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Abstract

E. Reznichenko and O. Sipacheva called a spa¢eréchet-Urysohn for finite sets” if the fol-
lowing holds for each point € X: wheneverP is a collection of finite subsets & such that every
neighborhood of contains a member a?, then P contains a subfamily that convergesitoWe
continue their study of this property. We also look at analogous notions obtained by restricting to
collectionsP of bounded size, we discuss connections with topological groups; theoperties of
A.V. Arhangel’'skii, and with a certain topological game.
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1. Introduction

For a spac& and a pointx € X, a family P of subsets o is said to be ar-network
at x if for each openU containingx, there isp € P such thatp C U. We will say that
an infinite family P of subsets ofX converges tor if for each openU containingx,
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{peP: pgZU}is finite. If P consists of singleton sets, théh converges tox if the
sequence formed by any enumeration of the singletons converges to

E. Reznichenko and O. Sipacheva defined a spate be Fréchet—Urysohn for finite
sets which we will denote by Flh, if for eachx € X and eachP c [X]<N0, if P forms
am-network atx, then P contains a subfamily that convergesit@see [16]). This notion
has appeared earlier in the literature (it is caligdupwise Fréchein [4]), but [16] is its
first systematic study.

We will say thatX is FU, if for eachx € X, and eachP c [X]", if P forms ar-network
at x, then P contains a subfamily that convergesxtoWe will say thatX is boundedly-
FUsn ifitis FU,, for all n € w.

Clearly,

first-countable~ FUsi, — boundedly-Fi, — Fréchet-Urysohn
Also, it is clear that for everyt € w \ {0}
boundedly-Fi, - FU,+1 — FU, — Fréchet—Urysohn

By taking the topological sum of countably many convergent sequences and forming the
quotient space by identifying the limit points of each sequence, one obtains the Fréchet—
Urysohn fans,,. It is not hard to see tha, is Fréchet—Urysohn, but not LU

The one-point compactification of an uncountable discrete space is an uncountable
FUsn space that is not first-countable. This example also has a number of other strong
convergence properties (e.g., ibis—see below). For this reason we restrict our study to
countable Fl, spaces. In this note we show that even in the class of countable spaces none
of the above implications can be reversed, at least in ZFC. In addition, the relationship be-
tween these properties and thgconvergence properties of Arhangel’skii is considered.
The following fundamental question concerningsfzdpaces is left open:

Question 1. Is there, in ZFC, a countable kiJspace that is not first-countable?
This question was motivated by the following question (see [2] and [13]):

Question 2 (Malykhin). Is there a countable Fréchet-Urysohn topological group that is not
metrizable?

The existence of a non-metrizable separable topological group has a number of equiva-
lent formulations (see [16]):

Proposition 1. The existence of a countable Fréchet—Urysohn topological group that is not
metrizable is equivalent to each of the following

(1) The existence of a countable Fréchet—Urysohn topological group that is not first-
countable.
(2) The existence of a separable Fréchet—Urysohn topological group that is not metrizable.

The connection between kkJspaces and Fréchet—Uryshon groups is given by the fol-
lowing construction. LeiX = w U {co} be a space with a single nonisolated paiot Let
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G = [w]=“ and definefp * F1 = Fp \ F1 U F1\ Fo. ThenG with this operation is a group
with identity elemen®). To each open neighborhoad of co let Vy ={F € G: F C U}.

This defines a neighborhood bas&ahakingG a topological group. Note thaf is first-
countable if and only it5 is first-countable. Moreover, Reznichenko and Sipacheva proved
the following theorem:

Proposition 2 [16]. X is FUsy, if and only if G is Fréchet—Uryshon.

Thus, there is a countable k{Jspace that is not first-countable implies that there is a
countable Fréchet-Uryshon topological group that is not metrizable. We do not know if the
converse holds:

Question 3. Does the existence of a separable non-metrizable Fréchet—Urysohn topologi-
cal group imply the existence of a countablesikdpace that is not first countable?

Arhangel'skii proved that there are countable Fréchet—Urysohn topological groups
which are not first-countable assuming MA—CH. Nyikos showed that there is such
an example assuming eithgr> w1 or p = b see [13] and [16]. Both of these examples of
Nyikos are Fl, (see [16]).

Two essentially different examples of non-metrizable topological groups can be ob-
tained from an uncountable-set of reals. An open cover of a spakeis said to be an
w-cover if each finite subset df is contained in an element of the cover. An open cover is
said to be g/-cover if each point of the space is contained in all but finitely many elements
of the cover. A space is said to beyaspace if eacho-cover has g/-subcover. Gerlits
and Nagy introduced this class of spaces and provedXhiata y-space if and only if
Cp(X) is Fréchet-Urysohn [7]. In fact, the same proof shows &atX) is FUs, if and
only if C,(X) is Fréchet-Uryshon. Therefore for apysetX C R, C,(X) is a separable
non-metrizable Fgh topological group. Another example, the spdgedefined below, is
a FUi, space if and only ifX is ay-set. This was essentially proved by Nyikos (see [14],
although the class of Fld spaces were not explicitly considered there).

It is both consistent with ZFC and independent of ZFC that there exgsits: in factp
is the minimum cardinality of a set of reals that is ngt-&et [7]; the existence of-sets
contradicts the Borel conjecture: apyset has strong measure zero. Therefore, in the Laver
model there are ng-sets [9].

Whether there is a countable non-metrizable Fréchet-Uryshon topological group or
even a Fl, space that is not first-countable in the Laver model appears to be an open
guestion [15].

Now let us recall the definition of the;-spaces, introduced by Arhangel’skii [1]. Let
X be a space, and € X. Suppose that for any countable fam{l§,, },,c., of sequences
converging tax, there is a sequencé converging tax such that:

. |Ap \ A| < w for everyn € w, thenx is anas-point;
. |A, NA] = w for everyn € w, thenx is anaz-point;
. |A, N A| = w for infinitely manyn € w, thenx is anas-point;
. |A, N A| # @ for infinitely manyn € w, thenx is anag-point.

A WN PR
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Also, if for every disjoint collection {A, },c, Of sequences converging iq there is a
sequencel converging tax such thatA,, \ A| < o for infinitely manyn € w, thenx is an
a1 5-point. X is anc; -spaceif every point is any;-point.

Reznichenko and Sipacheva proved thatif-Epaces are>. Among other things, we
show F spaces are4, and construct consistent examples showing that there are no other
possible implications in ZFC.

2. A boundedly-FUs, not FUs, spacein ZFC

Several spaces in this note are of a similar type, given by the following lemma, which
makes them boundedly-kkJandas.

Lemma 3. Let X =Y U {oco}, whereY is the set of isolated points of. Suppose is
contained, as a set, in some compact metric sgacand a subbase for the neighborhood
filter at oo in X is generated by complements of members of the set

{0} yeY}U(Se x €K},

whereS; is either empty or a sequence of point&afonverging tor in the spacek . Then
X is boundedly=Us, andas.

