∪ (A + D)

)
⊆ conv

(
(A + B) ∪ (A + D)

)
= (A +

H

B) ∨ (A +
H
D).

We have 0 ·
H

(A ∨ B) = {0} = {0} ∨ {0} = (0 ·
H

A) ∨ (0 ·
H

B). For r > 0,

multiplication by r is an isomorphism and we conclude

r ·
H

(A ∨ B) = r · conv(A ∪ B) = r · conv(A ∪ B)

= conv(r · A ∪ r · B) = (r ·
H

A) ∨ (r ·
H

B).

�
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Together with the Scott continuity of addition and scalar multiplication in

the cone H(C), this proposition yields that arbitrary non-empty suprema are

preserved by these operations.

Proposition 4.13.6 If C is a continuous d-cone, then H(C) is a continuous

lattice, too. We have B �H A in H(C) if and only if there is a finite set

F such that B ⊆ conv F and F ⊆ ��A. The sets conv F for nonempty finite

F ⊆ C form a basis of the continuous lattice H(C).

Proof. Let C be a continuous d-cone. To show the continuity of H(C), we

imitate the proof of Proposition 6.5 in [48]. First, we show that x � y in C

implies ↓x �H ↓y in H(C). Let ↓y ⊆
⋃↑Ai for some directed family (Ai)i∈I

in H(C). Since
⋃↑Ai = {

∨↑
S | S directed, S ⊆

⋃↑
Ai} by Lemma 1.4.1,

there exist a directed set S ⊆
⋃↑

Ai with y ≤
∨↑

S. From x � y we conclude

that x ≤ s for some s ∈ S. As there is an i ∈ I with s ∈ Ai, we conclude

↓x ⊆ ↓s ⊆ Ai, hence ↓x � ↓y in H(C). For each Scott-closed convex set A,

the continuity of C yields A =
⋃
{↓d | ∃ a ∈ A. d � a} =

∨
{↓d | ∃ a ∈ A. d �

a}. We just proved that ↓d � ↓a ⊆ A, whence ↓d � A in H(C). Thus, A

is the supremum of convex Scott-closed subsets ↓d way-below it with respect

to the Hoare order of subset inclusion. This implies that the lattice H(C)

is continuous. It also implies that the finitely generated Scott-closed convex

sets conv F , F finite and F � A, are way-below A and that their directed

supremum is A. From this we infer the characterisation of the way-below

relation claimed in the statement of the proposition. �

For an alternative proof of continuity for H(C), we can use the fact that for

the ordinary lower powerdomain Hc(C) of all nonempty Scott-closed subsets

it is well-known that a continuous domain yields a continuous powerdomain

(see e.g. Corollary IV-8.7 in [15]). We define a continuous retraction-section

pair between the convex lower powercone H(C) and the ordinary lower pow-

erdomain Hc(C). Then H(C) is continuous as the retract of a continuous

domain. The retraction is defined in the obvious way r : Hc(C) → H(C),

r(A) := conv A. The section is the inclusion map j : H(C) → Hc(C), j(B) :=

B.

Using the above characterisation of the way-below relation on H(C) we

can show that the additivity of the way-below relation is preserved:

Proposition 4.13.7 If the continuous d-cone C has an additive way-below

relation then H(C) does too.
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Proof. Let A1 �H B1 and A2 �H B2 in H(C). By the above characterisation

there exist a finite set Fi such that Ai ⊆ conv Fi and Fi � Bi for i = 1, 2. We

claim that F := F1+F2 is a finite set which is a witness for A1+
H
A2 �H B1+

H
B2.

For A1 +
H
A2 = A1 + A2 ⊆ conv F it suffices to show A1 + A2 ⊆ conv F

since the latter set is Scott-closed. We have

A1 + A2 ⊆ conv F1 + conv F2

⊆ (conv F1) + (conv F2), by Lemma 1.2.2

= conv(F1 + F2), by Lemma 2.6.11

= conv F.

For e = e1 +e2 ∈ E there exist b1 ∈ B1 and b2 ∈ B2 with e1 � b1 and e2 � b2.

Since the way-below relation on C is additive we conclude e1 + e2 � b1 + b2 ∈

B1 +
H
B2. �

One step of the last proof was to show conv F1 +conv F2 ⊆ conv(F1 + F2).

Since the right hand side is closed, we also obtain that conv F1 +
H
conv F2 ⊆

conv(F1 + F2). The left hand side of this inclusion is convex, closed and con-

tains F1 +F2; thus, the converse inclusion also holds. We conclude conv F1 +
H

conv F2 = conv(F1 + F2). We will use this fact later for our convex Plotkin

type construction.

4.13.2 Universal Property of the Convex Lower Powercone

Like the classical lower powerdomain, the convex lower powercone can also be

described by a universal property: the d-cone H(C) is the free ∨-d-cone over

a d-cone C. In this section we will prove this statement.

Let us look at our construction in a categorical setting. The d-cones are

the objects of the category CONE with the Scott-continuous linear maps as

morphisms. In the category CONE
∨ we collect as objects those d-cones in

which binary suprema (hence arbitrary suprema) exist and distribute over

addition and scalar multiplication as follows:

a + (b ∨ c) = (a + b) ∨ (a + c)

r · (a ∨ b) = r · a ∨ r · b

Together with Scott continuity, these two conditions yield that arbitrary suprema

distribute over addition and scalar multiplication. The morphisms in the cat-

egory CONE
∨ are the linear maps preserving arbitrary suprema. In Theorem

4.13.1 we have seen that the convex lower powercones are objects in the cat-

egory CONE
∨.
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Proposition 4.13.8 The assignment C 
→ H(C) can be extended to a functor

H : CONE → CONE
∨ by assigning to any Scott-continuous linear map f : C →

D between d-cones the linear map H(f) : H(C) → H(D) preserving arbitrary

suprema defined by H(f)(A) := f(A).

Proof. For a Scott-continuous linear function f : C → D between d-cones

we have to show that H(f) : H(C) → H(D) is linear and preserves arbitrary

suprema. All these are short calculations where one uses the Scott continuity

of the function f , of addition and scalar multiplication on C and Lemma 1.2.2.

To finish the proof of the functoriality of H, we calculate for any Scott-closed

set A ⊆ C,

H(idC)(A) = idC(A) = A = A = idH(C)(A).

Regarding composition we use continuity of f and g to get

H(g ◦ f)(A) = g
(
f(A)

)
= g

(
f(A)

)
=

(
H(g) ◦ H(f)

)
(A).

�

Lemma 4.13.9 Besides the functor H : CONE → CONE
∨ we have the forget-

ful functor U : CONE
∨ → CONE in the other direction and a natural transfor-

mation j : IdCONE → U ◦H where, for each d-cone C, the morphism jC : C →

H(C) maps an element x ∈ C to its lower closure ↓x.

Proof. First we show that for every d-cone C, the map jC is Scott-continuous

and linear, hence, a morphism between d-cones. Scott continuity is clear from

↓(
∨↑

xi) =
⋃↑↓xi =

∨↑
(↓xi). To show additivity we calculate

↓(x + y) = ↓(↓x + ↓y) = ↓x + ↓y = ↓x +
H
↓y.

For scalars r ∈ R+ we get ↓(r · x) = r · ↓x = r ·
H
↓x.

It remains to prove that, for any Scott-continuous linear function f : C →

D, the following diagram commutes

C
jC

� H(C)

D

f

� jD
� H(D)

H(f)

�

which is equivalent to the statement ↓f(x) = f(↓x) which is straightforward.�
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Now, we can prove the following universal property

Theorem 4.13.10 The functor H : CONE → CONE
∨ is left adjoint to the

forgetful functor U : CONE
∨ → CONE. In other words, for every d-cone C

and every Scott-continuous linear map f from C into a d-cone L ∈ CONE
∨,

there is a unique linear map f̂ : H(C) → L preserving arbitrary suprema such

that f = f̂ ◦ jC:

C
jC

� H(C)

L

∃!f̂

�

∈ CONE
∨

∀fC
O
N
E

�

Proof. To make the diagram commute we must have f̂(↓x) = f(x). In order

to get a map preserving suprema we are forced to set f̂(A) := sup f(A).

This shows the uniqueness of the function f̂ . It remains to show the map

f̂ : H(C) → L defined by f̂(A) := sup f(A) is a morphism in CONE
∨ which

makes the diagram commute.

Since f is monotone f̂(↓x) =
∨

a∈↓x f(a) ≤ f(x). But since x ∈ ↓x we also

have f(x) ≤ f̂(↓x), which proves that the diagram commutes.

We now note that for arbitrary A ⊆ C we have:

sup f(A) = sup f(A) = sup f(A) (1)

= sup f(conv A) = sup conv f(A) (2)

Indeed x is an upper bound of f(A) iff f(A) ⊆ ↓x and this is equivalent to

conv f(A) ⊆ ↓x, as ↓x is Scott-closed and convex. Thus, f(A) and conv f(A)

have the same upper bounds, hence the same least upper bound. As f(A) ⊆

f(A) ⊆ f(A) ⊆ f(conv A) ⊆ conv f(A) by the continuity and linearity of f ,

it follows that all the sups are the same as claimed.
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We will use this fact for proving the linearity of f̂ . Let A, B ∈ H(C):

f̂(A +
H
B) = sup f(A +

H
B)

= sup f(A + B)

= sup f(A + B) by equation (1)

= sup
(
f(A) + f(B)

)
as f is linear

= sup f(A) + sup f(B) as addition distributes over sups in L

= f̂(A) + f̂(B).

For any scalar r ∈ R+ we similarly have

f̂(r ·
H

A) = sup f(r · A) = sup
(
r · f(A)

)
= r · sup f(A) = r · f̂(A).

