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Abstract

E. Reznichenko and O. Sipacheva called a spaceX “Fréchet–Urysohn for finite sets” if the fo
lowing holds for each pointx ∈ X: wheneverP is a collection of finite subsets ofX such that every
neighborhood ofx contains a member ofP , thenP contains a subfamily that converges tox. We
continue their study of this property. We also look at analogous notions obtained by restric
collectionsP of bounded size, we discuss connections with topological groups, theαi -properties of
A.V. Arhangel’skii, and with a certain topological game.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

For a spaceX and a pointx ∈ X, a familyP of subsets ofX is said to be aπ -network
at x if for each openU containingx, there isp ∈ P such thatp ⊆ U . We will say that
an infinite family P of subsets ofX converges tox if for each openU containingx,
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{p ∈ P : p �⊆ U} is finite. If P consists of singleton sets, thenP converges tox if the
sequence formed by any enumeration of the singletons converges tox.

E. Reznichenko and O. Sipacheva defined a spaceX to beFréchet–Urysohn for finite
sets, which we will denote by FUfin, if for eachx ∈ X and eachP ⊂ [X]<ℵ0, if P forms
a π -network atx, thenP contains a subfamily that converges tox (see [16]). This notion
has appeared earlier in the literature (it is calledgroupwise Fréchetin [4]), but [16] is its
first systematic study.

We will say thatX is FUn if for eachx ∈ X, and eachP ⊂ [X]n, if P forms aπ -network
at x, thenP contains a subfamily that converges tox. We will say thatX is boundedly-
FUfin if it is FUn for all n ∈ ω.

Clearly,

first-countable→ FUfin → boundedly-FUfin → Fréchet–Urysohn.

Also, it is clear that for everyn ∈ ω \ {0}
boundedly-FUfin → FUn+1 → FUn → Fréchet–Urysohn.

By taking the topological sum of countably many convergent sequences and formi
quotient space by identifying the limit points of each sequence, one obtains the Fr
Urysohn fanSω. It is not hard to see thatSω is Fréchet–Urysohn, but not FU2.

The one-point compactification of an uncountable discrete space is an uncou
FUfin space that is not first-countable. This example also has a number of other
convergence properties (e.g., it isα1—see below). For this reason we restrict our stud
countable FUfin spaces. In this note we show that even in the class of countable space
of the above implications can be reversed, at least in ZFC. In addition, the relationsh
tween these properties and theαi -convergence properties of Arhangel’skii is consider
The following fundamental question concerning FUfin spaces is left open:

Question 1. Is there, in ZFC, a countable FUfin space that is not first-countable?

This question was motivated by the following question (see [2] and [13]):

Question 2 (Malykhin). Is there a countable Fréchet–Urysohn topological group that i
metrizable?

The existence of a non-metrizable separable topological group has a number of e
lent formulations (see [16]):

Proposition 1. The existence of a countable Fréchet–Urysohn topological group that i
metrizable is equivalent to each of the following:

(1) The existence of a countable Fréchet–Urysohn topological group that is not
countable.

(2) The existence of a separable Fréchet–Urysohn topological group that is not metri

The connection between FUfin spaces and Fréchet–Uryshon groups is given by the
lowing construction. LetX = ω ∪ {∞} be a space with a single nonisolated point∞. Let
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G = [ω]<ω and defineF0 ∗ F1 = F0 \ F1 ∪ F1 \ F0. ThenG with this operation is a grou
with identity element∅. To each open neighborhoodU of ∞ let VU = {F ∈ G: F ⊆ U}.
This defines a neighborhood base at∅ makingG a topological group. Note thatX is first-
countable if and only ifG is first-countable. Moreover, Reznichenko and Sipacheva pr
the following theorem:

Proposition 2 [16]. X is FUfin if and only ifG is Fréchet–Uryshon.

Thus, there is a countable FUfin space that is not first-countable implies that there
countable Fréchet–Uryshon topological group that is not metrizable. We do not know
converse holds:

Question 3. Does the existence of a separable non-metrizable Fréchet–Urysohn top
cal group imply the existence of a countable FUfin space that is not first countable?

Arhangel’skii proved that there are countable Fréchet–Urysohn topological g
which are not first-countable assuming MA+ ¬CH. Nyikos showed that there is su
an example assuming eitherp > ω1 or p = b see [13] and [16]. Both of these examples
Nyikos are FUfin (see [16]).

Two essentially different examples of non-metrizable topological groups can b
tained from an uncountableγ -set of reals. An open cover of a spaceX is said to be an
ω-cover if each finite subset ofX is contained in an element of the cover. An open cove
said to be aγ -cover if each point of the space is contained in all but finitely many elem
of the cover. A space is said to be aγ -space if eachω-cover has aγ -subcover. Gerlits
and Nagy introduced this class of spaces and proved thatX is a γ -space if and only if
Cp(X) is Fréchet–Urysohn [7]. In fact, the same proof shows thatCp(X) is FUfin if and
only if Cp(X) is Fréchet–Uryshon. Therefore for anyγ -setX ⊆ R, Cp(X) is a separable
non-metrizable FUfin topological group. Another example, the spaceTX defined below, is
a FUfin space if and only ifX is aγ -set. This was essentially proved by Nyikos (see [1
although the class of FUfin spaces were not explicitly considered there).

It is both consistent with ZFC and independent of ZFC that there existγ -sets: in fact,p
is the minimum cardinality of a set of reals that is not aγ -set [7]; the existence ofγ -sets
contradicts the Borel conjecture: anyγ -set has strong measure zero. Therefore, in the L
model there are noγ -sets [9].

Whether there is a countable non-metrizable Fréchet–Uryshon topological gro
even a FUfin space that is not first-countable in the Laver model appears to be an
question [15].

Now let us recall the definition of theαi -spaces, introduced by Arhangel’skii [1]. L
X be a space, andx ∈ X. Suppose that for any countable family{An}n∈ω of sequences
converging tox, there is a sequenceA converging tox such that:

1. |An \ A| < ω for everyn ∈ ω, thenx is anα1-point;
2. |An ∩ A| = ω for everyn ∈ ω, thenx is anα2-point;
3. |An ∩ A| = ω for infinitely manyn ∈ ω, thenx is anα3-point;
4. |An ∩ A| �= ∅ for infinitely manyn ∈ ω, thenx is anα4-point.
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Also, if for every disjoint collection {An}n∈ω of sequences converging tox, there is a
sequenceA converging tox such that|An \ A| < ω for infinitely manyn ∈ ω, thenx is an
α1.5-point.X is anαi -spaceif every point is anαi -point.

Reznichenko and Sipacheva proved that FUfin spaces areα2. Among other things, we
show FU2 spaces areα4, and construct consistent examples showing that there are no
possible implications in ZFC.

2. A boundedly-FUfin not FUfin space in ZFC

Several spaces in this note are of a similar type, given by the following lemma, w
makes them boundedly-FUfin andα3.

Lemma 3. Let X = Y ∪ {∞}, whereY is the set of isolated points ofX. SupposeY is
contained, as a set, in some compact metric spaceK , and a subbase for the neighborho
filter at ∞ in X is generated by complements of members of the set{{y}: y ∈ Y

} ∪ {Sx : x ∈ K},
whereSx is either empty or a sequence of points ofY converging tox in the spaceK . Then
X is boundedly-FUfin andα3.

Proof. SupposeF is a π -net at∞ of m-element subsets ofX. For eachF ∈ F , choose
some indexing{xi : i < m} of F , and let �F = (xi)i<m be the corresponding point inKm,
Observe that if aπ -net is split into finitely many pieces, one of the pieces must be aπ -net.
It follows from this and compactness ofKn that there is some�y = (yi)i<m ∈ Km such that,
for every neighborhoodU of �y in Km, the set{F ∈ F : �F ∈ U} is aπ -net. Thus we can
chooseFn ∈F such that the metric distance between�Fn and�y is � 1/2n, and

Fn ∩
[
{yi : i < m} ∪

( ⋃
i<m

Syi

)
∪

( ⋃
j<n

Fj

)]
= ∅.