Proof. Supposef is ar-net atoo of m-element subsets of. For each# € F, choose
some indexingx;: i <m} of F, and letF = (x;); «,» be the corresponding point iK™,
Observe that if ar-net is split into finitely many pieces, one of the pieces must bhengt.
It follows from this and compactness &f" that there is s9m§.- = (yi)i<m € K™ such that,
for every neighborhood’ of y in K™, the set{F ¢ F: F e U}is ar-net. Thus we can
chooseF;, € F such that the metric distance betwegnandy is < 1/2", and

F,N I:{y,': i<mjU (U Sy,.> U <U F]>] =¢.
i<m j<n

Let us check tha{F,} — oco. If not, there isx € K such that infinitely manyF,’s
meetS,. By the construction of thé,’s, on the one hand must bey; for somei < m,
but on the other hand, nB, meetsS,,, contradiction.

Now let us check thak is a3. If A, C Y converges tox for eachn € w, then by
compactness ok we may choose, C A, andx, € K such thatB, converges to, in
the topology ofK . Also, B, still converges toco in the topology onX. Thus we may
assume thas,, (if it exists for x,) is disjoint from B,. By compactness ok again, we
may find an infiniteM C w such that(x,: n € M) converges to some e K. By removing
a finite set from eacl®,, for n € M we may assume thatl{B,: n € M} is disjoint froms,.
It easily follows thatl J{B,: n € M} converges to infinity. ThuX isaz. O

Theorem 4. There is a boundedli#Usin space which is ndEUip.

Proof. Let Q denote the rationals in the unit interval= [0, 1]. Our spaceX will be
QUuU{eco}, where points of) are isolated, and the neighborhood filtepofwill be generated
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by complements of finite subsets @f together with complements of certain well-chosen
sequences, of rationals converging t@, for some points € 7. We will choose at most
onesS, for eachx; by the previous lemma, this will guarantee the space is boundedy-FU
We will make it non-Fl, by ensuring that a certain collecti¢#l,,,,,: n, m € w} of finite
sets defined at the beginning of our construction is-aet but has no convergent subse-
quence. LetH,: n € w} be a collection of finite subsets &f and for each € | ., Hx,

let S, be a sequence of rationals convergingetcsuch that the following conditions are
satisfied:

1. H,NH, =0if m+#n,

2. Foreachx e1,d(x, H,) < 1/2", whered is the usual Euclidean distance;
3. The collection(S,: x € |, ,, Hn} is pairwise-disjoint;

4. diam(Sy) < 1/2" for eachx € H,,.

Let {g]: i € w} be a one-to-one enumeration §f for x € |, ., H,- We let H,,, =
{g;,: x € H,}. Since theH,'s become increasingly dense Inand theS,’s have decreas-
ingly small diameter, it is easy to check the following fact:

Fact.For each infinitedA C w, for eachf : A — w, and for eacly € I, there are;,, € H,,

n € A, such thal{q;’zn)}neA converges tog.

Now let {y(a): o < ¢} list any c-sized subset of \ |, ., Hn, @and letf,, o < c, list all
infinite partial functions fromw to w. For eachy, let S, ) be a sequence converging to
y(a) as in the Fact, withf = f, andA = dom(f,). ThenX is the spacé) U {co}, where
Q is a set of isolated points and neighborhoodswére generated by complements of the
Sy's, wherex € {y(@): a < c}U (U, c, Hn)-

We already knowX is boundedly-Fl,; we need to prove that it is not k) First we
show thatH = {H,,,: n,m < w} is am-net. LetK be any finite subset of; we need to
show thatH,,,, N[K U (|, g Sx)] =@ for somemn andn. First findn such thatd, N K = @.
There are disjoint Euclidean open sétsand V containingH, and K, respectively. The
setJ = [U,cx Sx1\ V is finite. Thus, since the points i, converge to the points df,
asm — oo, H,,, eventually gets insid& and missed, so there is am € w as required.

Finally we show that there is no convergent subsequengé &ince for fixedn, Hy,,
meets J, .y Sy, any convergent sequence of members{akould have to contain a con-
vergent subsequence of the fofi,, ;(,): n € dom(f)} for some infinite partial function
fio— . But f = f, for somex, and by the construction eve#, s, for n e dom( f)
meetsSy ), contradiction. O

With the help of CH, we can make the previous examgle
Example 5. (CH) There is a boundedly-Fi «1-space which is not F{J.

Proof. To make the previous examplg, we will need to list in type the candidates for
countable collections of convergent sequences, and at each stage either destroy the fact that
one of the sequences is convergent, or find a set almost containing every one of them that
is convergent at that stage and that remains convergent throughout the construction.
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We will need to be more careful about how we choose the sequéehogkich in the
previous example destroyed the frubroperty, so as not to renege on promises that certain
sequences are to remain convergent. To help us do this, we makg, jfeevenly spaced
in [0, 1]. Then it is an easy exercise to verify the following:

Fact. Supposeg is an infinite partial function fronw to w, A, C Hum, € > 0, and
[Angm) |/ Hugmy| = € for all n e dom(g). Then the set

{y € [0, 1]: Elang(n) S Ang(n) with Ang(n) = y}

has Lebesgue measure at least

Call a subsetA of Q smallif
i |A N Hng(n)| _
nedom(g) |Hng(n)|

for any infinite partial functiorg : w — w. We are going to make sure all convergent se-
quences are small.

Let A,, @ < w1, index all sequence&A (n)), <, Of infinite subsets of). Recall thats,
for x € |, ¢, Hn is already defined, as in Example 4, in the process of definingithes.
So let us suppose < w1 and we have constructedp), Sy, andA;S for B < « satisfying
the following conditions, wheré/g is the filter generated by complements of elements of
{Sx: x €{y(8): 8 <BYUU,cp, Hn}-

@ B B<a} 0,1\ U, e, Hai

(b) Sy(p) is a sequence of rationals converging/{g) (in [0,1]);

(c) If Ag(n) is notsmall for some € w, andk is the least such, then|S, ) NAg (k)| = w
andA:9 =,

(d) If Ag(n) is small andUg-convergent for every € w, thenSg) =9, A;g is small, and
A;S * D Ag(n) for everyn € w;

(e) A;/ is Ug-convergent for every < g + 1.

We first check that the space is as desired, assuming the construction can be carried out
satisfying the above conditions. Th&tis boundedly-Fl,, and thatH = {H,,,,: n,m €
w} is am-net is exactly as in Example 4. Let us see thats not FU;,. If there were
some infinite convergent subsequence fraimthere would be an infinite partial function
g:® — o such that the set = |, cqomg) Hng(m) is convergent. Note that is not small.