In order to finish the proof, we take any family (Ai) in H(C) and we have:

f̂
( ∨

i

Ai

)
=sup f

(
conv

⋃
i

Ai

)
=sup f

(⋃
i

Ai

)
by equation (2)

= sup
( ⋃

i

f(Ai)
)

=sup
i

(
sup f(Ai)

)
=sup

i

f̂(Ai).

�

As a special case for the universal property we may consider a Scott-

continuous linear functional f : C → R+. Then there is a unique linear func-

tional f̂ : H(C) → R+ preserving arbitrary suprema such that f̂ ◦ jC = f , and

this functional is defined by

f̂(A) = sup f(A) for every Scott-closed convex subset A ⊆ C .

4.14 The Convex Upper Powercone

The upper powerdomain describes total correctness. As non-termination is

treated as the worst output, this view is quite opposite to the view of par-

tial correctness for the lower powerdomain. Thus, it is not surprising that
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the topological characterisation of the upper powerdomain (also called Smyth

powerdomain) Sc(X) consists of nonempty compact saturated (= upper) sub-

sets ordered by reverse inclusion. This explains the ‘upper’ nomenclature.

Compactness is somewhat harder to motivate. It generalises finiteness, as

finitely generated upper sets form a basis for the upper powerdomain of a

continuous domain. As for the ordinary upper powerdomain, the universal

property of the convex upper powercone does not hold over arbitrary dcpos.

One has to restrict to continuous domains.

4.14.1 The Convex Upper Powercone Construction

For a continuous d-cone (C, +, 0, ·) we consider the collection

S(C) := {P ⊆ C | P nonempty, compact, convex, saturated}

of all nonempty Scott-compact convex saturated subsets ordered by reverse

inclusion ⊇. Addition and scalar multiplication are lifted from C to S(C) in

the following way:

+
S
: S(C) × S(C) → S(C), P +

S
Q := ↑(P + Q)

·
S

: R+ × S(C) → S(C), r ·
S
P := ↑(r · P )

Note that r ·
S
P = ↑{0} = C if r = 0 and r ·

S
P = r · P if r > 0. We will prove

that S(C) becomes a continuous d-cone in which binary infima exist:

Theorem 4.14.1 Let (C, +, 0, ·) be a continuous d-cone. Then
(
S(C), +

S
, C, ·

S

)
is a continuous d-cone with the order of reverse inclusion called the convex up-

per powercone (sometimes also convex Smyth powercone). Moreover, binary

infima exist in S(C) and satisfy the following distributivity laws:

P +
S
(Q ∧ R) = (P +

S
Q) ∧ (P +

S
R)

r ·
S
(P ∧ Q) = (r ·

S
P ) ∧ (r ·

S
Q)

If the way-below relation is additive on C, the same holds for S(C). If C is

Lawson-compact, then S(C) is a continuous lattice, hence Lawson-compact,

too.

Most of this section is devoted to the proof of this Theorem. We will sup-

pose henceforeward that C is a continuous d-cone.
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A family (Pi)i∈I of nonempty Scott-compact convex saturated subsets of C,

which is directed for reverse inclusion, is filtered for inclusion. Hence,
⋂

i∈I Pi

is again nonempty Scott-compact convex and saturated by Proposition 1.3.1.

As it is the biggest such set contained in all the Pi, it is their infimum with

respect to the order of reverse inclusion.

∨↑

i∈I

Pi =
⋂

↓
i∈I

Pi .

For P, Q ∈ S(C), the set conv(P ∪Q) is Scott-compact by Lemma 2.6.12, and

so is ↑conv(P ∪ Q). It is the smallest convex saturated set which contains

P and Q, hence, the supremum of P and Q in S(C) with respect to reverse

inclusion. If C is Lawson-compact, the intersection of two compact saturated

convex sets is again such; hence, S(C) is even a complete lattice. We have

shown:

Proposition 4.14.2 In S(C) directed suprema and binary infima with respect

to the order of reverse inclusion exist. They are given by

∨ ↑

i∈I

Pi =
⋂

↓
i∈I

Pi,

P ∧ Q = ↑conv(P ∪ Q) .

In particular, S(C) is a dcpo with respect to the order of reverse inclusion. If

C is Lawson-compact, then S(C) is a complete lattice.

There is a bottom element in S(C), namely ↑0 = C. This is also the

neutral element for addition on S(C).

Proposition 4.14.3 The above defined
(
S(C), +

S
, C, ·

S

)
is a cone.

Proof. First, we show that the operations +
S

and ·
S

are well-defined. The

sum of two Scott-compact sets is again Scott-compact since addition on C is

Scott-continuous. The sum of any two convex sets is again convex. Taking

the upper set ↑(P + Q) preserves compactness and convexity. Surely, this set

is also nonempty whenever P and Q are nonempty. Multiplication by r = 0

yields 0 ·
S

P = ↑{0} = C, a non-empty compact saturated subset of C. Since

multiplication by r > 0 is an order-isomorphism, we have r ·
S

P = r · P and

nonempty Scott-compact convex saturated subsets are mapped to sets with

the same properties.
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The associativity of addition on S(C) is straightforward to check using that

addition on C is monotone. Commutativity of addition is immediate. The

original cone C is the neutral element for addition in S(C) since it contains

the neutral element 0 of C and because addition is monotone on C. We

have 1 ·
S

P = P and 0 ·
S

P = C, the neutral element in S(C). The equation

(r·s)·
S
P = r·

S
(s·

S
P ) is immediate. Similarly, we obtain r·

S
(P+

S
Q) = (r·

S
P )+

S
(r·

S
Q)

using the monotonicity of addition and scalar multiplication on C together

with the distributivity law r · (a + b) = r · a + r · b on C. To show the other

distributivity law (r + s) ·
S
P = (r ·

S
P ) +

S
(s ·

S
P ), one needs in addition that the

set P is convex (see 2.6.11). �

We continue with

Proposition 4.14.4 Addition and scalar multiplication are Scott-continuous

on S(C).

Proof. For the Scott continuity of addition on S(C), we have to show that

(
∨↑

Pi) +
S
Q =

∨↑
(Pi +

S
Q), that is,

↑
(⋂

↓
Pi

)
+ Q =

⋂
↓
↑(Pi + Q) .

It is straighforward that the left hand side is contained in the right hand side.

For the reverse inclusion, choose any Scott-open set U containing ↑
(⋂

↓
Pi

)
+

Q. As every saturated subset of a dcpo is the intersection of its Scott-open

neighborhoods, it suffices to prove that the right hand side is contained in U .

As
⋂

↓
Pi + Q ⊆ U and as addition is jointly Scott-continuous on the

continuous domain C, the Scott-compact sets
⋂

↓
Pi and Q have Scott-open

neighborhoods V and W , respectively, such that V + W ⊆ U . As
⋂

↓
Pi ⊆ V ,

there is an i such that Pi ⊆ V by Proposition 1.3.1. Thus, Pi+Q ⊆ V +W ⊆ U ,

whence
⋂

↓
↑ (Pi + Q) ⊆ U .

With respect to scalar multiplication, we have to show that
∨↑

i,j(ri ·
S
Pj) =

(
∨↑

i ri) ·
S

(
∨↑

j Pj). If
∨↑

i ri = 0, then ri = 0 for all i, and the equation

is trivially true. Thus we may suppose that ri > 0 for all i. The desired

equation can be rewritten in the following form⋂
↓

i,j

(ri · Pj) = (
∨↑

i

ri) · (
⋂

↓
j

Pj).

That scalar multiplication ·
S

on S(C) is monotone follows directly from the

monotonicity of scalar multiplication on C. This implies that the left hand
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side is contained in the right hand side. For the reverse inclusion, the argument

is similar to the one for addition. The saturated set (
∨↑

i ri) · (
⋂

↓j
Pj) is the

intersection of the Scott-open sets U in which it is contained. If we can show

that
⋂

↓i,j
(ri · Pj) ⊆ U for all those open sets, we are finished. Thus, let

U be a Scott-open set with (
∨↑

i ri) · (
⋂

↓j
Pj) ⊆ U . Scalar multiplication

on C is jointly Scott-continuous, hence, the inverse image of U under scalar

multiplication {(r, x) ∈ R+ × C | r · x ∈ U} is Scott-open and contains

(↑
∨↑

i ri) × (
⋂

↓j
Pj). As (↑

∨↑

i ri) and (
⋂

↓j
Pj are both Scott-compact, they

have Scott-open neighborhoods V and W , respectively, such that V · W ⊆

U . As sup ri ∈ V there is an i such that ri ∈ V , and as
⋂

↓j
Pj ⊆ W , by

Proposition 1.3.1 there is a j such that Pj ⊆ W . Thus
⋂

↓i,j
ri · Pj ⊆ ri · Pj ⊆

V · W ⊆ U which completes the proof. �

Lemma 4.14.5 For binary infima on S(C) the following distributivity laws

hold:

P +
S
(Q ∧ R) = (P +

S
Q) ∧ (P +

S
R)

r ·
S
(P ∧ Q) = (r ·

S
P ) ∧ (r ·

S
Q).

Proof.

P +
S
(Q ∧ R) = ↑(P + ↑(conv(Q ∪ R))

= ↑(P + conv(Q ∪ R)), since addition on C is monotone

= ↑{p + λq + (1 − λ)r | p ∈ P, q ∈ Q, r ∈ R, λ ∈ [0, 1]}, by Lemma 2.6.11

= ↑{λ(p + q) + (1 − λ)(p + r) | p ∈ P, q ∈ Q, r ∈ R, λ ∈ [0, 1]}

= ↑conv((P + Q) ∪ (P + R)), by Lemma 2.6.11

= ↑conv(↑(P + Q) ∪ ↑(P + R)), since the convex hull operator is monotone

= (P +
S
Q) ∧ (P +

S
R).

r ·
S

(P ∧ Q) = ↑(r · ↑conv(P ∪ Q))

= ↑(r · conv(P ∪ Q)), since scalar multiplication on C is monotone

= ↑conv
(
(r · P ) ∪ (r · Q)

)
= ↑conv

(
↑(r · P ) ∪ ↑(r · Q)

)
, since the convex hull operator is monotone

= r ·
S
P ∧ r ·

S
Q.