Let us check that{Fn} → ∞. If not, there isx ∈ K such that infinitely manyFn’s
meetSx . By the construction of theFn’s, on the one handx must beyi for somei < m,
but on the other hand, noFn meetsSyi

, contradiction.
Now let us check thatX is α3. If An ⊆ Y converges to∞ for eachn ∈ ω, then by

compactness ofK we may chooseBn ⊆ An andxn ∈ K such thatBn converges toxn in
the topology ofK . Also, Bn still converges to∞ in the topology onX. Thus we may
assume thatSxn (if it exists for xn) is disjoint fromBn. By compactness ofK again, we
may find an infiniteM ⊆ ω such that(xn: n ∈ M) converges to somex ∈ K . By removing
a finite set from eachBn for n ∈ M we may assume that

⋃{Bn: n ∈ M} is disjoint fromSx .
It easily follows that

⋃{Bn: n ∈ M} converges to infinity. ThusX is α3. �
Theorem 4. There is a boundedly-FUfin space which is notFUfin.

Proof. Let Q denote the rationals in the unit intervalI = [0,1]. Our spaceX will be
Q∪{∞}, where points ofQ are isolated, and the neighborhood filter of∞ will be generated
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by complements of finite subsets ofQ, together with complements of certain well-chos
sequencesSx of rationals converging tox, for some pointsx ∈ I . We will choose at mos
oneSx for eachx; by the previous lemma, this will guarantee the space is boundedly-Ffin.
We will make it non-FUfin by ensuring that a certain collection{Hnm: n,m ∈ ω} of finite
sets defined at the beginning of our construction is aπ -net but has no convergent subs
quence. Let{Hn: n ∈ ω} be a collection of finite subsets ofI , and for eachx ∈ ⋃

n∈ω Hn,
let Sx be a sequence of rationals converging tox, such that the following conditions a
satisfied:

1. Hn ∩ Hm = ∅ if m �= n;
2. For eachx ∈ I , d(x,Hn) < 1/2n, whered is the usual Euclidean distance;
3. The collection{Sx : x ∈ ⋃

n∈ω Hn} is pairwise-disjoint;
4. diam(Sx) < 1/2n for eachx ∈ Hn.

Let {qx
i : i ∈ ω} be a one-to-one enumeration ofSx for x ∈ ⋃

n∈ω Hn. We letHnm =
{qx

m: x ∈ Hn}. Since theHn’s become increasingly dense inI and theSx ’s have decreas
ingly small diameter, it is easy to check the following fact:

Fact.For each infiniteA ⊂ ω, for eachf :A → ω, and for eachy ∈ I , there arexn ∈ Hn,
n ∈ A, such that{qxn

f (n)}n∈A converges toy.
Now let {y(α): α < c} list anyc-sized subset ofI \ ⋃

n∈ω Hn, and letfα , α < c, list all
infinite partial functions fromω to ω. For eachα, let Sy(α) be a sequence converging
y(α) as in the Fact, withf = fα andA = dom(fα). ThenX is the spaceQ ∪ {∞}, where
Q is a set of isolated points and neighborhoods of∞ are generated by complements of t
Sx ’s, wherex ∈ {y(α): α < c} ∪ (

⋃
n∈ω Hn).

We already knowX is boundedly-FUfin; we need to prove that it is not FUfin. First we
show thatH = {Hnm: n,m < ω} is a π -net. LetK be any finite subset ofI ; we need to
show thatHnm∩[K ∪(

⋃
x∈K Sx)] = ∅ for somem andn. First findn such thatHn∩K = ∅.

There are disjoint Euclidean open setsU andV containingHn andK , respectively. The
setJ = [⋃x∈K Sx] \V is finite. Thus, since the points inHnm converge to the points ofHn

asm → ∞, Hnm eventually gets insideU and missesJ , so there is anm ∈ ω as required.
Finally we show that there is no convergent subsequence ofH. Since for fixedn, Hnm

meets
⋃

x∈Hn
Sx , any convergent sequence of members ofH would have to contain a con

vergent subsequence of the form{Hnf (n): n ∈ dom(f )} for some infinite partial function
f :ω → ω. But f = fα for someα, and by the construction everyHnf (n) for n ∈ dom(f )

meetsSy(α), contradiction. �
With the help of CH, we can make the previous exampleα1.

Example 5. (CH) There is a boundedly-FUfin α1-space which is not FUfin.

Proof. To make the previous exampleα1, we will need to list in typec the candidates fo
countable collections of convergent sequences, and at each stage either destroy the
one of the sequences is convergent, or find a set almost containing every one of th
is convergent at that stage and that remains convergent throughout the construction
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We will need to be more careful about how we choose the sequencesSy which in the
previous example destroyed the FUfin property, so as not to renege on promises that ce
sequences are to remain convergent. To help us do this, we make theHnm’s evenly spaced
in [0,1]. Then it is an easy exercise to verify the following:

Fact. Supposeg is an infinite partial function fromω to ω, Anm ⊂ Hnm, ε > 0, and
|Ang(n)|/|Hng(n)| � ε for all n ∈ dom(g). Then the set{

y ∈ [0,1]: ∃ang(n) ∈ Ang(n) with ang(n) → y
}

has Lebesgue measure at leastε.

Call a subsetA of Q small if

lim
n∈dom(g)

|A ∩ Hng(n)|
|Hng(n)| = 0

for any infinite partial functiong :ω → ω. We are going to make sure all convergent
quences are small.

Let �Aα , α < ω1, index all sequences(A(n))n∈ω of infinite subsets ofQ. Recall thatSx

for x ∈ ⋃
n∈ω Hn is already defined, as in Example 4, in the process of defining theHnm’s.

So let us supposeα < ω1 and we have constructedy(β), Sy(β), andA′
β for β < α satisfying

the following conditions, whereUβ is the filter generated by complements of element
{Sx : x ∈ {y(δ): δ < β} ∪ ⋃

n∈ω Hn}.

(a) {y(β): β < α} ⊂ [0,1] \ ⋃
n∈ω Hn;

(b) Sy(β) is a sequence of rationals converging toy(β) (in [0,1]);
(c) If Aβ(n) is not small for somen ∈ ω, andk is the least suchn, then|Sy(β) ∩Aβ(k)| = ω

andA′
β = ∅;

(d) If Aβ(n) is small andUβ -convergent for everyn ∈ ω, thenSy(β) = ∅, A′
β is small, and

A′
β

∗ ⊃ Aβ(n) for everyn ∈ ω;
(e) A′

γ is Uβ -convergent for everyγ � β + 1.

We first check that the space is as desired, assuming the construction can be car
satisfying the above conditions. ThatX is boundedly-FUfin, and thatH = {Hnm: n,m ∈
ω} is a π -net is exactly as in Example 4. Let us see thatX is not FUfin. If there were
some infinite convergent subsequence fromH, there would be an infinite partial functio
g :ω → ω such that the setA = ⋃

n∈dom(g) Hng(n) is convergent. Note thatA is not small.

For someα, �Aα = (A,A, . . .), but thenSy(α) meetsA in an infinite set, contradiction. Th
same argument shows that only small sets are convergent, whence conditions (d)
ensure thatX is α1.