For somex, [fa =(A,A,..), butthenS,,) meetsA in an infinite set, contradiction. The
same argument shows that only small sets are convergent, whence conditions (d) and (e)
ensure tha¥ is aj. B

Let us now see how to carry out the induction at stejVe are giverd, = (Aq (1)) new-
If some A, (n) is not U,-convergent, we need not do anything. So suppose these sets are
always U, -convergent. Note that this implies that for any fixe@&ndm, A, (n) meets
H,; for at most finitely many. It is then not difficult to check that in case a}, (n)’s are
small andU,-convergent, then there is sorA¢ that is also small an#l,-convergent, and
almost contains every, (n). This gives us condition (d), and part of (e). If not al} (n)’s
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are small, le be the least such that, (k) is not small. Then there is a partial function
g:w— wande > 0 suchthatA, (k) N Hygm)|/|Hugm)| > € for all n e dom(g). As above,
there is a seB, which is small and/,-convergent, and which almost contaifis for every

B < a. Since B, is small, we have thal(A, (k) \ By) N Hygom)| /| Hngmyl > €/2 for all
sufficiently largern € dom(g). By the Fact above, we can find a poix) ¢ {y(8): B <

o} U U,e Hny @and a sequencey ) = {g.(j): j € dom(g)} of rationals converging to
y(a) with go(n) € (Aq(k) \ By) N Hyg(ny for almost alln € dom(g). This ensures the
remaining conditions. O

3. Known examples

We consider three related constructions that produce consistent examples;of FU
spaces.

Example 1. For F C 2%, let tr be the topology on 2° U {oco} generated by taking as a
subbase sets of the form

T1. {s}, fors € 2<? and
T2. Uy for f € F where

Up ={oo}U (2<w \{fln: ne a)}).

Let X r denote this space. For a finite €eiC F let Vg = ({U;: f € G}. Such sets form
a local base at the poinb.

It is known thatX is always Fréchet-Urysohn that and that it is first-countable if
and only if F is countable. This example was considered by Nyikos in [14]. Although
the notion of a Flg, space was not explicitly formulated, Nyikos essentially proved the
following (see also [16]):

Theorem 6. F is ay-set if and only ifX  is FUsp.

Notice that the spac¥  is of the type constructed in the previous section. HeXige
is always boundedly-F4. Thus, takingF such thatF is not ay-set, gives another con-
struction of a boundedly-Rd not FUi, space (in ZFC).

Example 2. For F C w®, let o denote the topology ofpo} U w=“ generated by taking
as a subbase sets of the form

S1. {s} fors € =® and
S2. {oo} U (w=?\ ") forn € w and
S3. setdJ; for f € F where

Uf:{oo}U(w<“’\{f|n: n € w}).

Let Yr denote this space. For a finite S8tC F let Vg = ({U;: f € G}. Such sets
form a local base at the poirb. Note thatYy is first-countable if and only i is un-
countable. As withX g, Y is always boundedly-FJ.
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Let 2’ denote the family of opew-coversU of F with the property that eache U is
the complement of a finite union of basic open subsets“ofLet us say tha¥ is aweak
y-setif every cover froms2” has ar"-subcover.

Theorem 7. Yg is FUsiy if and only if F is a weaky -set.

Proof. Fix a weaky-setF C o®. To prove thatrr is FUsp, fix P C [w<“]<N0 a 7-net-
work atoo. Letu, ={x € F: t £ x for all r € p,}. Eachu, is open inw® and is the
complement of a finite union of basic open sets. Moreover, sihhcea -network atoo
inYp, U ={u,: n € w}is anw-cover of F. HenceU is in £2’. By assumption, we may fix
{u,: n € A} be ay-subcover.

Claim 1. {p,: n € A} converges t@o.

Proof. Fix G € [F]<Y0. SoVj is a basic open neighborhoodsf. There is & € » such
that G C u, for all n € A \ k. But this means that for eache G and eachh € A \ k, no
restriction ofx is in p,. By definition of Vi this means, C Vi for everyn € A\ k as
required. O

Conversely, suppose th#g is FUsn. Fix U € 2’ of F. Thus, for each: € U, there is
a finite setp, € w=® such that: is the complement of the clopen $€f{[s]: s € p,}. Let
P={p,; uelU}.

Claim 2. P is aw-network atoo.

Proof. Fix Vs basic open. Fix: € U such thatG € u. Thus p, € V. This proves the
claim. O

SinceYr is FUsn, we may fixQ € P such thatQ convergesteo. LetQ = {p,: u eV}
for someV C U. We claim thatV is a y-cover of F. To see this, fixx € F. Since Q
converges toxo, p, C V, for all but finitely manyu € V. Therefore,x € u for all but

finitely manyu e V. O

Example 3. For F C w®, let yr be the topology ofico} U (w x w) generated by taking as
a subbase sets of the form

Gl. {(n,m)} forn,m € w and
G2. {oo} U (w x w) \ (n x w} and
G3. setdy for f € F where

Ur={oc}U (o x o\ {(n, f(): n€w}).

Let Zr denote this topological space.
In [13], P. Nyikos proved that ib = p then there is an uncountableC »® such that
Zr is FUsn (see also [16]).



246 G. Gruenhage, P.J. Szeptycki / Topology and its Applications 151 (2005) 238—-259

Relation among the spaces X, Yr and Zr. We conjecture that the following are equiv-
alent:

(1) Thereis aF € 2“ such thatX g is FUp.
(2) Thereis aF C w® such thatrr is FUsp.
(3) Thereis aF C w® such thatZg is FUsp.

However, we are only able to show that (1) implies (2) and that in significant cases the
space¥r andZs may be homeomorphic.

Theorem 8. If F C 2% is such thatX ¢ is a FUsi, space, therYr is a FUs, space.
Note that the statement of the theorem makes sense stnce.2.

Proof. The theorem easily follows from the characterizations given by Theorems 6 and 7.
Alternately, we have the following direct proof:

Suppose that C 2% is such thatX g is FUsn. Let D = w® \ 2. Let D U {x} be the
space where eache D is isolated and the family of sets of the form

U, = {x} U (D Nao®W)

form a local base &ft«}. ThenD is first-countable and'r is homeomorphic to the space
obtained by identifying the pointsandoo in the direct sum oD andX . By Corollary 21
from the last section below, it follows thii is FUsn. O

Hence we may conclude that (1) implies (2).

Next we turn our attention to the spaciEs and Zr. As mentioned above, Nyikos
proved thatt = p implies that there is an uncountabte such thatZr is FUsy,. Let us
say that a familyF = { f,,: « < «} is an unbounded scalé it is an unbounded family in
»® with respect to the preorder™ such that eacly, is increasing and, <* fz for each
a < B < k. Indeed, Nyikos proved that if = {f,: « < b} is an unbounded scale and if
b =p, thenZg is FUsn. We prove the following:

Theorem 9. There are unbounded scalés={g,: @ < b} andF = {f,: a < b} such that
Yr is homeomorphic t&¢.

Proof. Fix H:w<®:— w x w a bijection such that
(@) H mapso"*t1 onto{n} x w.