�

We will use the following characterisation of the way-below relation on the

classical upper powerdomain Sc(C) of all nonempty compact saturated sets

(see [1, Proposition 4.2.15] or [15, Proposition I-1.24.2]):
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Lemma 4.14.6 For nonempty compact saturated subsets P and Q of a con-

tinuous domain, one has P �S Q with respect to the order of reverse inclusion

on the dcpo Sc(C) if and only if P is a neighborhood of Q, that is, if and only

if Q is contained in the interior of P .

As the convex upper powercone S(C) is contained in the classical upper

powerdomain Sc(C), two elements P, Q ∈ S(C) are still way-below each other

if the previous condition is fulfilled. We will prove the stronger statement that

the way-below relation on S(C)is the restriction of the way-below relation on

Sc(C). This implies that the Scott topology on S(C) is the restriction of

the Scott topology on Sc(C). For this we will need the Hahn-Banach type

separation theorems of chapter 3.

Lemma 4.14.7 For P, Q ∈ S(C), the following are equivalent:

(i) P �S Q in S(C).

(ii) P is a neighborhood of Q.

(iii) There is a convex Scott-open set U such that P ⊇ U ⊇ Q.

(iv) Q ⊆ ��P , that is, for every q ∈ Q there is a p ∈ P such that p � q.

Moreover, the convex upper powercone S(C) is continuous and its finitely gen-

erated members ↑conv F form a basis.

Proof. (1) ⇒ (2) : Suppose P �S Q. By 3.11.6, Q is the intersection of

its compact convex saturated neighborhoods, and this family is directed. It

follows that there is a compact convex saturated neighborhood of Q contained

in P . Hence, P itself is a neighborhood of P .

(2) ⇒ (1) : This implication is an immediate consequence of Lemma 4.14.6.

(2) ⇔ (3) by Corollary 3.11.7.

(3) ⇒ (4) : We have U =
⋃

x∈U ��x ⊇ Q. Compactness of Q implies that U

contains a finite subset F such that ↑conv F ⊇ ��F ⊇ Q. Since U is open and

P ⊇ U ⊇ F , for each e ∈ F , there exists p ∈ P with p � e.

(4) ⇒ (2) : For every f ∈ F choose p ∈ P with p � f and let E be the

collection of these finitely many p. Then, �� conv E is open and P ⊇ ↑conv E ⊇

�� conv F ⊇ ↑conv F ⊇ Q.

In order to show continuity, pick Q ∈ S(C). By 3.11.6, every neighborhood

of Q contains a neighborhood of the form ↑conv F for a finite set F . Thus

the sets of this kind form a filtered system with Q as intersection. By the

above, ↑conv F �S Q. Thus, S(C) is a continuous d-cone and the sets of form
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↑conv F for finite F form a basis. �

Lemma 4.14.8 If C is a continuous d-cone with an additive way-below rela-

tion, then the way-below relation on S(C) is additive, too.

Proof. Let P1 �S Q1 and P2 �S Q2 in S(C). Then there are Scott-open

sets U1, U2 such that P1 ⊆ U1 ⊆ Q1 and P2 ⊆ U2 ⊆ Q2. Then P1 +
S
P2 =

↑(P1 + P2) ⊆ ↑(U1 + U2) ⊆ ↑(Q1 + Q2) = Q1 +
S
Q2. As ↑(U1 + U2) is also

Scott-open by Proposition 2.6.4, we conclude P1 +
S
P2 �S Q1 +

S
Q2. �

4.14.2 Universal Property of the Convex Upper Powercone

Let CCONE denote the category of continuous d-cones as objects and Scott-

continuous linear maps as morphisms. In the subcategory CCONE
∧ we collect

those continuous d-cones which admit binary infima and which satisfy the

following identities:

a + (b ∧ c) = (a + b) ∧ (a + c)

r · (a ∧ b) = (r · a) ∧ (r · b).

Note that the existence of binary infima implies the existence of infima for

finite nonempty subsets and the two identities above are equivalent to the

following two identities for nonempty finite subsets F and G:

inf F + inf G= inf(F + G)

r · (inf F )= inf(r · F ).

Morphisms in CCONE
∧ are Scott-continuous linear maps preserving binary

infima, hence, infima of finite nonempty sets.

We have seen in Theorem 4.14.1 that the convex upper powercone is an

object of the category CCONE
∧.

Proposition 4.14.9 The assignment C 
→ S(C) can be extended to a functor

S : CCONE → CCONE
∧ by assigning to a Scott-continuous linear function

f : C → D the map S(f) : S(C) → S(D) with S(f)(P ) := ↑f(P ).

Proof. Let us show that, for a Scott-continuous linear map f : C → D be-

tween continuous d-cones, S(f) : S(C) → S(D) is Scott-continuous, linear, and

preserves binary infima. For P ∈ S(C), ↑f(P ) is compact, since P is compact

and f continuous, it is saturated by definition and convex since P is convex

and f linear. Clearly, S(f) is order preserving. It follows that

S(f)
(⋂

↓
Pi

)
= ↑f

(⋂
↓
Pi

)
⊆

⋂
↓
↑f(Pi) =

⋂
↓
S(f)(Pi).
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To show the other inclusion we use that the compact convex saturated set

S(f)
(⋂

↓
Pi

)
= ↑f(

⋂
↓
Pi) is the intersection of its compact convex saturated

neighborhoods P . For each of those one has
⋂

↓
Pi ⊆ f−1(P ) and the latter

set is a neighborhood of
⋂

↓
Pi by the continuity of f . Thus, there is an i

such that Pi ⊆ f−1(P ) by Proposition 1.3.1. We conclude that f(Pi) ⊆ P ,

whence ↑f(Pi) ⊆ P and consequently
⋂

↓
↑f(Pi) ⊆ ↑f(

⋂
↓
Pi) which completes

the argument that S(C)(f) is Scott-continuous. It is straightforward to verify

that S(f) is linear and preserves binary infima. One uses that f is linear and

monotone and that addition and scalar multiplication on D are monotone.

Overall, S(f) is a morphism in CCONE
∧. To finish the proof of the functoriality

of S, we calculate for any compact convex saturated set P ⊆ C,

S(idC)(P ) = ↑idC(P ) = ↑P = P = idS(C)(P ).

Regarding composition we use monotonicity of g and get

S(g ◦ f)(P ) = ↑g
(
f(P )

)
= ↑g

(
↑f(P )

)
=

(
S(g) ◦ S(f)

)
(P ) .

�

Lemma 4.14.10 Besides the functor S : CCONE → CCONE
∧, we have the

forgetful functor U : CCONE
∧ → CCONE in the other direction. Then, i : IdCCONE →

U ◦ S is a natural transformation where, for each continuous d-cone C, the

morphism iC : C → S(C) maps an element x ∈ C to its upper closure ↑x.

Proof. First we show that, for every continuous d-cone C, the map iC is

Scott-continuous and linear, hence, a morphism between d-cones. As x ≤ y

implies iC(x) = ↑x ⊇ ↑y = iC(y), the map iC is monotone. Now, we show

iC(
∨↑

xj) =
⋂

↓
iC(xj), that is ↑(

∨↑
xj) =

⋂
↓
↑xj . Indeed, y ∈

⋂
↓
↑xj is

equivalent to y ≥ xj for all j, i.e., y ≥
∨↑

xj or equivalently y ∈ ↑
( ∨↑

xj

)
=

iC
(∨↑

xj

)
. To show linearity we calculate

iC(x + y)= ↑(x + y) = ↑(↑x + ↑y) = iC(x) +
S
iC(y)

iC(r · x) = ↑(r · x) = ↑(r · (↑x)) = r ·
S
iC(x).

It remains to prove that, for any Scott-continuous linear function f : C → D
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between continuous d-cones, the following diagram commutes

C
iC

� S(C)

D

f

� iD
� S(D)

S(f)

�

From the monotonicity of f it follows immediately hat iDf(x) = ↑f(x) =

↑f(↑x) = US(f)(iC(x) for all elements x ∈ C. �

A continuous domain L in which binary meets exist, is called a continuous

∧-semilattice. As, in a continuous domain, every element has a neighborhood

basis of open filters, the meet operation in a continuous ∧-semilattice is Scott-

continuous. But we have more:

Lemma 4.14.11 (a) In a continuous ∧-semilattice L every nonempty Scott-

compact subset Q has a greatest lower bound

inf Q =
∨↑

{inf F | F finite and Q ⊆ int ↑F}

and the map Q 
→ inf Q : Sc(L) → L is Scott-continuous.

(b) If f : L → M is a Scott-continuous map between continuous ∧-semilattices

L and M which preserves binary infima, then f also preserves infima of

nonempty compact sets.

Proof. (a) We may restrict ourselves to compact saturated sets, as a set and

its saturation have the same lower bounds. At the other hand, in a continuous

domain, a nonempty compact saturated set Q is the intersection the finitely

generated upper sets ↑F such that ↑F � Q. Moreover, the family of these

sets is filtered. That is,

Q =
⋂

↓
{↑F | F finite and ↑F � Q} .

As binary infima exist in L, all finite nonempty subsets also have a greatest

lower bound, and the set {inf F | F finite and ↑F � Q} is directed. Let

a :=
∨↑

{inf F | F finite and ↑F � Q} .

It is clear that a is a lower bound of Q. In order to show that a is the greatest

lower bound, let b be any lower bound of Q. For every x � b, we have ↑x � Q,

R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1–104 73

RETRACTED



whence x = inf ↑x ≤ a. As this holds for every x � b, we conclude b ≤ a.