Let us now see how to carry out the induction at stepα. We are given�Aα = (Aα(n))n∈ω.
If someAα(n) is notUα-convergent, we need not do anything. So suppose these se
alwaysUα-convergent. Note that this implies that for any fixedn andm, Aα(m) meets
Hni for at most finitely manyi. It is then not difficult to check that in case allAα(n)’s are
small andUα-convergent, then there is someA′

α that is also small andUα-convergent, and
almost contains everyAα(n). This gives us condition (d), and part of (e). If not allAα(n)’s
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are small, letk be the least such thatAα(k) is not small. Then there is a partial functio
g :ω → ω andε > 0 such that|Aα(k)∩Hng(n)|/|Hng(n)| � ε for all n ∈ dom(g). As above,
there is a setBα which is small andUα-convergent, and which almost containsA′

β for every
β < α. SinceBα is small, we have that|(Aα(k) \ Bα) ∩ Hng(n)|/|Hng(n)| � ε/2 for all
sufficiently largen ∈ dom(g). By the Fact above, we can find a pointy(α) /∈ {y(β): β <

α} ∪ ⋃
n∈ω Hn, and a sequenceSy(α) = {qα(j): j ∈ dom(g)} of rationals converging to

y(α) with qα(n) ∈ (Aα(k) \ Bα) ∩ Hng(n) for almost alln ∈ dom(g). This ensures th
remaining conditions. �
3. Known examples

We consider three related constructions that produce consistent examples ofin
spaces.

Example 1. For F ⊆ 2ω, let τF be the topology on 2<ω ∪ {∞} generated by taking as
subbase sets of the form

T1. {s}, for s ∈ 2<ω and
T2. Uf for f ∈ F where

Uf = {∞} ∪ (
2<ω \ {f |n: n ∈ ω}).

Let XF denote this space. For a finite setG ⊆ F let VG = ⋂{Uf : f ∈ G}. Such sets form
a local base at the point∞.

It is known thatXF is always Fréchet–Urysohn that and that it is first-countab
and only if F is countable. This example was considered by Nyikos in [14]. Altho
the notion of a FUfin space was not explicitly formulated, Nyikos essentially proved
following (see also [16]):

Theorem 6. F is aγ -set if and only ifXF is FUfin.

Notice that the spaceXF is of the type constructed in the previous section. HenceXF

is always boundedly-FUfin. Thus, takingF such thatF is not aγ -set, gives another con
struction of a boundedly-FUfin not FUfin space (in ZFC).

Example 2. For F ⊆ ωω, let σF denote the topology on{∞} ∪ ω<ω generated by taking
as a subbase sets of the form

S1. {s} for s ∈ ω<ω and
S2. {∞} ∪ (ω<ω \ ωn) for n ∈ ω and
S3. setsUf for f ∈ F where

Uf = {∞} ∪ (
ω<ω \ {f |n: n ∈ ω}).

Let YF denote this space. For a finite setG ⊆ F let VG = ⋂{Uf : f ∈ G}. Such sets
form a local base at the point∞. Note thatYF is first-countable if and only ifF is un-
countable. As withXF , YF is always boundedly-FUfin.
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Let Ω ′ denote the family of openω-coversU of F with the property that eachu ∈ U is
the complement of a finite union of basic open subsets ofωω. Let us say thatF is aweak
γ -setif every cover fromΩ ′ has aΓ -subcover.

Theorem 7. YF is FUfin if and only ifF is a weakγ -set.

Proof. Fix a weakγ -setF ⊆ ωω. To prove thatYF is FUfin, fix P ⊆ [ω<ω]<ℵ0 a π -net-
work at ∞. Let un = {x ∈ F : t �⊆ x for all t ∈ pn}. Eachun is open inωω and is the
complement of a finite union of basic open sets. Moreover, sinceP is aπ -network at∞
in YF , U = {un: n ∈ ω} is anω-cover ofF . HenceU is in Ω ′. By assumption, we may fi
{un: n ∈ A} be aγ -subcover.

Claim 1. {pn: n ∈ A} converges to∞.

Proof. Fix G ∈ [F ]<ℵ0. SoVG is a basic open neighborhood of∞. There is ak ∈ ω such
thatG ⊆ un for all n ∈ A \ k. But this means that for eachx ∈ G and eachn ∈ A \ k, no
restriction ofx is in pn. By definition ofVG this meanspn ⊆ VG for everyn ∈ A \ k as
required. �

Conversely, suppose thatYF is FUfin. Fix U ∈ Ω ′ of F . Thus, for eachu ∈ U , there is
a finite setpu ⊆ ω<ω such thatu is the complement of the clopen set

⋃{[s]: s ∈ pu}. Let
P = {pu: u ∈ U}.

Claim 2. P is aπ -network at∞.

Proof. Fix VG basic open. Fixu ∈ U such thatG ⊆ u. Thuspu ⊆ VG. This proves the
claim. �

SinceYF is FUfin, we may fixQ ⊆ P such thatQ converges to∞. LetQ = {pu: u ∈ V }
for someV ⊆ U . We claim thatV is a γ -cover ofF . To see this, fixx ∈ F . SinceQ

converges to∞, pu ⊆ Vx for all but finitely manyu ∈ V . Therefore,x ∈ u for all but
finitely manyu ∈ V . �
Example 3. ForF ⊆ ωω, let γF be the topology on{∞} ∪ (ω × ω) generated by taking a
a subbase sets of the form

G1. {(n,m)} for n,m ∈ ω and
G2. {∞} ∪ (ω × ω) \ (n × ω} and
G3. setsUf for f ∈ F where

Uf = {∞} ∪ (
ω × ω \ {(

n,f (n)
)
: n ∈ ω

})
.

Let ZF denote this topological space.
In [13], P. Nyikos proved that ifb = p then there is an uncountableF ⊆ ωω such that

ZF is FUfin (see also [16]).
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Relation among the spaces XF , YF and ZF . We conjecture that the following are equi
alent:

(1) There is aF ⊆ 2ω such thatXF is FUfin.
(2) There is aF ⊆ ωω such thatYF is FUfin.
(3) There is aF ⊆ ωω such thatZF is FUfin.

However, we are only able to show that (1) implies (2) and that in significant case
spacesYF andZG may be homeomorphic.

Theorem 8. If F ⊆ 2ω is such thatXF is a FUfin space, thenYF is a FUfin space.

Note that the statement of the theorem makes sense since 2ω ⊆ ωω.

Proof. The theorem easily follows from the characterizations given by Theorems 6 a
Alternately, we have the following direct proof:

Suppose thatF ⊆ 2ω is such thatXF is FUfin. Let D = ωω \ 2ω. Let D ∪ {∗} be the
space where eachs ∈ D is isolated and the family of sets of the form

Un = {∗} ∪ (D ∩ ωω\n)
form a local base at{∗}. ThenD is first-countable andYF is homeomorphic to the spac
obtained by identifying the points∗ and∞ in the direct sum ofD andXF . By Corollary 21
from the last section below, it follows thatYF is FUfin. �

Hence we may conclude that (1) implies (2).
Next we turn our attention to the spacesYF and ZF . As mentioned above, Nyiko

proved thatb = p implies that there is an uncountableF such thatZF is FUfin. Let us
say that a familyF = {fα: α < κ} is an unbounded scaleif it is an unbounded family in
ωω with respect to the preorder<∗ such that eachfα is increasing andfα <∗ fβ for each
α < β < κ . Indeed, Nyikos proved that ifF = {fα: α < b} is an unbounded scale and
b = p, thenZF is FUfin. We prove the following:

Theorem 9. There are unbounded scalesG = {gα: α < b} andF = {fα: α < b} such that
YF is homeomorphic toZG.

Proof. Fix H :ω<ω :→ ω × ω a bijection such that

(a) H mapsωn+1 onto{n} × ω.

We claim that there is an unbounded scale{gα: α < b} ⊆ ωω, such that iffα :ω → ω is
such thatfα(n) is the uniquek such thatH(gα|(n + 1)) = (n, k), then{fα: α < b} is an
unbounded scale. Indeed, the family{gα: α < b} is easily constructed by recursion sin
for anys ∈ ωn, the set{

H(t): t ∈ ωn+1 andt |n = s
}

is unbounded in{n} × ω.
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Notice that for eachα < b,

(b) H maps the set{g|n: n > 0} onto the set{(n, gα(n): n ∈ ω}.