We claim that there is an unbounded scilg: o < b} C w®, such that iffy:w — w is
such thatf, (n) is the uniquek such thatH (g, |(n + 1)) = (n, k), then{f,: « < b} is an
unbounded scale. Indeed, the famiipy,: o < b} is easily constructed by recursion since
for anys € »", the set

[H@): t € o™ andt|n = 5}

is unbounded ifn} x .
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Notice that for eaclr < b,
(b) H maps the sefig|n: n > 0} onto the sef(n, go(n): n € w}.

Let H*:Yg — ZF be the extension afl by definingH* (coy) = coz. Then properties (a)
and (b) easily imply that7* is a homeomorphism. O

By the above results, we have the following corollary:
Corollary 10. b = p implies that there is a weak-set inw®.

The relationship betweepn-sets and wealk-sets is not known. Perhajps=p implies
the existence of g-set. Also we do not know whether there are weagets in ZFC:

Question 4. Are there wealy -sets in ZFC?

4. Boundedly-FUsi, and the or; -properties

FUsin spaces arery (see [16]). Also, there is a consistent example of a countable
Fréchet-Urysohn topological group that is nat[17]. Thus, consistently, it is not the
case that every Fréchet—Urysohn topological group igFU

Question 5. Is there a ZFC example of a Fréchet—Urysohn topological group that is not
FUsin?

It is easy to see that any space of character lesstthamvi, and any space of character
less tharp is FUsin. The exampleX i of the previous section is boundedly-flJand can
always chosen to be not jiJand of charactey. However, we do not know the minimum
character of a Fréchet—Uryshon space that is not boundedly. B4 it is natural to ask:

Question 6. Is every Fréchet—Urysohn space of charaetérboundedly-Flg,?

In this section we prove that FAkpaces are4 and construct consistent examples to
show that there are no other possible implications in ZFC. In particular, from CH we con-
struct a countable; Fréchet—Urysohn space that is not#-'dnd a boundedly-Fd space
that is notaz. One other possible implication to consider is whethefFichpliesa1. In
[4] it is proven to be consistent with ZFC that all 5 spaces are first-countable. Since
b = p = w1 in the model constructed, it follows that there is in this model gJ&pace
that is nota1. On the other hand, in [3], Dow showed that@dlspaces are; in the Laver
model. So all Fi, spaces are in the Laver model. However, as mentioned earlier, we
do not know whether there is a countablegkdpace that is not first-countable in the Laver
model.

We start by showing that there are frlbpaces which are nat 5 in any model of CH
(again,p = ¢ suffices).
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Theorem 11. (CH) There is aFUji, space which is naty s.

Proof. Let X = (o x w) U {oo}. Points ofw x w will be isolated. We intend to make the
sets{n} x w, n € w, the collection of covergent sequences which witnesses failure f
We define the neighborhood filter ab by defining a collectior which generates the
co-ideal.

Start by puttingw x {n} in Z for eachn € w. Let {P,: o < w1} and{fy: o < w1}
list all colections of finite subsets af x @ and all infinite partial functions from to w,
respectively.

Let u be any ultrafilter onw. Call a subsefi of w x w smallif its projectionz2(A) on
the second coordinate is notin

Suppose for alp < «, wherea < w1, we have defined’g, € Pg, and infinite partial
functionsgg satisfying the following conditions:

(i) Let Tg be the topology generated by all subset&of » and complements of sets in
{gy: v < BYU{w x {n}: n € w}. If Pgis am-netwith respect td, thenFg, € Pg is
such that J,, ., Fg. is small and converges t& in (X, Tg);

(ii) If y < B, thengg N (U, c,, Fyn) is finite.

(iii) dom(gg) =dom(fg) andgg(n) > fg(n) for all n € dom(gg).

First let us note that if we carry out the induction as above, tienill be as desired.
The neighborhood filter ato is by definition generated by complements of members of
the setl = {gy: o < w1} U{w x {n}: n € w}. Then condition (iii) easily guarantees th¥at
will not be 1 5. Also, if P is anyr-net atoo, condition (i) guarantees that we will have
chosen a subsequence Bfat some stage which convergeddo in the topology so far,
while condition (ii) guarantees that it remains convergent in the end 8d-Uy,.

Now we check that the induction can be carried out. At stepe are giverp,. If P, is
ar-netwith respect td@,, since this topology is first-countable we can fifig, € P, such
that{F,, },c» CONverges tac in T,. Since eaclw x {n} € Z, by passing to a subsequence
if necessary, we may assume tias(Fy,): n € w} is pairwise-disjoint. Now by dividing
the sequence into two pieces and choosing the small piece, we may assugthét,,
is small. So we have (i). Now le§,, n € w, list {U, c,, Fyn: v <} and let{d,: n € w}
list dom(fy). Since eacls, is small, we can find, € (w \ fo(dy)) \ U,;_, 72(S;). Let
ga(d,) =ry; theng, is as required. O

i<n

Theorem 12. If X is FUy, thenX is a4.

Proof. Fix {r,: n € o} a sequence of convergent sequence¥ .iWithout loss of gener-
ality, » C X and the range of eactj is contained inw and eachr,, converges to a point
ocoeX. Letr, = (k,(i): i €w). Let

Fi = {{ko(), ki (H}: j < ]
and letF = | J{Fi: i € w}. It is easy to see thaf is ax-network atoo. So, by Fl}, there
are elements

xn = {koGin), ki, (jn)} € F
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such that every open sEtof co contains all but finitely many of the,. Clearly,{i,;: n € w}
must be infinite, and the sequengée, (j,): n € w) must converge too. ThusX iSas. O

Example 13. CH implies the existence of a boundedly+rl$pace that is nats.

Proof. The underlying setis x wU{oo}. Points ofw x w are declared to be clopen and the
neighborhood base ab will be constructed recursively. The topology will be constructed
so that each columfr} x w is a convergent sequence, but there is no convergent sequence
hitting infinitely many columns in an infinite set. I.e., the space will noi&be

Using CH let(S,: o < w1) be an enumeration of all sets of the form

U{{n} x Ap:ne X},

whereX is infinite and each,, is infinite.
Let {F,: o« < w1) enumerate the collectiofF: InF C [w x w]"}.
Recursively, we define set8,: o < w1} and{G,: « < w1} such that

(@) By C w x w is a partial function with infinite domain.
(b) Gy C F,.

We letU, be the filter orw x w generated by the family of sets
{w x w\ Bg: ,3<oc}U{{x}: xea)xa)}.

We also require our sets to satisfy the following inductive hypotheses:
Foreach8 <«

(c) Bg N Sgisinfinite.
(d) Gg =0 inthe case thaFy is not ar -net with respect to the filtel/g
(e) If Gg #9, thenGg converges with respect to the filtgy, .

In order to preserve (e) in the construction we will need the following further inductive
hypothesis:

(f) If Gg #@thenthereis & < w suchthatf N{n} x w# 0 — gN{n} x v = for each
f#ginGgandeach > k.