The continuity of the map Q 
→ inf Q follows from the following obser-

vation: Let Q be compact saturated and b � inf Q. Then ↑b is a compact

saturated set containing Q in its interior, whence ↑b � Q in the domain Sc(L),

and b = inf ↑b.

(b) Considering the representation of inf Q proved in (a), the claim follows

from the fact that f preserves directed sups and infima of nonempty finite

sets. �

We now restrict our attention to continuous d-cones L in which binary

infima exist. As the meet operation is Scott-continuous on L, every nonempty

Scott-compact convex saturated subset also has an infimum by the previous

lemma and, as the Scott topology on S(L) is the restriction of the Scott topol-

ogy on Sc(L) by 4.14.7, the map Q 
→ inf Q : Sc(L) → L is Scott-continuous.

But we have more:

Lemma 4.14.12 Let L be an object of CCONE
∧. For all P, Q ∈ S(L) and

r ∈ R+ we have

r · inf P = inf r ·
S
P

inf P + inf Q= inf(P +
S
Q)

inf P ∧ inf Q= inf(P ∧ Q)

Thus, the map

Q 
→ inf Q : S(L) → L

is Scott-continuous, linear and preserves binary infima, hence a morphism in

the category CCONE
∧.

Proof. The first equation is straightforward. For the second, recall that P +
S

Q = ↑(P + Q), whence inf(P +
S
Q) = inf(P + Q). As inf P ≤ p and inf Q ≤ q

for all p ∈ P, q ∈ Q, we obtain inf P + inf Q ≤ p + q, whence inf P + inf Q ≤

inf(P +Q). For the converse, consider any b � inf(P +Q). Then ↑b � P +
S
Q.

As the finitely generated convex saturated sets form a basis and as addition is

Scott-continuous on S(L), there are finite sets G and H such that ↑conv(G) �

P , ↑conv(H) � Q and ↑conv(G) + ↑conv(H) ⊆ ��b. We conclude that b ≤

inf(↑conv(G) + ↑conv(H)) = inf(G + H) = inf G + inf H ≤ inf P + inf Q. As

this holds for every b � inf(P + Q), we conclude inf(P + Q) ≤ inf P + inf Q.

For the third equation, recall that P ∧Q = ↑conv(P ∪Q). Hence inf(P ∧Q) =

inf conv(P ∪ Q) = inf(P ∪ Q) = inf P ∧ inf Q. �
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Now, we can prove the following universal property

Theorem 4.14.13 The functor S : CCONE → CCONE
∧ is left adjoint to the

forgetful functor U : CCONE
∧ → CCONE. In other words, for every continu-

ous d-cone C and every Scott-continuous linear map f from C into a d-cone

L ∈ CCONE
∧, there is a uniqe Scott-continuous linear map f̂ : S(C) → L

preserving binary infima such that f = f̂ ◦ iC :

C
iC

� S(C)

L

∃!f̂

�

∈ CCONE
∧

∀fC
C
O
N
E

�

Proof. Let C be a continuous d-cone, L a continuous d-cone in which binary

infima exist, and let f : C → L be a Scott-continuous linear map. Applying

the functor S, we obtain a Scott-continuous linear map S(f) : S(C) → S(L)

preserving binary infima. It is given by S(f)(P ) = ↑f(P ). We compose this

map with the linear Scott-continuous map Q 
→ inf Q : S(L) → L preserving

binary infima by the preceding lemma 4.14.12. We obtain a Scott-continuous

linear map f̂ : S(C) → L preserving binary infima defined by f̂(P ) = inf f(P ).

The above diagram commutes as f̂(iC(x)) = inf f(↑x) = f(x). Moreover, f̂ is

the only Scott-continuous linear map preserving binary infima such that the

above diagram commutes. Indeed, for Q ∈ S(C), one has Q = infS(C){↑q | q ∈

Q}. Thus, if g : S(C) → L is a Scott-continuous map preserving binary infima

such that f = g ◦ iC , then g preserves infima of compact sets by Lemma

4.14.11(a), hence g(Q) = g(infS(C){↑q | q ∈ Q}) = infL{g(↑q) | q ∈ Q} =

infL{f(q) | q ∈ Q} = f̂(Q). �

As a special case for the universal property we may consider a Scott-

continuous linear functional f : C → R+. Then there is a unique Scott-

continuous linear functional f̂ : S(C) → R+ preserving finite infima such that

f̂ ◦ jC = f , and this functional is defined by

f̂(Q) = inf f(Q) for every Scott-compact convex saturated subset Q ⊆ C .
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4.15 The Biconvex Powercone

A topological characterisation of the classical convex powerdomain is known

for Lawson-compact continuous domains X. In this case the convex power-

domain (also called Plotkin powerdomain) Pc(X) consists of the nonempty

Lawson-compact order-convex subsets with the Egli-Milner order. Union of

subsets followed by order-convex closure gives an extra binary semilattice op-

eration. As before, we will modify this characterisation to make it fit within

the context of d-cones.

4.15.1 The Biconvex Powercone Construction

In this section, C always stands for a Lawson-compact continuous d-cone.

Definition 4.15.1 A nonempty Lawson-compact order-convex subset A of C

will be called a lens. We define

P(C) := {P ⊆ C | P a convex lens},

to be the collection of all convex lenses of C ordered by the Egli-Milner order

as in the classical case.

Let us recall that, for order-convex subsets A, B ⊆ C, the Egli-Milner

order is defined by

A �EM B if ↓A ⊆ ↓B and ↑A ⊇ ↑B .

We now define an addition, a scalar multiplication and a formal union

operation on P(C):

+
P
: P(C) × P(C) → P(C), A +

P
B := (↓A +

H
↓B) ∩ (↑A +

S
↑B)

·
P

: R+ × P(C) → P(C), r ·
P
A := (r ·

H
↓A) ∩ (r ·

S
↑A)

∪ : P(C) × P(C) → P(C), A ∪ B := (↓A ∨H ↓B) ∩ (↑A ∧S ↑B).

Note that A +
P
B, r ·

P
A and A ∪ B are indeed convex lenses, as each is the

intersection of a convex Scott-closed set and of a Scott-compact saturated

convex set. Using the explicit definitions of addition and scalar multiplication

in the lower and upper powercones, we can simplify:

A +
P
B = A + B ∩ ↑(A + B)

r ·
P
A = r · A
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We use a seemingly more complicated definition, however, to reduce proofs

about the convex Plotkin-type construction to its lower and upper part.

The main theorem of this section is:

Theorem 4.15.2 Let (C, +, 0, ·) be a continuous Lawson-compact d-cone. Then(
P(C), +

P
, {0}, ·

P

)
with the Egli-Milner order is a also a Lawson-compact con-

tinuous d-cone called the biconvex powercone (or convex Plotkin powercone).

The finitely generated convex lenses k(F ) = ↓conv F ∩ ↑conv F form a basis

for the continuous d-cone P(C). It carries a semilattice operation ∪ : P(C) ×

P(C) → P(C), called formal union, which is Scott-continuous and obeys the

following distributivity laws:

A1 +
P
(A2 ∪ A3)= (A1 +

P
A2) ∪ (A1 +

P
A3),

r ·
P
(A1 ∪ A2)= (r ·

P
A1) ∪ (r ·

P
A2),

for all A1, A2, A3 ∈ P(C) and all r ∈ R+. If the way-below relation is additive

on C, then it is additive on P(C), too.

We will prove this theorem in several steps.

As all Scott-closed subsets of C are Lawson-closed, the convex lower pow-

ercone H(C) is a subset of P(C). The Egli-Milner order restricted to Scott-

closed sets is just set inclusion which was the order that we used on H(C).

Moreover, if A ∈ P(C), B ∈ H(C) and A �EM B, then A ∈ H(C). Thus

H(C) is order embedded into P(C) as a lower set. The embedding preserves

arbitrary suprema (and infima); in particular, it is Scott-continuous.

As all Scott-compact saturated subsets of C are Lawson-compact, the con-

vex upper powercone S(C) also is a subset of P(C). The Egli-Milner order re-

stricted to Scott-compact saturated sets is just reverse inclusion which was the

order considered on S(C). Moreover, if A ∈ P(C), P ∈ S(C) and P �EM A,

then A ∈ H(C). Thus S(C) is order embedded into P(C) as an upper set.

The embedding preserves directed suprema and binary infima (even arbitrary

suprema and infima).

The Egli-Milner order can be seen as the intersection of the lower and upper

orders. Indeed, for a Lawson-compact convex subset A of C, the sets ↓A and

↑A are also Lawson-compact and convex by Lemma 1.5.1 and Lemma 2.6.10.

Thus ↓A is convex and Scott-closed and ↑A is convex, Scott-compact and

saturated. For A, B ∈ P(C), one has by definition A �EM B if, and only if,

↓A ⊆ ↓B in the convex lower powercone and ↓A � ↓B in the convex upper
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powercone. This tells us that the maps

A 
→ ↓A : P(C) → H(C) and A 
→ ↑A : P(C) → S(C)

are order preserving retractions and that the map

ε : A 
→ (↓A, ↑A) : P(C) → H(C) × S(C)

is an order embedding. The following lemma shows that these maps are Scott-

continuous:

Lemma 4.15.3 With the Egli-Milner order, P(C) is a dcpo. The supremum

of a directed family (Ai)i in P(C) is given by

∨↑
Ai =

⋃
↑↓Ai ∩

⋂
↓
↑Ai

as for the classical convex powerdomain (see [33]). Moreover,

↓
(∨↑

Ai

)
=

⋃
↑↓Ai, ↑

(∨↑
Ai

)
=

⋂
↓
↑Ai .