Let H ∗ :YG → ZF be the extension ofH by definingH ∗(∞Y ) = ∞Z . Then properties (a
and (b) easily imply thatH ∗ is a homeomorphism.�

By the above results, we have the following corollary:

Corollary 10. b = p implies that there is a weakγ -set inωω.

The relationship betweenγ -sets and weakγ -sets is not known. Perhapsb = p implies
the existence of aγ -set. Also we do not know whether there are weakγ -sets in ZFC:

Question 4. Are there weakγ -sets in ZFC?

4. Boundedly-FUfin and the αi -properties

FUfin spaces areα2 (see [16]). Also, there is a consistent example of a count
Fréchet–Urysohn topological group that is notα3 [17]. Thus, consistently, it is not th
case that every Fréchet–Urysohn topological group is FUfin.

Question 5. Is there a ZFC example of a Fréchet–Urysohn topological group that i
FUfin?

It is easy to see that any space of character less thanb is α1, and any space of charact
less thanp is FUfin. The exampleXF of the previous section is boundedly-FUfin, and can
always chosen to be not FUfin and of characterp. However, we do not know the minimum
character of a Fréchet–Uryshon space that is not boundedly FUfin. So it is natural to ask:

Question 6. Is every Fréchet–Urysohn space of character< b boundedly-FUfin?

In this section we prove that FU2 spaces areα4 and construct consistent examples
show that there are no other possible implications in ZFC. In particular, from CH we
struct a countableα1 Fréchet–Urysohn space that is not FU2, and a boundedly-FUfin space
that is notα3. One other possible implication to consider is whether FUfin impliesα1. In
[4] it is proven to be consistent with ZFC that allα1.5 spaces are first-countable. Sin
b = p = ω1 in the model constructed, it follows that there is in this model a FUfin space
that is notα1. On the other hand, in [3], Dow showed that allα2 spaces areα1 in the Laver
model. So all FUfin spaces areα1 in the Laver model. However, as mentioned earlier,
do not know whether there is a countable FUfin space that is not first-countable in the Lav
model.

We start by showing that there are FUfin spaces which are notα1.5 in any model of CH
(again,p = c suffices).
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Theorem 11. (CH) There is aFUfin space which is notα1.5.

Proof. Let X = (ω × ω) ∪ {∞}. Points ofω × ω will be isolated. We intend to make th
sets{n} × ω, n ∈ ω, the collection of covergent sequences which witnesses failure ofα1.5.
We define the neighborhood filter at∞ by defining a collectionI which generates th
co-ideal.

Start by puttingω × {n} in I for eachn ∈ ω. Let {Pα: α < ω1} and {fα: α < ω1}
list all colections of finite subsets ofω × ω and all infinite partial functions fromω to ω,
respectively.

Let u be any ultrafilter onω. Call a subsetA of ω × ω small if its projectionπ2(A) on
the second coordinate is not inu.

Suppose for allβ < α, whereα < ω1, we have definedFβn ∈ Pβ , and infinite partial
functionsgβ satisfying the following conditions:

(i) Let Tβ be the topology generated by all subsets ofω × ω and complements of sets
{gγ : γ < β} ∪ {ω × {n}: n ∈ ω}. If Pβ is aπ -net with respect toTβ , thenFβn ∈ Pβ is
such that

⋃
n∈ω Fβn is small and converges to∞ in (X,Tβ);

(ii) If γ � β, thengβ ∩ (
⋃

n∈ω Fγn) is finite.
(iii) dom(gβ) = dom(fβ) andgβ(n) � fβ(n) for all n ∈ dom(gβ).

First let us note that if we carry out the induction as above, thenX will be as desired
The neighborhood filter at∞ is by definition generated by complements of member
the setI = {gα: α < ω1} ∪ {ω × {n}: n ∈ ω}. Then condition (iii) easily guarantees thatX

will not be α1.5. Also, if P is anyπ -net at∞, condition (i) guarantees that we will hav
chosen a subsequence ofP at some stage which converged to∞ in the topology so far
while condition (ii) guarantees that it remains convergent in the end. SoX is FUfin.

Now we check that the induction can be carried out. At stepα, we are givenPα . If Pα is
aπ -net with respect toTα , since this topology is first-countable we can findFαn ∈ Pα such
that{Fαn}n∈ω converges to∞ in Tα . Since eachω × {n} ∈ I, by passing to a subsequen
if necessary, we may assume that{π2(Fαn): n ∈ ω} is pairwise-disjoint. Now by dividing
the sequence into two pieces and choosing the small piece, we may assume that

⋃
n∈ω Fαn

is small. So we have (i). Now letSn, n ∈ ω, list {⋃n∈ω Fγn: γ � α} and let{dn: n ∈ ω}
list dom(fα). Since eachSn is small, we can findrn ∈ (ω \ fα(dn)) \ ⋃

i<n π2(Si). Let
gα(dn) = rn; thengα is as required. �
Theorem 12. If X is FU2, thenX is α4.

Proof. Fix {τn: n ∈ ω} a sequence of convergent sequences inX. Without loss of gener
ality, ω ⊆ X and the range of eachτn is contained inω and eachτn converges to a poin
∞ ∈ X. Let τn = (kn(i): i ∈ ω). Let

Fi = {{
k0(i), ki(j)

}
: j < ω

}
and letF = ⋃{Fi : i ∈ ω}. It is easy to see thatF is aπ -network at∞. So, by FU2, there
are elements

xn = {
k0(in), kin(jn)

} ∈ F
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such that every open setU of ∞ contains all but finitely many of thexn. Clearly,{in: n ∈ ω}
must be infinite, and the sequence(kin(jn): n ∈ ω) must converge to∞. ThusX is α4. �
Example 13. CH implies the existence of a boundedly-FUfin space that is notα3.

Proof. The underlying set isω×ω∪{∞}. Points ofω×ω are declared to be clopen and t
neighborhood base at∞ will be constructed recursively. The topology will be construc
so that each column{n} × ω is a convergent sequence, but there is no convergent seq
hitting infinitely many columns in an infinite set. I.e., the space will not beα3.

Using CH let(Sα: α < ω1) be an enumeration of all sets of the form
⋃{{n} × An: n ∈ X

}
,

whereX is infinite and eachAn is infinite.
Let {Fα: α < ω1) enumerate the collection{F : ∃nF ⊆ [ω × ω]n}.
Recursively, we define sets{Bα: α < ω1} and{Gα: α < ω1} such that

(a) Bα ⊆ ω × ω is a partial function with infinite domain.
(b) Gα ⊆ Fα .

We letUα be the filter onω × ω generated by the family of sets

{ω × ω \ Bβ : β < α} ∪ {{x}: x ∈ ω × ω
}
.

We also require our sets to satisfy the following inductive hypotheses:
For eachβ < α

(c) Bβ ∩ Sβ is infinite.
(d) Gβ = ∅ in the case thatFβ is not aπ -net with respect to the filterUβ

(e) If Gβ �= ∅, thenGβ converges with respect to the filterUα .

In order to preserve (e) in the construction we will need the following further indu
hypothesis:

(f) If Gβ �= ∅ then there is ak < ω such thatf ∩ {n}×ω �= ∅ → g ∩ {n}×ω = ∅ for each
f �= g in Gβ and eachn > k.

