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SUMMARY
Human pluripotent stem cells (hPSCs) constitute a promising resource for use in cell-based therapies and a valuable in vitro model

for studying early human development and disease. Despite significant advancements in the derivation of specific fates from hPSCs,

the generation of skeletal muscle remains challenging and is mostly dependent on transgene expression. Here, we describe a method

based on the use of a small-molecule GSK3b inhibitor to derive skeletal muscle from several hPSC lines. We show that early GSK3b

inhibition is sufficient to create the conditions necessary for highly effective derivation ofmuscle cells.Moreover, we developed a strategy

for stringent fluorescence-activated cell sorting-based purification of emerging PAX3+/PAX7+ muscle precursors that are able to dif-

ferentiate in postsort cultures into mature myocytes. This transgene-free, efficient protocol provides an essential tool for producing

myogenic cells for in vivo preclinical studies, in vitro screenings, and disease modeling.
INTRODUCTION

Pluripotent stem cells (PSCs) such as embryonic stem cells

(ESCs) and induced PSCs (iPSCs) provide an extraordinary

research tool. In vitro, these cells display extensive pro-

liferation and the ability to differentiate into derivatives

of all three germ layers. Such characteristics give these

cells a remarkable potential for use in cell-based therapies

as well as an in vitro model for early human development.

PSC differentiation protocols are currently available for a

vast number of cell types (Trounson, 2006); however, little

progress has been made regarding differentiation of PSCs

into derivatives of paraxial mesoderm, such as skeletal

muscle. The difficulty lies in our limited knowledge about

specific inductive signals and their timing of expression

required for myogenic induction of paraxial mesoderm.

The appropriate combination of markers for efficient

isolation of skeletal muscle precursors also remains to be

determined. As such, only a few studies have reported the

derivation of skeletal muscle cells from human PSCs

(hPSCs), and they mostly utilized an approach that relies

on forced transgene expression to induce myogenesis

(Darabi et al., 2012; Goudenege et al., 2012; Ryan et al.,

2012). Although a derivation protocol based on the use of

genetically modified PSCs can be successful, it does not

reflect normal development, does not provide clear infor-

mation about the identity of the cells generated, and,

most importantly, is not suitable for therapeutic purposes

or in vitro disease modeling.

We previously reported the generation of specialized,

multipotent mesenchymal precursors from hESCs and

their directed differentiation into skeletal muscle cells
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(Barberi et al., 2007). Although that report showed

the derivation of skeletal muscle cells from hESCs, the

percentage of mesenchymal cells with myogenic potential

showed substantial variability. Here, we sought to develop

a tightly controlled method to direct hPSCS through

defined developmental events leading to the derivation

of committed skeletal muscle precursors.

Following a simple two-step differentiation protocol, we

first induced paraxial mesoderm by treating hPSCs with

a WNT agonist, the small-molecule glycogen synthase

kinase-3 inhibitor (CHIR 99021) (Cohen and Goedert,

2004; Tan et al., 2013). In addition to paraxial mesoderm

induction, canonical WNTactivation acted as a dorsalizing

agent, promoting the generation of dorsal neuroepithelial

and neural crest cells (Chizhikov and Millen, 2004; Ikeya

et al., 1997; Menendez et al., 2011). These cells provide

the essential cues for patterning of the paraxial mesoderm

and activation of the myogenic program within our cul-

tures (Rios et al., 2011; Tajbakhsh and Buckingham,

2000). Subsequent expansion of the myogenic compart-

ment was achieved through the addition of fibroblast

growth factor 2 (FGF2) (Chakkalakal et al., 2012; Lagha

et al., 2008).

To isolate skeletal muscle cells generated from our sys-

tem, we set up a stringent cell-sorting strategy using the

muscle-specific nicotinic acetylcholine receptor (AChR)

(Karlin, 2002), the chemokine receptor CXCR4 (Bucking-

ham, 2006; Vasyutina et al., 2005), and the hepatocyte

growth factor receptor C-MET/HGF (Bladt et al., 1995;

Dietrich et al., 1999). Due to their functional roles in

hypaxial migratory skeletal muscle, CXCR4 and C-MET

allow the isolation of PAX3+ PAX7+ skeletal muscle
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Figure 1. Derivation of Skeletal Muscle from hPSCs
(A) Schematic diagram summarizing the treatment protocol for inducing myogenic differentiation from hPSCs.
(B and C) Immunocytochemical detection of (B) representative fields of PAX3+ and PAX7+ skeletal muscle precursors and
(C) MF20+/Myogenin+ mature skeletal myocytes in unsorted cultures at day 35 of hESC (H9) differentiation, under treatment conditions.
Scale bar = 50 mm.
(D) Quantitative analysis of PAX3+/7+ nuclei and MF20+ cells at day 35 of hPSC differentiation (H9, HES3, MEL1, and DPL-iPS; n = 4) in
unsorted cultures.
Error bars represent the SEM of three or more individual experiments. See also Figure S1.
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precursors at high purity (Relaix et al., 2005). Our protocol