Assume thatr < w1 is a limit and that we have fixed the sdtg andG g for 8 < « such
that for eachr’ < «, the inductive hypotheses (a)-(f) holdsuét It is easily follows that it
holds also atr. To constructB, andG,, considerS, and F,. Let gg(n) = max(|lJGg) N
{n} x w)). By (f) it follows that gg is a partial function orw \ kg. If we let B, C S,
be any partial function which dominatgg for all 8 < «, then it will follow that each
G still converges with respect to the filtéf, 1. To defineG,, first note that the filter
Uy+1 is countably generated. So, K, is ax-net, then it is easy to extract a convergent
sequence.
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To extract a convergent sequence satisfying (f) we need to prove the following lemma

Lemma 14. Suppose that we have afy first-countable topology om x w U {oo} (with
oo the only nonisolated poihtSuppose thaF C [w x w]" is anyr-net atoo. Then there
is ak and a convergent sequenceC F such that for allm > k and all f # g from G,
fNnim}xw#0—gN{m} xw=40.

Proof. By induction onn. Forn = 1, since the space is Fréchet—Uryshon, the family of
singletonsF' has a subset which convergesto Either F intersects a columfm} x w, in
an infinite setF’ (in which case we can tak€ and letk = m) or F has finite intersection
with each column. In the later case we can tRiut to F’ which meets each column in at
most 1 point.

Assume the Lemma holds far> 1 and suppose thdt C [o x w]"T! is ax-net atoo.
Orderw x w lexicographically.

Case 1: There islasuch thatF’ = {x € F: min(x) € k x o} forms ar-net. In this case,
use first-countability to assume without loss of generality #atonverges tao. Then
apply the inductive hypothesis {@ \ {min(x)}: x € F'}.

Case 2: Not CASE 1. l.e., for evekythe set{x € F: x Nk x w =@} is am-net. In
this case, it is easy to construct a subsef'afonvergent tao with the required property
satisfied bk =0. O

This completes the proof of the lemma and completes the recursive construction. Let
U be the neighborhood filter ab generated by J, U,. Clearly the space is nefz since
no S, is a convergent sequenck { B, is open and misses infinitely many pointsSy).
Also, for anyn and anyr-netF C [w x w]", there is g8 such thatF = Fg. Clearly, F is
also arr-net with respect t@/g. So,Gg is not empty and converges to with respect to
all U, for « > 8. Hence, it converges with respecttio O

Example 15. (CH) There is a countable Fréchet-Urysahrspace which is not F&J

Proof. Let X = (w x 2) U {oo}. Points ofw x 2 are declared to be isolated. The base at
the pointoo will be the filter generated by complements of the set§ ia {I («, e): a <
w1, e < 2}, wherel(a,e) is a subset ofv x {e}. We will define these sets by induc-
tion. Also, fora < w1, we letU, be the filter generated by complements of the sets in
{I(B,e): B<a, e<?2}.ForAcC X, letn(A)=1{n € w: e <2((n,e) € A}. Let p be
any p-point in Sw \ w; we will make sure each (I («, ¢)) is not in p. For convenience,
we call a subsefi of X \ {co} p-smallif 7(A) ¢ p. Since it may be of some added in-
terest, instead of only making Fréchet, we will make each subspaegex {e}) U {0}
FUsn. Let Wo and W1 be the even and odd countable ordinals, respectively.Y,et
o € Wy, and Ka, a € W1, index, respectively, all infinite subsets pf]<“ and all se-
guencegA, (1)), Of infinite p-small subsets ok. One final bit of notation: foA c X,
we letA+ ={(n,e): (n,1—e) € A}.

Supposer < wy, and for allg < « we have constructed sefg, g € Wo, Bg, f € W1,
and/ (B, e), e < 2, satisfying:
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(@) If B e Wo, Yg C [w x {e}]=“, andYy is ar-net atoo with respect tdJg, thenZg is an
infinite subset ofts whose union igp-small and converges tso with respect taUg;
furthermore (8,1 —e) = (U Zp)*;

(b) If Yg consists of singletons, satisfies the conditions of (a), @kgl is not p-small,
then (B, e) is the union of an infinitep-small subset ot’g, disjoint from Zg, such
that/ (B, )+ is Ug-convergent;

(c) If B e Wy, ande < 2 is such that, for each, Ag(n) is aUg-convergent subsequence
of w x {e}, thenBg is p-small, Ug-convergent, andg * D Ag(n) for everyn; further-
more, I (8,1 —e) =

If a setZ,, By, or I («, ¢) does not need to be defined because the hypotheses of the
relevant condition (a), (b), or (c) are not satisfied, then simply define the set to be the
empty set.

A key feature that is easily noted from the induction hypotheses is that fow any
w1 ande < 2, I(a, e)* is convergent w.r.tU,. Let us suppose we have completed the
inductive construction satisfying these conditions, and check that the X¥paees desired.

We first show that each subspaeex {e}) U {oo} is FUsin, which impliesX is Fréchet.
Suppos€ is ar-net atoo consisting of finite subsets af x {e}. ThenY =Y, for some
a, and by (a) aboveZ, is a subset oft, whose union is convergent itl,. We need
to see that this convergence is not destroyed at some later stage. Syppogeand
1(B,e) N (U Zy) is infinite. Then so is/(B,e)t N (JZe)t = 1B, e)t N1(a,1—e),
contradictingl (8, e)* convergent w.r.tUs. It easily follows from the inductive condition
(b) that all sequences i which converge tao are p-small. Thus in the listing of the
A’s, we only needed to consider, as we did, thasein which the termsA(n) (i.e., the po-
tential convergent sequences) wersmall. With this observationy; follows easily from
the inductive condition (c). Preservation of convergence works the same as in the previous
paragraph.

Finally, let us check thaX is not F. Consider the collection

={{(.0), (n, D}: n e w}.

ThatF is an-net follows from the fact that all of thé(a, e)’s are p-small.

Now supposeA is an infinite subset af such thatf{{(n,0), n,1)}: n€ A} = A x 2 is
convergent. Thefi{n}: n € A} =Y, for somex, and isU,-convergent, s&, is an infinite
subset oft,. But thenI (&, 1 — e) = Z3+ C A x {1 — e}, contradicting thatd x {1 — e} is
convergent.