Assume thatα < ω1 is a limit and that we have fixed the setsBβ andGβ for β < α such
that for eachα′ < α, the inductive hypotheses (a)-(f) holds atα′. It is easily follows that it
holds also atα. To constructBα andGα considerSα andFα . Let gβ(n) = max((

⋃
Gβ) ∩

{n} × ω)). By (f) it follows that gβ is a partial function onω \ kβ . If we let Bα ⊆ Sα

be any partial function which dominatesgβ for all β < α, then it will follow that each
Gβ still converges with respect to the filterUα+1. To defineGα , first note that the filte
Uα+1 is countably generated. So, ifFα is a π -net, then it is easy to extract a converg
sequence.
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To extract a convergent sequence satisfying (f) we need to prove the following lem

Lemma 14. Suppose that we have anyT1 first-countable topology onω × ω ∪ {∞} (with
∞ the only nonisolated point). Suppose thatF ⊆ [ω × ω]n is anyπ -net at∞. Then there
is a k and a convergent sequenceG ⊆ F such that for allm > k and all f �= g from G,
f ∩ {m} × ω �= ∅ → g ∩ {m} × ω = ∅.

Proof. By induction onn. For n = 1, since the space is Fréchet–Uryshon, the family
singletonsF has a subset which converges to∞. EitherF intersects a column{m} × ω, in
an infinite setF ′ (in which case we can takeF ′ and letk = m) or F has finite intersection
with each column. In the later case we can thinF out toF ′ which meets each column in
most 1 point.

Assume the Lemma holds forn � 1 and suppose thatF ⊆ [ω × ω]n+1 is aπ -net at∞.
Orderω × ω lexicographically.

Case 1: There is ak such thatF ′ = {x ∈ F : min(x) ∈ k ×ω} forms aπ -net. In this case
use first-countability to assume without loss of generality thatF ′ converges to∞. Then
apply the inductive hypothesis to{x \ {min(x)}: x ∈ F ′}.

Case 2: Not CASE 1. I.e., for everyk the set{x ∈ F : x ∩ k × ω = ∅} is a π -net. In
this case, it is easy to construct a subset ofF convergent to∞ with the required property
satisfied byk = 0. �

This completes the proof of the lemma and completes the recursive constructio
U be the neighborhood filter at∞ generated by

⋃
α Uα . Clearly the space is notα3 since

no Sα is a convergent sequence (X \ Bα is open and misses infinitely many points ofSα).
Also, for anyn and anyπ -netF ⊆ [ω × ω]n, there is aβ such thatF = Fβ . Clearly,F is
also aπ -net with respect toUβ . So,Gβ is not empty and converges to∞ with respect to
all Uα for α > β. Hence, it converges with respect toU . �
Example 15. (CH) There is a countable Fréchet–Urysohnα1-space which is not FU2.

Proof. Let X = (ω × 2) ∪ {∞}. Points ofω × 2 are declared to be isolated. The base
the point∞ will be the filter generated by complements of the sets inI = {I (α, e): α <

ω1, e < 2}, whereI (α, e) is a subset ofω × {e}. We will define these sets by indu
tion. Also, for α < ω1, we let Uα be the filter generated by complements of the set
{I (β, e): β < α, e < 2}. For A ⊂ X, let π(A) = {n ∈ ω: ∃e < 2((n, e) ∈ A}. Let p be
anyp-point in βω \ ω; we will make sure eachπ(I (α, e)) is not in p. For convenience
we call a subsetA of X \ {∞} p-small if π(A) /∈ p. Since it may be of some added i
terest, instead of only makingX Fréchet, we will make each subspace(ω × {e}) ∪ {∞}
FUfin. Let W0 and W1 be the even and odd countable ordinals, respectively. LetYα ,
α ∈ W0, and �Aα , α ∈ W1, index, respectively, all infinite subsets of[X]<ω and all se-
quences(Aα(n))n∈ω of infinite p-small subsets ofX. One final bit of notation: forA ⊂ X,
we letA⊥ = {(n, e): (n,1− e) ∈ A}.

Supposeα < ω1, and for allβ < α we have constructed setsZβ , β ∈ W0, Bβ , β ∈ W1,
andI (β, e), e < 2, satisfying:
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(a) If β ∈ W0, Yβ ⊂ [ω ×{e}]<ω, andYβ is aπ -net at∞ with respect toUβ , thenZβ is an
infinite subset ofYβ whose union isp-small and converges to∞ with respect toUβ ;
furthermore,I (β,1− e) = (

⋃
Zβ)⊥;

(b) If Yβ consists of singletons, satisfies the conditions of (a), and∪Yβ is not p-small,
thenI (β, e) is the union of an infinitep-small subset ofYβ , disjoint fromZβ , such
thatI (β, e)⊥ is Uβ -convergent;

(c) If β ∈ W1, ande < 2 is such that, for eachn, Aβ(n) is aUβ -convergent subsequen
of ω×{e}, thenBβ is p-small,Uβ -convergent, andBβ

∗ ⊃ Aβ(n) for everyn; further-
more,I (β,1− e) = B⊥

β .

If a setZα,Bα , or I (α, e) does not need to be defined because the hypotheses
relevant condition (a), (b), or (c) are not satisfied, then simply define the set to b
empty set.

A key feature that is easily noted from the induction hypotheses is that for anyα <

ω1 and e < 2, I (α, e)⊥ is convergent w.r.t.Uα . Let us suppose we have completed
inductive construction satisfying these conditions, and check that the spaceX is as desired

We first show that each subspace(ω × {e}) ∪ {∞} is FUfin, which impliesX is Fréchet.
SupposeY is aπ -net at∞ consisting of finite subsets ofω × {e}. ThenY = Yα for some
α, and by (a) above,Zα is a subset ofYα whose union is convergent inUα . We need
to see that this convergence is not destroyed at some later stage. Supposeβ > α and
I (β, e) ∩ (

⋃
Zα) is infinite. Then so isI (β, e)⊥ ∩ (

⋃
Zα)⊥ = I (β, e)⊥ ∩ I (α,1 − e),

contradictingI (β, e)⊥ convergent w.r.t.Uβ . It easily follows from the inductive conditio
(b) that all sequences inX which converge to∞ arep-small. Thus in the listing of the
�A’s, we only needed to consider, as we did, those�A’s in which the termsA(n) (i.e., the po-
tential convergent sequences) werep-small. With this observation,α1 follows easily from
the inductive condition (c). Preservation of convergence works the same as in the pr
paragraph.

Finally, let us check thatX is not FU2. Consider the collection

F = {{
(n,0), (n,1)

}
: n ∈ ω

}
.

ThatF is aπ -net follows from the fact that all of theI (α, e)’s arep-small.
Now supposeA is an infinite subset ofα such that{{(n,0), (n,1)}: n ∈ A} = A × 2 is

convergent. Then{{n}: n ∈ A} = Yα for someα, and isUα-convergent, soZα is an infinite
subset ofYα . But thenI (α,1− e) = Z⊥

α ⊂ A × {1− e}, contradicting thatA × {1− e} is
convergent.

Now let us check that the conditions (a)–(c) can be satisfied. Supposeα ∈ W0. Then we
are givenYα and we need to show that (a), and (b) too if relevant, may be satisfied.
choose an infinite subsetY ′

α of Yα that converges w.r.t.Uα ; this is possible sinceUα is
countably generated. Then some infinite subsequenceZα of Y ′

α will have p-small union;
thisZα will satisfy (a). If (b) needs to be satisfied as well, then since

⋃
Yα is notp-small,

while everyI (β,f ) for β < α andf < 2 is p-small, we can pass to a subsequenceY ′′
α of

Yα such that both
⋃

Y ′′
α and(

⋃
Y ′′

α )⊥ converge w.r.t.Uα . Then letZα andZ′
α be disjoint

infinite subsequences ofY ′′
α , and letI (α, e) = ⋃

Z′
α . Finally, supposeα ∈ W1 and the

hypotheses of (c) are satisfied. Recall that eachAα(n) is p-small. Sincep is a p-point,
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there is ap-small setB ′
α which almost contains everyAα(n). Since eachAα(n) is Uα-con-

vergent, andUα is countably generated, there exists aUα convergentB ′′
α which almost

contains eachAα(n). Then takeBα = B ′
α ∩ B ′′

α . �

5. An FUn not FUn+1 space from CH

Sipacheva [19] noted that a pointx in a spaceX is FUn at x iff Xn is Fréchet at
(x, x, . . . , x). This gives another way to see the result of the previous section that2
spaces areα4, sinceX × Y Fréchet is known to imply thatX andY areα4. It also follows
that a construction of K. Tamano [20] under Martin’s Axiom of a spaceX such thatXn is
Fréchet butXn+1 is not Fréchet is also a (consistent) example of a space that is FUn but
not FUn+1. In this section we give another construction, assuming CH (p = c would do), of
a space that is FUn but not FUn+1. Except for the Fréchet fan, which is FU1, i.e., Fréchet
but not FU2, there apparently are no known ZFC examples of this phenomenon.