Proof. Indeed, (↓Ai, ↑Ai)i is a directed family in H(C) × S(C) and we can

form its supremum componentwise:
∨↑

(↓Ai, ↑Ai)i =
(⋃↑↓Ai ,

⋂
↓
↑Ai

)
. Let

us consider the intersection of its two components

B =
⋃

↑↓Ai ∩
⋂

↓
↑Ai =

⋂
↓

(⋃
↑↓Ai ∩ ↑Ai

)
which is Lawson-compact, convex and order-convex. B is nonempty, as the

sets
⋃↑↓Ai ∩ ↑Ai form a filtered family of nonempty Lawson-compact sets,

and as such a family has a nonempty intersection. Thus B ∈ P(C).

Let us show that ↓B =
⋃↑↓Ai. The inclusion ↓B ⊆

⋃↑↓Ai is straightfor-

ward. For the reverse inclusion, it suffices to show that
⋃↑

↓Ai ⊆ ↓B, since

↓B is Scott-closed. Let x ∈ ↓Ai for some i. Then there is a y ∈ Ai such

that x ≤ y. For every index j such that Ai �EM Aj , there is a z ∈ Aj

such that y ≤ z, whence ↑x ∩
⋃↑↓Ai ∩ ↑Aj �= ∅. As the intersection of a

filtered family of non-empty Lawson-compact sets is nonempty, we conclude

that ↑x ∩ B = ↑x ∩
⋃↑↓Ai ∩

⋂
↓
↑Ai �= ∅, whence x ∈ ↓B.

In a second step, let us show that ↑B =
⋂

↓
↑Ai. Again the inclusion ↑B ⊆⋂

↓
↑Ai is straightforward. For the reverse inclusion choose any x ∈

⋂
↓
↑Ai.

Then ↓x ∩
⋃↑Ai ∩ ↑Ai is nonempty for every index i. As the intersection of
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a filtered family of nonempty Lawson-compact sets is nonempty, we conclude

that ↓x ∩ B = ↓x ∩
⋃↑↓Ai ∩

⋂
↓
↑Ai �= ∅, whence x ∈ ↑B.

The equalities proved in the two previous paragraphs show that B is the

least upper bound of the directed family of the (Ai) with respect to the Egli-

Milner order. Indeed, if Ai � B′ for all i, then ↓Ai ⊆ ↓B′ and ↑Ai ⊇ ↑B′,

whence ↓B =
⋃↑↓Ai ⊆ ↓B′ and ↑B =

⋂
↓
Ai ⊇ ↑B′, that is, B � B′. �

Note, that throughout this section A still denotes the Scott closure of a

set A and not its Lawson closure.

One might think that A ∪ B is the convex, order-convex hull of A and

B. However, this hull is not always Lawson-compact. Basically, the reason is

that scalar multiplication is not jointly Lawson-continuous even on continuous

d-cones. Hence, the convex hull of the union of two Lawson-compact sets is

not necessarily Lawson-compact. The example below illustrates this. It shows

the convex hull of two singleton sets in R+ × R+ which happens to be equal

to its order-convex hull, but is not Lawson-compact.

R+

(y1, y2)

R+
(x1,∞)

For proving that P(C) is a continuous d-cone we want to take advantage

of our definition via the lower and upper cone operations. For this, we need

the following observations:

Lemma 4.15.4 For A, B ∈ P(C) and r ∈ R+ the following properties hold:

↓(A +
P
B) = ↓A +

H
↓B, ↑(A +

P
B) = ↑A +

S
↑B,

↓(r ·
P
A) = r ·

H
↓A, ↑(r ·

P
A) = r ·

S
↑A,

↓(A ∪ B) = ↓A ∨H ↓B, ↑(A ∪ B) = ↑A ∧S ↑B.

Proof. By definition of A +
P
B one has ↓(A +

P
B) ⊆ ↓A +

H
↓B. Lawson com-
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pactness of A +
P
B implies that ↓(A +

P
B) is Scott-closed. Together with the

monotonicity of addition on C and A + B ⊆ A +
P
B this implies

↓A +
H
↓B = ↓A + ↓B = ↓(A + B) = A + B ⊆ ↓(A +

P
B).

The two inequalities together yield ↓(A +
P
B) = ↓A +

H
↓B. The proofs of the

other equations are quite similar. �

These equations can be rephrased by saying that

ε : P(C) → H(C) × S(C)

preserves addition, scalar multiplication and formal union. Thus we can de-

duce the following proposition immediately from the corresponding results for

the lower and upper powercones (see 4.13.5 and 4.14.5):

Proposition 4.15.5 (P(C), +
P
, {0}, ·

P
) is a d-cone. Moreover, formal union

is a Scott-continuous semilattice operation which satisfies the following dis-

tributivity laws:

A1 +
P
(A2 ∪ A3)= (A1 +

P
A2) ∪ (A1 +

P
A3),

r ·
P
(A1 ∪ A2)= (r ·

P
A1) ∪ (r ·

P
A2),

for all A1, A2, A3 ∈ P(C) and r ∈ R+.

Although, formal union clearly is a semilattice operation, it is neither the

supremum nor infimum with respect to the Egli-Milner order on the d-cone.

For a nonempty finite set F we denote by k(F ) := conv F ∩ ↑conv F the

convex lens generated by F . Note, that, as a consequence of Lemma 2.6.12,

conv F is convex and Scott-closed, and ↑conv F is convex, Scott-compact and

saturated; thus, k(F ) is indeed Lawson-compact.

Now we want to understand the way-below relation on the set which we

want to become our basis.

Lemma 4.15.6 Let A, B ∈ P(C). If ↓A �H ↓B in the lower powercone

H(C) and ↑A �S ↑B in the upper powercone S(C), then A �EM B in the

biconvex powercone P(C).

This lemma follows immediately from the fact that ε : P(C) → H(C) ×

S(C) is a Scott-continuous order embedding and that the way-below relation

an a finite product is the product of the way-below relations on the factors.

The next lemma tells us that the finitely generated lenses k(F ) can be

approximated from below.

R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1–10480

RETRACTED



Lemma 4.15.7 Let F be a finite subset of C. Consider the sets G obtained by

selecting exactly one element y � x in C for every x ∈ F . Then k(G) �EM

k(F ) and the family of the k(G) is directed in P(C) and k(F ) is the (directed)

supremum of this family.

Proof. Once again we use what we know for the convex lower and upper

powercones. Consider the sets G as in the statement of the Lemma. The

lemmas 4.13.6 and 4.14.7 show that ↓conv G �H ↓conv F in the lower pow-

ercone and that ↑conv G �S ↑conv F in the upper powercone. By 4.15.6 we

conclude that k(G) �EM k(F ). By the proof of Proposition 4.13.2, we get

conv F =
⋃↑

conv G, using that addition and scalar multiplication are contin-

uous on C. Proposition 4.14.7 tells us ↑conv F =
⋂

↓
↑conv G. We conclude

k(F )= conv F ∩ ↑conv F

=
⋃

↑conv G ∩
⋂

↓
↑conv G

=
∨↑(

conv G ∩ ↑conv G
)

=
∨↑

k(G).

�

Lemma 4.15.8 The biconvex powercone P(C) is a continuous domain. The

finitely generated convex lenses k(F ) form a basis for the continuous domain

P(C) and, for A, B ∈ P(C), one has A �EM B if and only if ↓A �H ↓B and

↑A �S ↑B.

Proof. From Lemma 4.15.7 we obtain that the finitely generated elements

k(F ), F finite, in P(C) can be approximated from below. Clearly, every

A ∈ P(C) is the directed union of its finitely generated subsets k(F ). We

conclude that the finitely generated lenses k(F ) form a basis for the d-cone C

which, as a consequence, is continuous.

Now suppose A �EM B. Then there is a basic set k(F ), F finite, such

that A �EM k(F ) �EM B. By Lemma 4.15.7 there is a finite set G, obtained

by by selecting an element y � x in C for every x ∈ F , such that A �EM

k(G) �EM k(F ) �EM B. As in the proof of Lemma 4.15.7 we have ↓k(G) =

conv G �H conv F = ↓k(F ) and ↑k(G) = ↑conv G �S ↑conv F = ↓k(F ). We

conclude that ↓A �H ↓B and ↑A �S ↑B. Together with Lemma 4.15.6 this

finishes the proof of the Lemma. �

Lemma 4.15.9 If the way-below relation on C is additive, then the way-below
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relation on P(C) is additive, too.

Proof. First, we show that the way-below relation is additive on a basis. Let

k(G1) �EM k(F1) and k(G2) �EM k(F2), where G1, F1 and G2, F2 are chosen

as in Lemma 4.15.7 Using additivity of the way-below relation on C, one sees

that G1 + G2 and F1 + F2 witness

k(G1) +
P
k(G2) = k(G1 + G2) �EM k(F1 + F2) = k(F1) +

P
k(F2),

Now, we apply Lemma 2.7.15 and conclude that the way-below relation on

P(C) is additive. �

Lemma 4.15.10 The biconvex powercone P(C) is Lawson-compact.

Proof. In [33], Lawson proves that the classical convex powerdomain Pc(X)

of a continuous Lawson-compact domain X is again continuous and Lawson-

compact. Recall that Pc(X) is the set of all lenses of X with the Egli-Milner

order. A basis is given by the finitely generated lenses h(F ) := ↑F ∩ ↓F , F a

finite subset of X.

We want to define a Scott-continuous retraction r : Pc(C) → P(C). Then

we can apply Lemma 1.5.5 and conclude that P(C) is Lawson-compact.