Now let us check that the conditions (a)—(c) can be satisfied. Suppes€y. Then we
are giveny, and we need to show that (a), and (b) too if relevant, may be satisfied. First
choose an infinite subséf, of Y, that converges w.r.t/,; this is possible sincé/, is
countably generated. Then some infinite subsequ&gcef Y, will have p-small union;
this Z,, will satisfy (a). If (b) needs to be satisfied as well, then sint&, is not p-small,
while everyI (8, f) for 8 <« and f < 2 is p-small, we can pass to a subsequekief
Y, such that both J ¥ and (| YD’;)L converge w.r.tlU,. Then letZ, and Z,, be disjoint
infinite subsequences af/, and let/ («, ¢) = | J Z,,. Finally, supposex € W1 and the
hypotheses of (c) are satisfied. Recall that eaglwn) is p-small. Sincep is a p-point,
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there is gp-small setB;, which almost contains every, (n). Since eaci, (n) is Uy-con-
vergent, andJ, is countably generated, there existé/@ convergentB,, which almost
contains eacl, (n). Then takeB, = B, N B)). O

5. An FU, not FU,, 41 spacefrom CH

Sipacheva [19] noted that a pointin a spaceX is FU, at x iff X" is Fréchet at
(x,x,...,x). This gives another way to see the result of the previous section that FU
spaces arey, sinceX x Y Fréchet is known to imply thaX andY arews. It also follows
that a construction of K. Tamano [20] under Martin’s Axiom of a sp&csuch thatx” is
Fréchet butX”*+1 is not Fréchet is also a (consistent) example of a space that,id&U
not FU,+1. In this section we give another construction, assuming £+ ¢ would do), of
a space that is FUbut not FU,.1. Except for the Fréchet fan, which is ItU.e., Fréchet,
but not FU, there apparently are no known ZFC examples of this phenomenon.

Question 7. Is there a ZFC example of a huhot FU; space?
Example 16. (CH) For everyn € w \ {0}, there is an FlJ space which is not FiJ 1.

Proof. For eachi <n + 1 letw' = {m': m € w} be the copy{i} x w of w and letX =
Ulew': i <n+1}. AndletY = X U{oo}. Points ofX will be isolated and the neighborhood
filter at co will be constructed recursively.

For anyA C X, letw(A) = {m: 3i <n + 1m' € A}. Enumerate the power set pt]"
by {Ty: a < w1}.

By recursion onx < w1 we construct set€, € X andS, C T,. Fora < w1 we will
let Uy be the filter generated biyX \ Cg: B < a}. For eachy < w1 we require the sets to
satisfy the following inductive hypotheses:

(a) Forallg <a, Sg # @ implies thatSg converges with respect G, .

(b) There is(k;: i < n) (depending orx and not all necessarily distinct) such that each
x € Sy is of the form{x(i): i < n} wherex(i) € w*i.

(c) For alli # j eitherm(x(i)) = nw(x(j)) for all x € Sy, or w(x(i)) # 7 (x(y)) for all
x € Sy.

(d) {m(x): x € Sy} is pairwise disjoint family of sets. Moreover, for all£ y from S,
either maxr (x) < minz(y) or maxe(y) < minm (x).

(e) For each <n and for allg < «, either{x(i): x € S,} is almost disjoint from_J Sg,
or {x(i): x € So} € {x(j): x € Sg} for somej < n.

Let I be the set of < n such that{x(i): x € Sy} is almost disjoint from_J S for all
B <a.And IetS/’S ={x(i): i € I andx € Sg}. Then

(f) Cq is the largest subset of such thatC, N S}, =@ andn(Cy) = 7 (S),).
(9) {m(Cp): B <} is an almost disjoint family.
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Suppose first that is a limit and{Sg: g < «} and{Cg: 8 < «} have been constructed
so that for alle’ < o the inductive hypotheses are satisfiedratlt is easy to check that
they are also satisfied at

It suffices to explain how to choos®, and C, preserving the inductive hypotheses
ato + 1. Consider7,. If it is not a w-net with respect to neighborhood filtéf,, then
let S, = C, = 0. Otherwise, first fixS C T, so thatS converges with respect 1@, . For
eachx € S, orderx lexicographically and let = {x(0), ..., x(n — 1)} be its increasing
enumeration. Let* = (k%, ....k,_;) besuchthat(i) e ok foreachi < n. Since®(n+1)
is finite, by taking an infinite subset ¢f we may assume that there iska= (k;: i < n)
such thak* = k for all x € S.

Thus, any subset df will satisfy inductive hypothesis (b). Sineeis countable, it is
easy to see that we may firff} C S satisfying the inductive hypotheses (d) and (e) (for
(e) it suffices to shrinkS countably many times and tak¥ a pseudointersection of the
resulting sequence of subsets).

Inductive hypothesis (f) forces us to define

Co={m': j<n+1landdi(m' € S,)}\S,.

Notice that all the inductive hypotheses except (a) and (g) hold directly by construction.
To verify that the other inductive hypotheses hold:at 1 we need to prove the following
lemmas:

Clam 1. C, N Sy = 9.
Claim 2. C, N Sp is finite for all B < a.
Claim 3. 7 (Cy) N7 (Cp) is finite for all B < «.

Note that Claim 1 assures th&f converges with respect @@, 1. And for eachs < «,
Claim 2 assures théaflg converges with respect 3, 1. Hence inductive hypothesis (a)
holds. Claim 3 assures that inductive hypothesis (g) holds.

Proof of Claim 1. Suppose that! € C,N| J S, forsomen <wandl <n+1.m' €| J S,
means that there ig € S, and aj such thatvg(j) = m! = m*i. Also, by definition ofC,
there is ax1 € S, and ani # j such thatc1 (i) = mki e S,, (and moreover, sinc€, N S,,,
k; # k;). By (d) it follows thatxo = x1. So by (c) it follows thatr (x (i)) = 7 (x(;)) for all
x € Sy. Also, by definition ofS,,, it follows that{x(i): x € S¢} € S, and hencéx (i): x €
S«} is almost disjoint from eaclig with 8 < «. On the other hand, sinog(j) € C, and
xo(j) € S, there is 889 < « with

{x(N: x € Sa} S {x"): x € Spy}.

Assumefp to be minimal with this property. By minimality, it follows thdk (i"): x €
Spo} S Sp, (otherwise,{x(i"): x € Sp,} would be a subset of a smallég and in turn
so would{x(j): x € S,}, contradicting the minimality oBp). It follows that{x(j): x €
Sy} C S}’SO. Thus, by definition oCg, and sincer (x(i)) = 7 (x(j)) for eachx € S, either
{x(): x € Sa} € Cg,, contradicting thatS, converges with respect t,, or {x(i): x €
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Sa} € S/’So, contradicting{x(i): x € Sy} is almost disjoint froml_J Sg. In either case we
reach a contradiction. O

Proof of Claim 2. Suppose not. Lefo be the minimals satisfyingC,, N Sg is infinite.
Thus there is ahandRg, C Sg, infinite such thak (i) € C,, for all x € Rg,. By minimality
of Bo we have thafx(i): x € Sg,} is almost disjoint from_J Sg for all 8 < Bo. Therefore,

{x(): x € Sgy} < g,

Let A = {m(x(i)): x € Rg,}. There is ak <n + 1 such thatm*: m € A} = {x(i): x €
Rg,} € Cy. By choice ofC,, there is aj such that(m/: m € A} € |J S, and such that
{m/: m € A} is almost disjoint from all previouk) Sg in particular almost disjoint from
U Sg,- However, since

{m*: me A}y S {x(i): x € Sg,} < S
it follows by choice ofCg, that
{m’: me A} C* Cg,.