Question 7. Is there a ZFC example of a FU2 not FU3 space?

Example 16. (CH) For everyn ∈ ω \ {0}, there is an FUn space which is not FUn+1.

Proof. For eachi < n + 1 let ωi = {mi : m ∈ ω} be the copy{i} × ω of ω and letX =⋃{ωi : i < n+1}. And letY = X∪{∞}. Points ofX will be isolated and the neighborhoo
filter at∞ will be constructed recursively.

For anyA ⊆ X, let π(A) = {m: ∃i < n + 1 mi ∈ A}. Enumerate the power set of[X]n
by {Tα: α < ω1}.

By recursion onα < ω1 we construct setsCα ⊆ X andSα ⊆ Tα . For α < ω1 we will
let Uα be the filter generated by{X \ Cβ : β < α}. For eachα < ω1 we require the sets t
satisfy the following inductive hypotheses:

(a) For allβ < α, Sβ �= ∅ implies thatSβ converges with respect toUα .
(b) There is(ki : i < n) (depending onα and not all necessarily distinct) such that ea

x ∈ Sα is of the form{x(i): i < n} wherex(i) ∈ ωki .
(c) For all i �= j eitherπ(x(i)) = π(x(j)) for all x ∈ Sα , or π(x(i)) �= π(x(j)) for all

x ∈ Sα .
(d) {π(x): x ∈ Sα} is pairwise disjoint family of sets. Moreover, for allx �= y from Sα ,

either maxπ(x) < minπ(y) or maxπ(y) < minπ(x).
(e) For eachi < n and for allβ < α, either{x(i): x ∈ Sα} is almost disjoint from

⋃
Sβ ,

or {x(i): x ∈ Sα} ⊆ {x(j): x ∈ Sβ} for somej < n.

Let I be the set ofi < n such that{x(i): x ∈ Sα} is almost disjoint from
⋃

Sβ for all
β < α. And letS′

β = {x(i): i ∈ I andx ∈ Sβ}. Then

(f) Cα is the largest subset ofX such thatCα ∩ S′
α = ∅ andπ(Cα) = π(S′

α).
(g) {π(Cβ): β < α} is an almost disjoint family.
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Suppose first thatα is a limit and{Sβ : β < α} and{Cβ : β < α} have been constructe
so that for allα′ < α the inductive hypotheses are satisfied atα′. It is easy to check tha
they are also satisfied atα.

It suffices to explain how to chooseSα and Cα preserving the inductive hypothes
at α + 1. ConsiderTα . If it is not a π -net with respect to neighborhood filterUα , then
let Sα = Cα = ∅. Otherwise, first fixS ⊆ Tα so thatS converges with respect toUα . For
eachx ∈ S, orderx lexicographically and letx = {x(0), . . . , x(n − 1)} be its increasing
enumeration. Let̄kx = (kx

0, . . . , kx
n−1) be such thatx(i) ∈ ωkx

i for eachi < n. Sincen(n+1)

is finite, by taking an infinite subset ofS we may assume that there is ak̄ = (ki : i < n)

such that̄kx = k̄ for all x ∈ S.
Thus, any subset ofS will satisfy inductive hypothesis (b). Sinceα is countable, it is

easy to see that we may findSα ⊆ S satisfying the inductive hypotheses (d) and (e) (
(e) it suffices to shrinkS countably many times and takeSα a pseudointersection of th
resulting sequence of subsets).

Inductive hypothesis (f) forces us to define

Cα = {
mj : j < n + 1 and∃i(mi ∈ S′

α)
} \ S′

α.

Notice that all the inductive hypotheses except (a) and (g) hold directly by constru
To verify that the other inductive hypotheses hold atα + 1 we need to prove the followin
lemmas:

Claim 1. Cα ∩ ⋃
Sα = ∅.

Claim 2. Cα ∩ ⋃
Sβ is finite for allβ < α.

Claim 3. π(Cα) ∩ π(Cβ) is finite for allβ < α.

Note that Claim 1 assures thatSα converges with respect toUα+1. And for eachβ < α,
Claim 2 assures thatSβ converges with respect toUα+1. Hence inductive hypothesis (
holds. Claim 3 assures that inductive hypothesis (g) holds.

Proof of Claim 1. Suppose thatml ∈ Cα ∩⋃
Sα for somem < ω andl < n+1.ml ∈ ⋃

Sα

means that there isx0 ∈ Sα and aj such thatx0(j) = ml = mkj . Also, by definition ofCα

there is ax1 ∈ Sα and ani �= j such thatx1(i) = mki ∈ S′
α (and moreover, sinceCα ∩ S′

α ,
ki �= kj ). By (d) it follows thatx0 = x1. So by (c) it follows thatπ(x(i)) = π(x(j)) for all
x ∈ Sα . Also, by definition ofS′

α , it follows that{x(i): x ∈ Sα} ⊆ S′
α , and hence{x(i): x ∈

Sα} is almost disjoint from eachSβ with β < α. On the other hand, sincex0(j) ∈ Cα and
x0(j) �∈ S′

α , there is aβ0 < α with{
x(j): x ∈ Sα

} ⊆ {
x(i′): x ∈ Sβ0

}
.

Assumeβ0 to be minimal with this property. By minimality, it follows that{x(i′): x ∈
Sβ0} ⊆ S′

β0
(otherwise,{x(i′): x ∈ Sβ0} would be a subset of a smallerSβ and in turn

so would{x(j): x ∈ Sα}, contradicting the minimality ofβ0). It follows that {x(j): x ∈
Sα} ⊆ S′

β0
. Thus, by definition ofCβ0 and sinceπ(x(i)) = π(x(j)) for eachx ∈ Sα , either

{x(i): x ∈ Sα} ⊆ Cβ0, contradicting thatSα converges with respect toUα , or {x(i): x ∈
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Sα} ⊆ S′
β0

, contradicting{x(i): x ∈ Sα} is almost disjoint from
⋃

Sβ . In either case we
reach a contradiction.�
Proof of Claim 2. Suppose not. Letβ0 be the minimalβ satisfyingCα ∩ ⋃

Sβ is infinite.
Thus there is ani andRβ0 ⊆ Sβ0 infinite such thatx(i) ∈ Cα for all x ∈ Rβ0. By minimality
of β0 we have that{x(i): x ∈ Sβ0} is almost disjoint from

⋃
Sβ for all β < β0. Therefore,{

x(i): x ∈ Sβ0

} ⊆ S′
β0

.

Let A = {π(x(i)): x ∈ Rβ0}. There is ak < n + 1 such that{mk: m ∈ A} = {x(i): x ∈
Rβ0} ⊆ Cα . By choice ofCα , there is aj such that{mj : m ∈ A} ⊆ ⋃

Sα and such tha
{mj : m ∈ A} is almost disjoint from all previous

⋃
Sβ in particular almost disjoint from⋃

Sβ0. However, since

{mk: m ∈ A} ⊆ {
x(i): x ∈ Sβ0

} ⊆ S′
β0

,

it follows by choice ofCβ0 that

{mj : m ∈ A} ⊆∗ Cβ0.