For F finite, we define r̄
(
h(F )

)
:= k(F ). Then r̄ is a monotone map on

the basis of Pc(C): h(F ) �EM h(G) means ↓F ⊆ ↓G and ↑F ⊇ ↑G. This

implies conv F = conv ↓F ⊆ conv ↓G = conv G and ↑conv F = ↑conv ↑F ⊇

↑conv ↑G = ↑conv G, which is equivalent to r̄
(
h(F )

)
= k(F ) �EM k(G) =

r̄
(
h(G)

)
. Thus, we can apply Proposition 1.4.2 and get a Scott-continuous

function

r : Pc(C) → P(C), r(A) :=
∨↑{

k(F )
∣∣ F finite, h(F ) �EM A

}
.

We will show that this function is a retraction. The section that goes with it

is the inclusion map j : P(C) → Pc(C), j(B) := B. The only property left to

show is r ◦ j = idP(C).

Let G be a finite subset of C. By definition

(
r ◦ j

)(
k(G)

)
=

∨↑{
k(F )

∣∣ F finite, h(F ) �EM k(G)
}
.

For h(F ) �EM k(G) we have h(F ) �EM k(G) which is equivalent to ↓F ⊆

conv G and ↑F ⊇ conv G. It follows conv F = conv ↓F ⊆ conv
(
conv G

)
=
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conv G and ↑conv F = ↑conv ↑F ⊇ ↑conv
(
↑conv G

)
= ↑conv G, or equiva-

lently, k(F ) �EM k(G). This implies
(
r ◦ j

)(
k(G)

)
�EM k(G).

To show the other inequality we show that whenever we take a finite set E

with k(E) �EM k(G) then there exist a finite set F such that h(F ) �EM k(G)

and k(F ) = k(E). From k(E) �EM k(G) it follows that �� conv E ⊇ k(G).

Since k(G) is compact there exists a finite set E ′ ⊆ conv E such that ��E ′ ⊇

k(G). Set F := E ∪ E ′. By definition k(F ) = k(E), and ↓h(F ) ⊆ ↓k(F ) =

↓k(E) �H ↓k(G) and ↑h(F ) ⊇ ��h(F ) ⊇ ↑k(G). Hence, h(F ) �EM k(G).

This implies
(
r ◦ j

)(
k(G)

)
�EM

∨↑
{k(E) | k(E �EM k(G)} = k(G). Thus,

we see that
(
r ◦ j

)(
k(G)

)
= k(G) for all finite subsets G of C.

If a Scott-continuous function is equal to the identity function at all el-

ements of a basis, then it is in fact the identity function. Hence, we have

r ◦ j = idP(C) and P(C) is a Scott-continuous retract of Pc(C). �

The last lemma completes the proof of Theorem 4.15.2.

4.15.2 Universal Property of the Biconvex Powercone

Our Plotkin type construction can be applied to the Lawson-compact continu-

ous d-cones. We collect all of those in the category CCONE
c. The morphisms

are still the Scott-continuous linear maps. The second category involved is

called CCONE
∪. Its objects are the Lawson-compact continuous d-cones L

with an additional Scott-continuous semilattice operation ∪, called formal

union, which satisfies the following additional identities:

a + (b ∪ c) = (a + b) ∪ (a + c)

r · (a ∪ b) = (r · a) ∪ (r · b)

for all a, b, c ∈ L and all r ∈ R+. The morphisms in CCONE
∪ are those

Scott-continuous linear maps which also preserve formal union. Note that the

semilattice operation ∪ is not defined in terms of the order relation on the

d-cone L. The element a ∪ b is neither the least upper nor the greatest lower

bound of a and b with respect to the order ≤ on L. But, as for any semilattice

operation, there is another order relation on L derived from the semilattice

operation ∪ that we denote by ⊆ and that is defined by a ⊆ b iff a ∪ b = b .

For any Lawson-compact continuous d-cone C, the convex powercone P(C)

belongs to the category CCONE
∪ by Theorem 4.15.2. The semilattice oper-

ation ∪ forms the smallest convex lens containing two given lenses, and the
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order relation derived from it is simply subset inclusion which is very different

from the Egli-Milner order.

Proposition 4.15.11 The assignment C 
→ P(C) can be extended to a func-

tor P : CCONE
c → CCONE

∪ by assigning to a Scott-continuous linear function

f : C → D the map P(f) : P(C) → P(D) with P(f)(A) := f(A) ∩ ↑f(A).

Proof. What remains to prove is all a consequence of Proposition 4.13.8 and

Proposition 4.14.9 using P(f)(A) = H(f)(↓A) ∩ S(f)(↑A) and ↓P(f)(A) =

H(f)(↓A), ↑P(f)(A) = S(f)(↑A). �

Lemma 4.15.12 In addition to the functor P : CCONE
c → CCONE

∪ we have

the forgetful functor U : CCONE
∪ → CCONE

c. In this situation i : IdCCONE
c →

U ◦ P is a natural transformation where for each continuous d-cone C the

morphism iC : C → P(C) maps an element x ∈ C to the singleton set {x}.

Proof. As x ≤ y in C holds if and only if {x} �EM {y} in P(C), it follows

immediately that iC is Scott-continuous. Linearity can be calculated just as

easily. The diagram

C
iC

� P(C)

D

f

� iD
� P(D)

P(f)

�

commutes since f
(
{x}

)
=

{
f(x)

}
for all x ∈ C. �

For the proof of the universal property we need two lemmas. It will be

convenient to use the notation
⋃

F := a1 ∪ . . . ∪ an for a finite subset

F = {a1, . . . , an} of L.

Lemma 4.15.13 For two nonempty finite subsets F and G of a d-cone L ∈

CCONE
∪ we have:

(a) For every a ∈ conv F , one has a ∪
⋃

F =
⋃

F .

(b) k(G) �EM k(F ) =⇒
⋃

G ≤
⋃

F .

(c)
⋃

F =
∨↑

{
⋃

G | G finite and k(G) �EM k(F )}.

Proof. (a) It suffices to prove this statement for a convex combination a =

rb + sc of two elements b and c, where r and s are nonnegative real numbers
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such that r + s = 1. Using that scalar multiplication and addition distribute

over ∪ we have:

b ∪ c = r(b ∪ c) + s(b ∪ c)

= (rb ∪ rc) + (sb ∪ sc)

=
(
rb + (sb ∪ sc)

)
∪

(
rc + (sb ∪ sc)

)
= (rb + sb) ∪ (rb + sc) ∪ (rc + sb) ∪ (rc + sc)

= b ∪ c ∪ (rb + sc) ∪ (rc + sb)

= b ∪ c ∪ a

(b) The hypothesis k(G) �EM k(F ) says that firstly F ⊆ ↑conv G and

secondly G ⊆ conv F .

First, let a be any element of F . Then a ≥ b for some b ∈ conv F by the

first part of the hypothesis. As ∪ is order preserving, we conclude a ∪
⋃

G ≥

b ∪
⋃

G =
⋃

G by (a). As this holds for all a ∈ F , we conclude

⋃
G ∪

⋃
F ≥

⋃
G .

Secondly, let b ∈ G. By the second part of the hypothesis, there is a directed

family of elements ci each below some convex combination di of the elements

of F such that b ≤
∨↑

ci. As ∪ is Scott-continuous, we conclude

b ∪
⋃

F ≤ (
∨↑

ci) ∪
⋃

F =
∨↑

(ci ∪
⋃

F ) .

As ci ≤ di ∈ conv F , we conclude ci ∪
⋃

F ≤ di ∪
⋃

F =
⋃

F for all i,

using again that ∪ is order preserving and (a). We conclude that b ∪
⋃

F ≤∨↑
(ci ∪

⋃
F ) ≤

⋃
F . As this holds for every b ∈ G, we have proved

⋃
G ∪

⋃
F ≤

⋃
G .

The two inequalities yield the desired result.

(c) For fixed F , the sets k(G) with G finite and k(G) �EM k(F ) form a

directed family in P(L) for the Egli-Milner ordering. By (b), the corresponding

elements
⋃

G form a directed family in L bounded above by
⋃

F . We now

restrict our attention to the finite sets G obtained by selecting exactly one

element bi � ai for each i. From 4.15.7 we know that, for these restricted sets
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G, one has k(G) �EM k(F ). As ai =
∨↑

{bi | bi � ai}, the Scott-continuity

of ∪ implies that
∨↑

G (
⋃

G) =
⋃

F . Thus the desired equality is proved. �

Lemma 4.15.14 For every d-cone L ∈ CCONE
∪, there is a unique Scott-

continuous linear map rL : P(L) → L preserving ∪ such that rL ◦ iL = idL.

Proof. For singletons {a}, we have to define

rL({a}) = a

in order to satisfy rL ◦ iL = idL. Now let F = {a1, . . . , an} be any nonempty

finite subset of L. If we want rC to preserve ∪, for k(F ) = {a1} ∪ . . . ∪ {an},

we have to define

rL

(
k(F )

)
= a1 ∪ . . . ∪ an =

⋃
F .

By Lemma 4.15.13(b), rL is well-defined and order preserving on the collection

of finitely generated lenses k(F ), which form a basis of the biconvex powercone

P(L). By Lemma 4.15.13(c), the map rL is Scott-continuous on this basis. By

Proposition 1.4.2 there is a unique Scott-continuous extension of rL to all of

P(L) defined by

rL(A) =
∨↑

{rL

(
k(F )

)
| F finite and k(F ) �EM A} .