But this contradicts thaf, converges with respect i@,. O

Proof of Claim 3. Suppose not and takéy minimal such thatr (C,) N (Cg,) is infi-
nite. Let A € w be infinite and leti and j be given such thapm’: m € A} € Cg and
{m/: m € A} C C,. By definition of Cg,, for everyi’, if {m': m € A} is almost disjoint
from | Sg, then{m'": m € A} C Cg,. Also, by definition ofC,, there is aj’ and ak,
such thafm/: m € A} C {x(kq): x € Sq}. And {x (ko) x € Sg} is almost disjoint from all
previous|J Sg. So in particular it is almost disjoint frofn) Sg,. Thus by the previous ob-
servation it follows thafx (k,): x € S, } has infinite intersection witli z,. This contradicts
that S, converges with respecti@,. O

This completes the recursive construction. Moreover, it is clear from the construction
that the space is FlJ To complete the proof we need the following final claim:

Claim 4. {{m': i <n +1}): m < w} is arw-net with no convergent subsequence.

Proof. To see that it is ar-net note that the neighborhood basecatis generated by
{X\ Cy: a < w1} and the family ofz(C,)’s form an almost disjoint family (although
some of the sets may be empty). Being-aet is equivalent to saying thatis not covered
by finitely many of the sets (C,). So it suffices to verify that infinitely many of th&,’s
are not empty. It can be easily arranged that the dirstany set4C,,: m < w} are all not
empty by arranging;, = {{k': i <n}: k € A,,} whereA,, is some disjoint infinite family
of sets.

To see that it has no convergent subset, supposedtigatinfinite and let’'s show that
S={{m': i <n+1}: m € A} is not a convergent sequence. If it were, tHea: {{m': i <
n}: m € A} would also be a convergent sequence. And there g sunch thatl" = 7,,. In
this case A is almost disjoint from all sets (Cg) for § < «. So S, was chosen at this
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stage ands, = {{m': i <n}: m € B} for some infiniteB C A. It is easy to check that in
this caseC, = {m": m € B}. And thatS does not converge teo is withessed by the open
setX \ Cy. ThusX isnot FY,;1. O

6. Games and products

In this section, we show that Fk}spaces have an interesting game characterization,
analogous to a game characterization of a similar property called the “Moving Off Proper-
ty”, or MOP, in [10], which is similar to Flg, but with finite sets replaced by compact sets.
Related to the game characterization ofsfldre characterizations involving sequences
of w-nets, and there are applications concerning when the product ofjadpldce and
another space is RlJ. The characterizations involving sequences afets are also remi-
niscent of a similar characterization pfsets involving sequences afcovers instead of
just onew-cover.

Let X be a space and € X. In [5], the following gameG o p (X, x) was introduced.

At the nth play, O chooses an open neighborho6d of x, and P responds by choosing

a pointx, € O,. O winsthe game if{x,: n € w} converges ta.. A space in whichO has

a winning strategy was calledWi-space and a space in whicR fails to have a winning
strategy was called@a-space Clearly, first-countable spaces avespaces, and it turns out
separabléV -spaces must be first-countable. A prototypical non-first-countébipace

is the one-point compactification of an uncountable discrete space. On the other hand,
separable or even countahlespaces need not be first-countable; in fact it was essentially
shown by P.L. Sharma [18] that-spaces are the same as Fréchet—-Urysohspaces.

Now suppose we modify the ganig p(X, x) by allowing P to choose a finite set of
points at each play instead of just one point (wi2hwinning if the union ofP’s sets is a
sequence converging 19; denote this game b@f(i)ﬁp(x, x). It was noted in [5] that this

game is equivalent fo© in the sense thad has a winning strategy in(i)”,P(X, x) iff O

has a winning strategy iGo_p(X, x). However, it is not equivalent, at least consistently,
for player P. As noted aboveP has no winning strategy i o p(X, x) iff x is an Fréchet
az-point, while the next theorem shows thahas no winning strategy iﬁf(i)” p (X, x)iff X

is FUsin atx. Incidentally, this gives another way of obtaining Reznich}enlko and Sipacheva’s
result that Flg, impliesa, because ifP has no winning strategy in'O“,P(X, x), P has
none inGo p(X, x) either.

Theorem 17.1 Let X be a space and € X. The following are equivalent

() X isFUsn atx;
(i) For each sequencel,), <., Of m-nets atx consisting of finite sets, for infinitely many
n € w there areF, € P, such that{F,,: n € w} converges ta;

1 This result should be compared with Theorem 2.3 in [6], which has similar form with collections of finite
sets which arer-nets atx replaced by collections of compact sets which araets at a point at infinity whose
neighborhoods are complements of compact subsets of
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(iii) For each sequencéP,),c, Of m-nets atx consisting of finite sets, for eache w
there areF, € P, such thaf{F,,: n € } converges ta;
(iv) P has no winning strategy in the gami‘:"on’P(X, X).

Proof. That (iii) implies (ii) is obvious, and that (ii) implies (i) is easy: just apply (ii) with
P, = P for eachn, whereP is somer-net atx. Reznichenko and Sipcheva [16] show that
(i) implies (iii). So we have that (i)—(iii) are equivalent. Now suppose (iv) holds.R.gt

n € w, be a sequence af-nets atx consisting of finite sets. TheA can choos&), € P,

at hisnth play. Since this strategy can’t always win, there must be a sequence aof;gach
converging tar. This shows (iv) implies (iii). _

It remains to prove (i)—(iii) implies (iv). Supposeis a strategy forP in Gf(')”,P(X,x);
we need to show thatcan be defeated. L&, be the set of all first moves dt using the
strategys. Note thatSy is ax-net atx. By (i), there is a sequende”, n € w, of elements
of Sy converging tar. For eachn, let S, be the set of all responses Byusings to O’s
second move, after some first move @ywhereP’s response was the sEf. Then choose
{F,f"”: n € w} C Syyy converging tax. In general, if ;Y has been defined for all € ok
andn € w, let Sp~ ) be the set of all responses Byusings to O’s next move, where

O'’s previous moves led t® playing Ff(o), F;&), Fg(‘zz), . F;(‘,Ek_’l)l), F2, and choose a
sequencey ™ n € w, of elements ofSy~ () converging tox. Noting that{Fy{: j e
w} is am-net for eachy € w=®, by (iii) there arej (o) € w such that{Fj‘.’(o): o € w="?}

converges ta.. Then we can find € w® such thaI{Fj’("r"n): o € =} is a subsequence of

{Fy) new); but{th(';’ln): n € w} is the result of a play of the game with usings. So
s is not a winning strategy foP. O