But this contradicts thatSα converges with respect toUα . �
Proof of Claim 3. Suppose not and takeβ0 minimal such thatπ(Cα) ∩ π(Cβ0) is infi-
nite. Let A ⊆ ω be infinite and leti and j be given such that{mi : m ∈ A} ⊆ Cβ and
{mj : m ∈ A} ⊆ Cα . By definition ofCβ0, for everyi′, if {mi′ : m ∈ A} is almost disjoint
from

⋃
Sβ0 then {mi′ : m ∈ A} ⊆ Cβ0. Also, by definition ofCα , there is aj ′ and akα

such that{mj ′
: m ∈ A} ⊆ {x(kα): x ∈ Sα}. And {x(kα): x ∈ Sα} is almost disjoint from all

previous
⋃

Sβ . So in particular it is almost disjoint from
⋃

Sβ0. Thus by the previous ob
servation it follows that{x(kα): x ∈ Sα} has infinite intersection withCβ0. This contradicts
thatSα converges with respect toUα . �

This completes the recursive construction. Moreover, it is clear from the constru
that the space is FUn. To complete the proof we need the following final claim:

Claim 4. {{mi : i < n + 1}: m < ω} is aπ -net with no convergent subsequence.

Proof. To see that it is aπ -net note that the neighborhood base at∞ is generated by
{X \ Cα: α < ω1} and the family ofπ(Cα)’s form an almost disjoint family (althoug
some of the sets may be empty). Being aπ -net is equivalent to saying thatω is not covered
by finitely many of the setsπ(Cα). So it suffices to verify that infinitely many of theCα ’s
are not empty. It can be easily arranged that the firstω many sets{Cm: m < ω} are all not
empty by arrangingTm = {{ki : i < n}: k ∈ Am} whereAm is some disjoint infinite family
of sets.

To see that it has no convergent subset, suppose thatA is infinite and let’s show tha
S = {{mi : i < n + 1}: m ∈ A} is not a convergent sequence. If it were, thenT = {{mi : i <

n}: m ∈ A} would also be a convergent sequence. And there is anα such thatT = Tα . In
this case,A is almost disjoint from all setsπ(Cβ) for β < α. So Sα was chosen at thi



G. Gruenhage, P.J. Szeptycki / Topology and its Applications 151 (2005) 238–259 255

n
n

tion,
oper-
ts.
es

-
f

.
g

t

hand,
tially

f

tly,
t

eva’s

y

finite
e

stage andSα = {{mi : i < n}: m ∈ B} for some infiniteB ⊆ A. It is easy to check that i
this caseCα = {mn: m ∈ B}. And thatS does not converge to∞ is witnessed by the ope
setX \ Cα . ThusX is not FUn+1. �

6. Games and products

In this section, we show that FUfin-spaces have an interesting game characteriza
analogous to a game characterization of a similar property called the “Moving Off Pr
ty”, or MOP, in [10], which is similar to FUfin but with finite sets replaced by compact se
Related to the game characterization of FUfin are characterizations involving sequenc
of π -nets, and there are applications concerning when the product of a FUfin-space and
another space is FUfin. The characterizations involving sequences ofπ -nets are also remi
niscent of a similar characterization ofγ -sets involving sequences ofω-covers instead o
just oneω-cover.

Let X be a space andx ∈ X. In [5], the following gameGO,P (X,x) was introduced
At the nth play,O chooses an open neighborhoodOn of x, andP responds by choosin
a pointxn ∈ On. O wins the game if{xn: n ∈ ω} converges tox. A space in whichO has
a winning strategy was called aW -space, and a space in whichP fails to have a winning
strategy was called aw-space. Clearly, first-countable spaces areW -spaces, and it turns ou
separableW -spaces must be first-countable. A prototypical non-first-countableW -space
is the one-point compactification of an uncountable discrete space. On the other
separable or even countablew-spaces need not be first-countable; in fact it was essen
shown by P.L. Sharma [18] thatw-spaces are the same as Fréchet–Urysohnα2-spaces.

Now suppose we modify the gameGO,P (X,x) by allowingP to choose a finite set o
points at each play instead of just one point (withO winning if the union ofP ’s sets is a
sequence converging tox); denote this game byGfin

O,P (X,x). It was noted in [5] that this

game is equivalent forO in the sense thatO has a winning strategy inGfin
O,P (X,x) iff O

has a winning strategy inGO,P (X,x). However, it is not equivalent, at least consisten
for playerP . As noted above,P has no winning strategy inGO,P (X,x) iff x is an Fréche
α2-point, while the next theorem shows thatP has no winning strategy inGfin

O,P (X,x) iff X

is FUfin atx. Incidentally, this gives another way of obtaining Reznichenko and Sipach
result that FUfin impliesα2, because ifP has no winning strategy inGfin

O,P (X,x), P has
none inGO,P (X,x) either.

Theorem 17. 1 LetX be a space andx ∈ X. The following are equivalent:

(i) X is FUfin at x;
(ii) For each sequence(Pn)n∈ω of π -nets atx consisting of finite sets, for infinitely man

n ∈ ω there areFn ∈ Pn such that{Fn: n ∈ ω} converges tox;

1 This result should be compared with Theorem 2.3 in [6], which has similar form with collections of
sets which areπ -nets atx replaced by collections of compact sets which areπ -nets at a point at infinity whos
neighborhoods are complements of compact subsets ofX.
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(iii) For each sequence(Pn)n∈ω of π -nets atx consisting of finite sets, for eachn ∈ ω

there areFn ∈ Pn such that{Fn: n ∈ ω} converges tox;
(iv) P has no winning strategy in the gameGfin

O,P (X,x).

Proof. That (iii) implies (ii) is obvious, and that (ii) implies (i) is easy: just apply (ii) w
Pn = P for eachn, whereP is someπ -net atx. Reznichenko and Sipcheva [16] show th
(i) implies (iii). So we have that (i)–(iii) are equivalent. Now suppose (iv) holds. LetPn,
n ∈ ω, be a sequence ofπ -nets atx consisting of finite sets. ThenP can chooseFn ∈ Pn

at hisnth play. Since this strategy can’t always win, there must be a sequence of sucFn’s
converging tox. This shows (iv) implies (iii).

It remains to prove (i)–(iii) implies (iv). Supposes is a strategy forP in Gfin
O,P (X,x);

we need to show thats can be defeated. LetS∅ be the set of all first moves ofP using the
strategys. Note thatS∅ is aπ -net atx. By (i), there is a sequenceF ∅

n , n ∈ ω, of elements
of S∅ converging tox. For eachm, letS〈m〉 be the set of all responses byP usings to O ’s
second move, after some first move byO whereP ’s response was the setF ∅

m. Then choose

{F 〈m〉
n : n ∈ ω} ⊂ S〈m〉 converging tox. In general, ifFσ

n has been defined for allσ ∈ ωk

andn ∈ ω, let Sσ
〈m〉 be the set of all responses byP usings to O ’s next move, where

O ’s previous moves led toP playingF ∅
σ(0),F

σ |1
σ(1),F

σ |2
σ(2), . . . ,F

σ |(k−1)

σ (k−1) ,F σ
m , and choose a

sequenceFσ
〈m〉
n , n ∈ ω, of elements ofSσ
〈m〉 converging tox. Noting that{Fσ

j : j ∈
ω} is a π -net for eachσ ∈ ω<ω, by (iii) there arej (σ ) ∈ ω such that{Fσ

j(σ ): σ ∈ ω<ω}
converges tox. Then we can findτ ∈ ωω such that{Fτ |n

j (τ |n): σ ∈ ω<ω} is a subsequence o

{Fσ
n(σ): n ∈ ω}; but {Fτ |n

j (τ |n): n ∈ ω} is the result of a play of the game withP usings. So
s is not a winning strategy forP . �

Nyikos noted that the Cantor tree space overF , which we denotedXF in Section 3, is
a w-space, i.e., Fréchetα2, if F is aλ′-set in the Cantor set (which means that for ev
countable subsetA of the Cantor set,A is Gδ in F ∪A). SinceXF is FUfin iff F is aγ -set,
takingF to be aλ′-set which is not aγ -set provides an example of a space in whichP has
no winning strategy inGO,P (X,x) but, by Theorem 17,P does have a winning strategy
Gfin

O,P (X,x). There areλ′sets in ZFC (see, e.g., [11]), so there are many models in w
there areλ′-sets which are notγ . However, A. Miller [12] has shown that in the standa
model of MAσ -centered+ c = ω2, there are noλ′-sets of cardinalityc = ω2, so, sincep = ω2
here, it follows that everyλ′-set in this model is also aγ -set. Hence the Cantor tree ty
spaces do not appear to give ZFC examples in which the games are inequivalent forP , and
indeed we do not know of any. In an equivalent form, this is the following question:

Question 8. Is there in ZFC a Fréchetα2-space which is not FUfin?2

The analogue of the equivalence of (i) and (ii), or (i) and (iii), in Theorem 17 forn
is false. Indeed, condition (ii) forπ -nets of singletons is equivalent to Fréchetα4, which is

2 In a sequel [8] to this paper, we show that a certain space obtained from a Hausdorff gap provides a
answer, in ZFC, to this question.



G. Gruenhage, P.J. Szeptycki / Topology and its Applications 151 (2005) 238–259 257

a
this

tion

m 20
and

sion
of

e

-
d

.
of the
stronger than FU1 = Fréchet, and (iii) for singletons is equivalent to Fréchetα2. However,
we do have the following:

Theorem 18. LetX be a space,x ∈ X.

(1) If k ∈ ω, andX is FUk+1, then for any sequencePn, n ∈ ω, of π -nets atx consisting
of k-element sets, for infinitely manyn ∈ ω there areFn ∈ Pn such that{Fn: n ∈ ω}
converges tox;

(2) X is boundedlyFUfin iff for any k and for any sequencePn, n ∈ ω, of π -nets atx
consisting ofk-element sets, for infinitely manyn ∈ ω there areFn ∈ Pn such that
{Fn: n ∈ ω} converges tox.

Proof. (1) SupposeX is FUk+1, andPn, n ∈ ω, is a sequence ofπ -nets atx consisting
of k-element sets. Take any non-trivial sequencexn, n ∈ ω, converging tox. Consider
the collection{{xn} ∪ F : n ∈ ω andF ∈ Pn}. It is easy to check that this collection is
π -net consisting of sets of cardinality� k + 1. Since any convergent subsequence of
collection has only finitely many terms of the form{xn} ∪ F for fixedn, there is an infinite
subsetA of ω such that{{xn} ∪ Fn}n∈A is a convergent subsequence. Then the collec
{Fn: n ∈ A} is the desired convergent selection from infinitely many of thePn’s.

(2) The “if” part of (2) is easy, and the “only if” part is immediate from (1).�
Remark. Part (1) of the above theorem fork = 1 gives another proof that FU2 impliesα4.

We now turn to applications of the above results to products. The part of Theore
below about the FUfin property generalizes a corresponding result of Reznichenko
Sipacheva, who proved it in the casey has countable character inY or if Y is the one-point
compactification of a discrete space.

First, it will be helpful to have the following lemma which shows that a finite-set ver
of countably tight is preserved by products withW -spaces. For the standard version
countably tight, this was proved in [5]. (By “y is a W -point in Y ”, we mean “O has a
winning strategy inGO,P (Y, y)”.)

Lemma 19. LetX andY be spaces, and(x, y) ∈ X ×Y . Suppose thaty is aW -point inY ,
and that everyπ -net atx in X consisting of finite sets(resp.,� k-element sets for som
k ∈ ω) contains a countableπ -net atx. Then everyπ -net at(x, y) in X × Y consisting of
finite sets(resp.,� k-element sets) contains a countableπ -net at(x, y).

Proof. Let σ be a winning strategy forO at y in Y in the gameGfin
O,P (Y, y) (recall

that, for O, this game is equivalent toGO,P (Y, y)). That is,σ is a function which as
signs to each finite sequenceH0,H1, . . . ,Hn of finite subsets ofY an open neighborhoo
σ(H0,H1, . . . ,Hn) of y such that ifO playsσ(H0,H1, . . . , yn) wheneverP has played
H0,H1, . . . ,Hn, then{Hn: n ∈ ω} converges toy.

Consider an arbitraryπ -netF at (x, y) consisting of finite sets (or� k-element sets)
Let M be a countable elementary submodel (of some sufficiently large fragment
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universe) containing all relevant objects (X,Y,F , etc.). We claim thatM∩F is a countable
π -net at(x, y).

To see this, suppose(x, y) is in the open setU × V . Let

F(∅) = {
πX(F ): F ∈ F andπY (F ) ⊂ σ(∅)

}
.

ThenF(∅) is inM and is aπ -net atx, so there is, inM, a countable subsetC(∅) of F(∅)

which is aπ -net atx and is also inM. Hence there isF0 ∈ F ∩M such thatπX(F0) ⊂ U

andπY (F0) ⊂ σ(∅). By the same argument, ifFi ∈ F ∩ M have been defined fori < n,
we can findFn ∈ F ∩M such thatπX(Fn) ⊂ U andπY (Fn) ⊂ σ((πY (Fi))i<n). Then the
sequence(πY (Fn))n∈ω is the result of a play of the gameGfin

O,P (Y, y) with O usingσ ,
hence for somen we must haveπY (Fn) ⊂ V . ThenFn is contained inU × V and is a
member ofF ∩M. �
Theorem 20. SupposeX andY are spaces,x ∈ X, andy ∈ Y . If x is a (boundedly) FUfin

point inX andy is aW -point inY , then(x, y) is a (boundedly) FUfin point inX × Y .

Proof. We prove the boundedly FUfin case, the other being similar. SupposeF is a π -
net at (x, y) consisting ofk-element sets. By the previous lemma, we may assumF
is countable. Since countableW -spaces are first-countable, there is a decreasing n
borhood base{Un}n∈ω at y relative to the subspace{y} ∪ (

⋃{πY (F ): F ∈ F}) of Y . Let
Fn = {πX(F ): F ∈F andπY (F ) ⊂ Un}. ThenFn, n ∈ ω, is a sequence ofπ -nets atx con-
sisting of� k-element sets, so by Theorem 18, for infinitely manyn there areFn ∈ F with
πY (Fn) ⊂ Un such that theπX(Fn)’s converge tox. Then theFn’s converge to(x, y). �
Corollary 21. Suppose thatX is FUfin at the pointx, and thaty ∈ Y . If χ(y,Y ) = ℵ0, or
more generally ify is a W -point in Y , then the quotient spaceX ⊕ Y/{x, y} obtained by
taking the topological sum ofX andY and identifying the pointsx andy is FUfin at {x, y}.

Proof. This quotient space is homeomorphic to a subspace ofX ×Y , so the result follows
from Theorem 20. �
Remarks. It is consistent that Corollary 21 does not hold if one only assumes thaty is a
FUfin point in Y . Indeed, it follows from CH that there are twoγ setsX andY such that
X ⊕ Y is not aγ -set. Thus the corresponding FUfin spacesTX andTY do not satisfy the
conclusion of Corollary 21. In addition, the subspaces(ω×{0})∪{∞} and(ω×{1})∪{∞}
of Example 15 provides a consistent example where the conclusion fails badly: the qu
space obtained by identifying the two∞ points is not even FU2. So, some strengthenin
of the FUfin property is needed for these results. Since any space of character< p is FUfin

andα1, we are led to ask:

Question 9. Do Corollary 21 or Theorem 20 hold assuming onlyχ(y,Y ) < p?
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