Addition, scalar multiplication and formal union are Scott-continuous on L

and on P(L). In order to show that rL preseves addition, scalar multiplication

and formal union, it suffices to check these properties on the basis of finitely

generated lenses k(F ) ∈ P(L). Thus, it suffices to show that rL is linear

and preserves formal unions on the basis. This can be easily seen using the

relations

k(F ) +
P
k(G) = k(F + G)

r ·
P
k(F ) = k(r · F )

k(F ) ∪ k(G) = k(F ∪ G)

and the distributivity laws holding in L. �

Now, we are ready to prove the universal property for the biconvex pow-

ercone:

Theorem 4.15.15 The functor P : CCONE
c → CCONE

∪ is left adjoint to the

forgetful functor U : CCONE
∪ → CCONE

c. In other words, for every Lawson-

compact continuous d-cone C and every Scott-continuous linear map from C
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into a d-cone L ∈ CCONE
∪, there is a unique Scott-continuous linear map

f̂ : P(X) → L preserving formal union such that f = f̂ ◦ iC :

C
iC

� P(C)

L

∃!f̂

�

∈ CCONE
∪

∀fC
C
O
N
E c

�

Proof. Given a Scott-continuous linear map f : C → L, we first lift it to

a Scott-continuous ∪ -preserving linear map P(f) : P(C) → P(L) according

to Proposition 4.15.11 and we then compose it with the Scott-continuous ∪ -

preserving linear retraction rL : P(L) → L from lemma 4.15.14, that is, we

define f̂ : P(C) → L by f̂ = rL ◦ P(f). Then f̂ is Scott-continuous ∪ -

preserving and linear. Moreover f̂◦iC = rL◦P(f)◦iC = rL◦iL◦f = idL ◦f = f .

The uniqueness of f̂ is straightforward. �

As a special case for the universal property we may consider the biconvex

powercone PR+ over the d-cone R+; it is the set of all closed intervals [a, b]

with a, b ∈ R+ and a ≤ b with the Egli-Milner order [a, b] �EM [a′, b′] iff

a ≤ a′ and b ≤ b′. The d-cone R+ is embedded into PR+. Thus, for every

Scott-continuous linear map f : C → R+, there is a unique Scott-continuous

∪-preserving linear map f̂ : P(C) → PR+ such that f̂ ◦ iC = f . For every

convex lens A of C, its image f(A) is convex in R+, hence an interval. f̂(A)

is simply the closure of the interval f(A).

4.16 Powerdomains Combining Probabilistic

Choice and Non-Determinism

The extended probabilistic power domain V(X) over a topological space X is

a d-cone which is continuous whenever X is a continuous domain (with the

Scott topology), and which is Lawson-compact, whenever X is stably locally

compact, by Theorem 2.7.2. We thus may apply our three convex powerdo-

main constructions to the extended probabilistic power domain. We obtain

three types of powerdomains modelling ‘uncertain’ or ‘non-determistic’ prob-

ability distributions.

R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1–104 87

RETRACTED



Lower. HV(X) is the d-cone of all nonempty Scott-closed convex subsets

of V(X) with the order of subset inclusion. By Theorem 2.7.2, Proposition

2.7.16 and Theorem 4.13.1 we have:

Theorem 4.16.1 Let X be a topological space. Then HV(X) is a d-cone,

even a complete lattice, where binary suprema distribute over addition and

scalar multiplication. If X is a continuous domain, then HV(X) is a contin-

uous d-cone, even a continuous lattice, with an additive way-below relation.

As H and V are functors, we even have a functor HV from the category of

topological spaces to the category CONE
∨ of d-cones defined at the beginning

of subsection 4.13.2. In order to state a universal property for this functor,

we have to restrict ourselves to the category CONT of continuous domains.

We now may combine the universal property of the extended powerdomain

functor V in Theorem 2.7.3 and the universal property of the convex lower

powerdomain functor H in Theorem 4.13.10 and we have:

Theorem 4.16.2 Let X be a continuous domain. There is a natural embed-

ding eX = jV(X) ◦ ηX : X → V(X) → HV(X) assigning to every x ∈ X the

lower set ↓ηx generated by the point valuation ηx such that the following holds:

For every d-cone L with binary suprema which distribute over addition and

scalar multiplication and every Scott-continuous function f : X → L, there is

a unique Scott-continuous linear function
ˆ̂
f : HV(X) → L preserving binary

suprema such that f =
ˆ̂
f ◦ eX:

X
ηX

� V(X)
jV(X)

� HV(X)

L

∃!f̂

�
�

∃!
ˆ̂
f

C
C
O
N
E
∨

∀f
�

Upper. SV(X) is the d-cone of all nonempty compact saturated convex

subsets of V(X) with the order reverse to subset inclusion. By Theorem 2.7.2,

Proposition 2.7.16 and Theorem 4.14.1 we have:

Theorem 4.16.3 Let X be a a continuous domain. Then SV(X) is a con-

tinuous d-cone with binary infima which distribute over addition and scalar

multiplication. The way-below relation is additive on SV(X). If, in addition,

X is coherent, then SV(X) is a continuous lattice, whence Lawson-compact.
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As S and V are functors, we even have a functor SV from the category

CONT of continuous domains to the category CCONE
∧ of continuous d-cones

defined at the beginning of subsection 4.14.2. We now may combine the uni-

versal property of the extended powerdomain functor V in Theorem 2.7.3 and

the universal property of the convex upper powercone functor S in Theorem

4.14.13 and we have:

Theorem 4.16.4 Let X be a continuous domain. There is a natural embed-

ding eX = iV(X) ◦ ηX : X → V(X) → SV(X) assigning to every x ∈ X the

upper set ↑ηx generated by the point valuation ηx such that the following holds:

For every continuous d-cone L with binary infima which distribute over addi-

tion and scalar multiplication and every Scott-continuous function f : X → L,

there is a unique Scott-continuous linear function
ˆ̂
f : SV(X) → L preserving

binary infima such that f =
ˆ̂
f ◦ eX:

X
ηX

� V(X)
iV(X)

� SV(X)

L

∃!f̂

��

∃!
ˆ̂
f

C
C
O
N
E
∧

∀f
�

Biconvex. PV(X) is the d-cone of all nonempty convex lenses of V(X)

with the Egli-Milner order. By Theorem 2.7.2, Proposition 2.7.16 and Theo-

rem 4.15.2 we have:

Theorem 4.16.5 Let X be a coherent continuous domain. Then PV(X) is

a Lawson-compact continuous d-cone with a Scott-continuous semilattice op-

eration ∪ which distributes over addition and scalar multiplication. The way-

below relation is additive on PV(X).

As P and V are functors, we even have a functor PV from the category

CONT
c of coherent continuous domains to the category CCONE

∪ of d-cones

defined at the beginning of subsection 4.15.2. We now may combine the uni-

versal property of the extended powerdomain functor V in Theorem 2.7.3 and

the universal property of the biconvex powerdomain functor P in Theorem

4.15.15 and we have:

Theorem 4.16.6 Let X be a coherent continuous domain. There is a natural

embedding eX = iV(X) ◦ ηX : X → V(X) → PV(X) assigning to every x ∈ X
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the singleton set {ηx} consisting of the point valuation ηx such that the follow-

ing holds:

For every d-cone L ∈ CCONE
∪ and every Scott-continuous function f : X →

L, there is a unique Scott-continuous linear function
ˆ̂
f : PV(X) → L preserv-

ing the semilattice operation ∪ such that f =
ˆ̂
f ◦ eX :

X
ηX

� V(X)
iV(X)

� PV(X)

L

∃!f̂

�
�

∃!
ˆ̂
f

C
C
O
N
E
∪

∀f
�
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Conclusion: Some Connections

with Semantics

The results of the previous chapters can be used to obtain the denotational

semantics of a simple imperative language with non-deterministic and proba-

bilistic features. In so doing, we will revisit most of our main results.

Models in which probabilistic choice can be interpreted alongside non-

deterministic choice were pioneered by the Oxford Programming Research

Group [43]; chapter 4 was motivated by their work. In particular, McIver and

Morgan [36] introduced a special case of our biconvex powerdomain: more pre-

cisely their space of subprobability distributions over a countable discrete state

space S embeds into PV(S⊥), the biconvex powercone over the extended prob-

abilistic powerdomain of S⊥. The aim of their paper is to model partial and

total correctness of programs combining non-deterministic and probabilistic

choice within a single framework. A Smyth style semantics of non-determinism

together with probabilistic non-determinism can also be found in their work:

see [21,38].

Probabilistic choice between executing given programs P and P ′ with prob-

ability p in [0, 1], written P p+P ′, means that program P is executed with

probability p and program P ′ is executed with probability 1 − p. Starting

from an initial state, the execution of a probabilistic program no longer results

in a single state; instead, the possible outcomes are described by a probabil-

ity distribution or continuous valuation. Such behaviours have been modeled

using the probabilistic powerdomain [24]. Non-deterministic choice between

executing programs P and P ′, written P � P ′, means that one of P or P ′

will be executed, but we do not know which. In combination with probabilis-

tic choice, McIver and Morgan interpret non-deterministic choice as picking

a probability p in [0, 1] arbitrarily and then running program P p+P ′. They

illustrate this by saying, ‘. . . a demon could resolve the choice by flipping a
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coin of arbitrary bias’. Once the coin is chosen, the possible outcome follows

a fixed probability distribution. However, it is not known in advance which

one this will be. Thus, the set of all probability distributions or valuations

associated with the programs P p+P ′ (p in [0, 1]) executed at a given state de-

scribes the possible outcomes. In this way, we obtain all convex combinations

of the denotations of P and P ′ at that state (we are assuming, for the sake

of discussion, that P and P ′ are themselves deterministic when run from the

given state). Thus, they justify modifying the topological characterisations of

the classical powerdomains by taking convex sets only, in agreement with our

procedure in Chapter 4, where convexity emerged as a natural condition for

making powerdomains into d-cones.

We now follow [36] but generalise their countable discrete state spaces to

state spaces X which can be arbitrary coherent continuous domains. Programs

will contain non-deterministic and probabilistic features as described above.