Nyikos noted that the Cantor tree space oFewhich we denoted r in Section 3, is
a w-space, i.e., Frécheb, if F is a)’-set in the Cantor set (which means that for every
countable subset of the Cantor setd is Gs in F U A). SinceX g is FUy,, iff F is ay-set,
taking F' to be a)r’-set which is not &-set provides an example of a space in whithas
no winning strategy ifG o_p (X, x) but, by Theorem 17P does have a winning strategy in
Gf(i)”’P(X, x). There are\’sets in ZFC (see, e.g., [11]), so there are many models in which
there are\’-sets which are not. However, A. Miller [12] has shown that in the standard
model of MAy.centeredt ¢ = w2, there are na’-sets of cardinality = w», S0, sinceg = w>
here, it follows that every’-set in this model is also a-set. Hence the Cantor tree type
spaces do not appear to give ZFC examples in which the games are inequivalerafat
indeed we do not know of any. In an equivalent form, this is the following question:

Question 8. Is there in ZFC a Fréchet-space which is not Fj 2

The analogue of the equivalence of (i) and (ii), or (i) and (iii), in Theorem 17 fgr FU
is false. Indeed, condition (i) for -nets of singletons is equivalent to Fréchgf which is

21na sequel [8] to this paper, we show that a certain space obtained from a Hausdorff gap provides a positive
answer, in ZFC, to this question.
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stronger than Fy= Fréchet, and (iii) for singletons is equivalent to FréalagtHowever,
we do have the following:

Theorem 18. Let X be a spacey € X.

(1) If k € w, and X is FUy4 1, then for any sequenc®,, n € w, of w-nets atx consisting
of k-element sets, for infinitely mamye w there areF,, € P, such that{F,;: n € w}
converges ta;

(2) X is boundedlyFUsy, iff for any & and for any sequence,, n € w, of r-nets atx
consisting ofk-element sets, for infinitely mamye » there areF,, € P, such that
{F,: n € w} converges to.

Proof. (1) SupposeX is FU,4+1, and P,, n € w, is a sequence of -nets atx consisting
of k-element sets. Take any non-trivial sequengen € w, converging tox. Consider
the collection{{x,} U F: n € w and F € P,}. It is easy to check that this collection is a
w-net consisting of sets of cardinality k + 1. Since any convergent subsequence of this
collection has only finitely many terms of the foi, } U F for fixed n, there is an infinite
subsetA of w such that{{x,} U F,,},,c4 iSs a convergent subsequence. Then the collection
{F,: n € A} is the desired convergent selection from infinitely many of hs.

(2) The “if” part of (2) is easy, and the “only if” part is immediate from (1)0

Remark. Part (1) of the above theorem fb= 1 gives another proof that EUmpliesay.

We now turn to applications of the above results to products. The part of Theorem 20
below about the Fk}, property generalizes a corresponding result of Reznichenko and
Sipacheva, who proved it in the cags@as countable characterhor if Y is the one-point
compactification of a discrete space.

First, it will be helpful to have the following lemma which shows that a finite-set version
of countably tight is preserved by products with-spaces. For the standard version of
countably tight, this was proved in [5]. (Byy“is a W-point in Y”, we mean ‘O has a
winning strategy inGo p(Y, y)".)

Lemma19. Let X andY be spaces, antk, y) € X x Y. Suppose that is a W-pointinY,
and that everyr-net atx in X consisting of finite setgesp.,< k-element sets for some
k € w) contains a countabla-net atx. Then everyr-net at(x, y) in X x Y consisting of
finite setqresp.,< k-element sejcontains a countable -net at(x, y).

Proof. Let o be a winning strategy foO at y in Y in the gameGﬁortP(Y,y) (recall
that, for O, this game is equivalent tG o p(Y, y)). That is,o is a function which as-
signs to each finite sequenék, Hi, ..., H, of finite subsets o an open neighborhood
o (Hp, H1, ..., H,) of y such that ifO playso (Hop, H1, ..., y,) WheneverP has played
Ho, Hi, ..., H,, then{H,: n € w} converges to.
Consider an arbitraryt-net F at (x, y) consisting of finite sets (og k-element sets).
Let M be a countable elementary submodel (of some sufficiently large fragment of the
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universe) containing all relevant objecss, (Y, F, etc.). We claim thatt N F is a countable
m-net at(x, y).
To see this, suppose, y) is in the open selV x V. Let

FW) ={nx(F): F € Fandny(F) Co(®)}.

ThenF (@) is in M and is ar-net atx, so there is, inM, a countable subsé&i?) of F(9)
which is arr-net atx and is also inM. Hence there igy € F N M such thatry (Fo) C U
andny (Fg) C o (). By the same argument, if; € 7 N M have been defined for< n,
we can findF,, € F N M such thatrx (F,,) C U andry (F,) C o ((ty (F}))i <n). Then the
sequencery (F,))new 1S the result of a play of the gan(éfiortp(Y, y) with O usingo,
hence for some we must havery (F,) C V. ThenF, is contained inU x V and is a
member ofF N M. 0O

Theorem 20. SupposeX andY are spacesy € X, andy € Y. If x is a(boundedly FUsp,
pointin X andy is a W-pointinY, then(x, y) is a(boundedly FUsi, pointin X x Y.

Proof. We prove the boundedly K case, the other being similar. SuppadBes a x-

net at(x, y) consisting ofk-element sets. By the previous lemma, we may asséine

is countable. Since countabl&-spaces are first-countable, there is a decreasing neigh-
borhood bas¢U, },.<. aty relative to the subspade} U (| J{my(F): F € F}) of Y. Let
Fn={nx(F): F € Fandry(F) C U,}. ThenF,,n € w, is a sequence af-nets atc con-
sisting of< k-element sets, so by Theorem 18, for infinitely marthere areF,, € F with

ny (F,) C U, such that thery (F,)’s converge toc. Then theF,’s converge tax, y). O

Corollary 21. Suppose thaX is FUji, at the pointx, and thaty € Y. If x(y, Y) = Rg, or
more generally ify is a W-point in Y, then the quotient spack & Y/{x, y} obtained by
taking the topological sum of andY and identifying the points andy is FUsp, at {x, y}.

Proof. This quotient space is homeomorphic to a subspacé»fY, so the result follows
from Theorem 20. O

Remarks. It is consistent that Corollary 21 does not hold if one only assumesytisaa

FUsn pointin Y. Indeed, it follows from CH that there are twosetsX andY such that

X @Y is not ay-set. Thus the corresponding flUspaces’y and Ty do not satisfy the
conclusion of Corollary 21. In addition, the subspages {0}) U {oco} and(w x {1}) U {co}

of Example 15 provides a consistent example where the conclusion fails badly: the quotient
space obtained by identifying the tvso points is not even F&l So, some strengthening

of the FU;i,, property is needed for these results. Since any space of chazagtisrFUsi,

andaq, we are led to ask:

Question 9. Do Corollary 21 or Theorem 20 hold assuming oglgy, ¥Y) < p?
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