The denotation of a program P will be a Scott-continuous function �P � : X →

PV(X), assigning to every state x in X a nonempty, Lawson-compact, convex,

order-convex set of valuations on X. Let us list all the denotations and discuss

their meaning afterwards. For any state x in X, we have

�abort�(x) := {⊥}, where ⊥(U) = 0, for all U ∈ O(X)

�skip�(x) := {ηx}

�assignf�(x) := {ηf(x)}, for a continuous function f : X → X

�P p+P ′�(x) := p ·
P
�P �(x) +

P
(1 − p) ·

P
�P ′�(x)

�P � P ′�(x) := �P �(x) ∪ �P ′�(x)

�P ; P ′� :=
̂̂
�P ′� ◦ �P �, (see below how �P ′� is lifted)

�ifB thenP else P ′�(x) :=

⎧⎪⎪⎨
⎪⎪⎩

�P �(x), if �B�(x) = true

�P ′�(x), if �B�(x) = false

{⊥}(x), otherwise

Finally �whileB doP � is interpreted as the least fixed point or the functional

F :
[
X → PV(X)

]
→

[
X → PV(X)

]
defined by

F (f)(x) =

⎧⎨
⎩

̂̂
f
(
�P �(x)

)
, if �B�(x) = true

{ηx}, if �B�(x) = false
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for f : X → PV(X) and x ∈ X.

The first three commands are purely deterministic; hence, their denotation

yields a singleton point valuation for each state x in X. Probabilistic choice

forms a convex combination of the sets denoting the arguments. Note too that

�P p+ P ′�(x) will have a singleton value if �P �(x) and �P ′�(x) have.

Now, we look at the denotation of non-deterministic choice. If we start

with two programs P and P ′ whose denotations at x are singletons, then

the denotation of P � P ′ at x will be the line segment connecting �P �(x)

and �P ′�(x). Obviously, this is a convex set. In general, �P � P ′�(x) has

to contain all convex combinations of elements in �P �(x) and �P ′�(x). This

will be a convex set if �P �(x) and �P ′�(x) are. Finally, one has to form the

Lawson-compact hull of these convex combinations to obtain �P � P ′�(x); this

set is also convex. The procedure we just described is exactly the one used to

define formal union at the beginning of section 4.15.1.

In order to define the sequential composition of programs P and P ′, we

need the combined universal property of the extended probabilistic power-

domain functor and the biconvex powercone functor as stated in Theorem

4.16.6. Indeed, if the denotations �P �, �P ′� : X → PV(X) are given, we can-

not form their composition �P ′� ◦ �P � right away. But we can replace �P ′� by

its unique formal union preserving linear extension
̂̂
�P ′� : PV(X) → PV(X)

with
̂̂
�P ′� ◦ eX = �P ′�. We now have the situation indicated by the dia-

gram below, and so the sequential composition P ; P ′ can be interpreted by

�P ; P ′� =
̂̂
�P ′� ◦ �P �.

X

X
eX

� PV(X)

�P
�

�

PV(X)

̂̂
�P ′�

�

�P ′�

�

The conditional works the way one expects it to work. As usual for while

loops, we take the least fixed-point semantics.
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Note that one can also give a semantics using either of the other two

powercones (by taking the lower or upper closure of the denotations given

as sets of valuations as above). Addition and scalar multiplication would be

calculated within HV(X) and SV(X), respectively, to define the denotation of

probabilistic choice; formal union would be replaced by suprema in the convex

lower powercone and by infima in the convex upper powercone to define the

denotation of non-deterministic choice; and one would use the universal prop-

erties given in Theorem 4.16.2 and Theorem 4.16.4 to define the denotation

of sequential composition.

All these models support the view of programs as state transformers, where

a deterministic program is interpreted by a continuous function r : X → X.

Another frequently used interpretation of programs is that of predicate trans-

formers: according to Smyth [53], predicates are given by open subsets of

the state space X. A state is said to satisfy a certain predicate if it lies

within the corresponding open set. If the denotation of a program is a con-

tinuous function g : X → X, then the inverse image function maps open sets

to open sets, that is, it transforms predicates to predicates. Hence, we may

consider g−1 : O(X) → O(X) instead of g. Note that taking inverse images

is contravariant, i.e., it reverses the direction of arrows. So, in this view of

programs, we obtain the greatest possible set of states one can start with,

in order to end up in a final state which satisfies a certain predicate. This

corresponds to Dijkstra’s weakest preconditions [8]: as g−1 gives the greatest

possible set, it gives the weakest condition a state must fulfill such that the

program transforms it to a state satisfying the desired predicate. Recall that

Scott-open sets are in one-to-one correspondence with {0, 1}-valued Scott-

continuous functions, i.e., characteristic functions of Scott-open sets. An arbi-

trary lower semicontinuous (= Scott-continuous) function f : X → R+ will be

called an expectation and can be seen as a ‘fuzzy’ predicate or distribution [30].

Expectations generalise predicates and, accordingly, expectation transformers

are Scott-continuous functions from the d-cone L(X) of all lower semicontin-

uous functions f : X → R+ (see 2.8) into itself. In [36], McIver and Morgan

give a second semantics using expectation transformers. Let us show, how

we can achieve this in our more general situation. Par abus de langage every

Scott-continuous function r : X → PV(X) will be called a (non-deterministic

probabilistic) program.

Following Dijkstra’s weakest preconditions, one defines a Scott-continuous

R. Tix et al. / Electronic Notes in Theoretical Computer Science 129 (2005) 1–10494

RETRACTED



function wp :
[
X → PV(X)

]
→

[
L(X) → L(X)

]
. For a program interpreted

as a function r : X → PV(X), its weakest pre-expectation with respect to

post-expectation f in L(X) and state x in X is given by

wp(r)(f)(x) := inf
{∫

fdµ
∣∣ µ ∈ r(x)

}
.

The integral can be seen as calculating the average value of the expectation of

f with respect to the valuation µ ∈ V(X). Minimizing over all these expected

values for µ in r(x) corresponds to picking the least probability with which a

certain output can be guaranteed. The definition and properties of the integral

of lower semicontinuous functions with respect to continuous valuations can

be found in [29,54,18].

The programming logic obtained by taking greatest pre-expectations can

be defined as above not only for the biconvex powercone and r : X → PV(X),

but also for the convex upper powercone and programs r : X → SV(X). This

logic describes the total correctness properties of a non-deterministic proba-

bilistic program.

The biconvex powercone and the convex lower powercone also provide a

logic which is suited to describe partial correctness. For this we define a

Scott-continuous function wlp :
[
X → PV(X)

]
→

[
L(X) → L(X)

]
. For a

program r, its greatest liberal pre-expectation with respect to post-expectation

f ∈ L(X) and state x in X is given by

wlp(r)(f)(x) := sup
{∫

fdµ
∣∣ µ ∈ r(x)

}
.

In the same way, a partial correctness logic can be obtained using the convex

lower powercone and r : X → HV(X).

It was important for McIver and Morgan in [36] to use the biconvex power-

cone in order to to treat partial and total correctness within the same frame-

work. For this purpose they generalised the notion of expectation by admitting

expectations with positive and negative real values. This approach leads to

a treatment of partial correctness which is equivalent to the one given above,

but which looks quite ad hoc within domain theory. We now show how to

avoid negative expectations.

We generalise the notion of an expectation in another direction. We use

the d-cone P(R+) of all closed intervals [a, b], a ≤ b, a, b ∈ R+ with the Egli-

Milner order [a, b] �EM [a′, b′] iff a ≤ a′ and b ≤ b′. We note that P(R+)

is the biconvex powercone over the d-cone R+. A bi-expectation will be an
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interval-valued expectation defined on the state space X; more precisely, it is

defined to be a Scott-continuous function f : X → P(R+). In a straightforward

way, the bi-expectations on X form a d-cone IL(X), with addition, scalar

multiplication and order being defined pointwise. We are going to define a

Scott-continuous function wpb :
[
X → PV(X)

]
→

[
L(X) → IL(X)

]
giving

for every program r and every post-expectation f a weakest pre-bi-expectation

wpb(r)(f): we first notice that every expectation f : X → R+ can be viewed as

a bi-expectation with singleton values. Then, by the universal property 4.16.6,

there is a unique Scott-continuous, linear, ∪-preserving function
̂̂
f : PV(X) →

PR+ such that f = eX ◦
̂̂
f . For every program r we now define wpb(r)(f) =

̂̂
f ◦r:

X

X
eX

� PV(X)

r

�

R+

f

�

i
R+

� P(R+)

̂̂
f

�

The weakest pre-bi-expectation wpb(r)(f) carries the information both for

the weakest preexpectation wp(r)(f) and the weakest liberal preexpectation

wlp(r)(f). Indeed, for every x in X, the value wpb(r)(f)(x) is the smallest

closed interval in R+ containing the set

{
∫
fdµ | µ ∈ r(x)} .

(This follows by combining the information following 4.15.15 and 2.7.3, where

we apply the universal properties established in these two theorems to the

special case of the reals.) Note that wp(r)(f)(x) and wlp(r)(f) are the lower

and upper boundary points of this interval, respectively, as

wp(r)(f)(x) = inf {
∫
fdµ | µ ∈ r(x)} = min wpb(r)(f)(x) ,

wlp(r)(f)(x) = sup {
∫
fdµ | µ ∈ r(x)} = maxwpb(r)(f)(x) .

Above we have constructed the weakest pre-bi-expectation wpb(r)(f) for
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every post-expectation f : X → R+. We may extend this construction to

arbitrary post-bi-expectations f : X → P(R+). Indeed, by the universal prop-

erty 4.16.6, there is a unique Scott-continuous, linear, ∪-preserving function̂̂
f : PV(X) → PR+ such that f = eX ◦

̂̂
f . For every program r we now define

wpb(r)(f) =
̂̂
f ◦ r and we obtain a Scott-continuous function

wpb :
[
X → PV(X)

]
→

[
IL(X) → IL(X)

]
.

In [36] McIver and Morgan characterize axiomatically those expectation

transformers that arise from nondeterministic probabilistic programs over a

countable discrete state space. We have not yet attacked this question in our

more general setting.
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