has been successfully tested on several PSC lines and

provides an invaluable standardized tool for the directed

derivation of transgene-free myogenic cells for in vivo

preclinical studies and for in vitro functional assays and

drug screening.
RESULTS

Derivation of Skeletal Muscle Cells from hPSCs

We initiated differentiation of hPSCs at medium to large

colony size (diameter 600 mm) and low colony density in

serum-free medium consisting of Dulbecco’s modified

Eagle’s medium F-12 (DMEM-F12) supplemented with

insulin, transferrin, and selenium (ITS). Paraxial mesoderm

specification of hPSCs was achieved through activation

of WNT/beta-catenin signaling mediated by the small-

molecule GSK-3b inhibitor CHIR 99021 (Cohen and Goe-

dert, 2004; Tan et al., 2013). GSK-3b is known to target

a number of substrates for phosphorylation, one of

which is beta-catenin, an integral transducer within the

canonical WNT signaling pathway. Therefore, inhibition

of GSK-3b activity prevents the targeted phosphorylation
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of beta-catenin, rendering it resistant to degradation and

thus leading to activation of T cell factor (TCF)-mediated

transcription of downstream target genes (Wu and Pan,

2010). In addition to paraxial mesoderm, WNT signaling

is a potent inducer of dorsal cell fates such as roof

plate, neural crest, and nonneural ectoderm, marked

by LMX1A, SOX10, and AP2a, respectively (Gammill and

Bronner-Fraser, 2003; Millonig et al., 2000; Figure S1

available online).

hPSCs were first exposed to 3 mM CHIR for 4 days and

then the small molecule was replaced with 20 ng/ml of

FGF2 for an additional 2 weeks (Figure 1A). To optimize

the differentiation of hPSCs toward a myogenic pheno-

type, we tested different CHIR concentrations and found

high toxicity at >3 mM and inefficient induction at doses

of <3 mM (data not shown). The FGF signaling pathway

has been identified to regulate several developmental pro-

cesses ofmuscle formation. During somitogenesis, segmen-

tation determination is mediated by an FGF signaling

gradient within the presomitic mesoderm (Aulehla and

Pourquié, 2010). Significantly, FGF molecules such as

FGF2 have been described as potent inducers of mitogenic

activity in both embryonic skeletal muscle precursors and

adult satellite cells (Chakkalakal et al., 2012; Lagha et al.,
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Figure 2. Detection of Gene Transcripts Relevant to the Acquisition of a Myogenic Cell Fate
qPCR analysis showing transcript levels of key muscle development genes from hPSCs (DPL-iPS, H9, MEL1, and HES3; n = 4) differentiating
under treatment conditions versus medium alone. Cells were collected and analyzed at 3-day intervals between days 0 and 30 of hPSC
differentiation. The relative expression level of each gene is calibrated to its expression at day 0 (represented on the y axis). Cycle
threshold (Ct) values for each gene are normalized to the Ct values of the reference gene, GAPDH. Values represent mean ± SEM of four
independent experiments. Red dots mark early peaks of PAX3 and PAX7 expression corresponding to the timing of development of early
dorsal neural tissues (roof plate/neural crest). Error bars represent the SEM of three or more individual experiments.

Stem Cell Reports
GSK-3b Inhibition Promotes Skeletal Muscle from hPSC
2008). As such, our primary reason for adding FGF2 was to

drive expansion of the muscle progenitor compartment

within our culture system.

Following withdrawal of FGF2 and a further 17 days of

culture in ITS medium alone, areas with skeletal muscle

cells were scored in treated culture dishes prior to FACS

analysis, and identified by immunocytochemistry as

PAX3+ and PAX7+ precursors (Figure 1B; Relaix et al.,

2005) and bipolar skeletal myocytes positive for myogenin

and sarcomeric myosin (MF20) (Figure 1C). Quantitative

analysis revealed the percentage of total PAX3+/PAX7+

and MF20+ muscle cells within the cell culture to be

>18% and >8%, respectively, demonstrating the robustness

of our treatment strategy.

To further profile the efficacy of our treatment, we

analyzed the expression of key regulatory genes associated

with the acquisition of a myogenic cell fate by quantitative

PCR (qPCR). Data were acquired during a fixed 3-day

interval starting at day 0 and ending at day 30 of in vitro
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differentiation in CHIR+FGF2 compared with untreated

hPSCs (Figure 2). Expression profiling of differentiating

hPSCs over the course of treatment showed the guided

progression of hPSCs through key myogenic milestones.

Inhibition of GSK3b resulted in a marked increase in the

expression of paraxial/presomitic mesoderm genes such

as TBX6, Mesogenin (MSGN1) (Wittler et al., 2007), and

MESP1 (Chan et al., 2013), with an early peak at day 3 of

differentiation. Subsequent PARAXIS (Burgess et al., 1996)

activation starting at day 9 of differentiation indicated

progression toward somitic mesoderm. Significantly,

expression of the muscle specification genes SIX1 and

SIX4 (Grifone et al., 2005), PAX3, PAX7, and the migratory

muscle progenitor marker LBX1 (Gross et al., 2000; Schäfer

and Braun, 1999) exhibited marked activation at day 21 of

differentiation under the treatment conditions. Expression

of the myogenic regulatory factors MYF5 and MYOD

indicated muscle commitment and progression of the

myogenic differentiation program (Rudnicki et al., 1993).
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Figure 3. FACS Strategy for the Isolation of Myogenic Cell Populations
Representative experiment in which hESCs (MEL1) that differentiated for 35 days under treatment conditions were sorted based on their
HNK, AChR, CXCR4, and C-MET surface marker expression. The gates in each dot plot designate the cell fraction analyzed for the prospective
steps; +/� is indicative of either positive or negative expression of each surface antigen. The myogenic cell populations collected
from sorting were as follows: (HNK-/AChR+), (HNK�/AChR�/CXCR4�/C-MET+), (HNK�/AChR�/CXCR4+/C-MET+), (HNK�/AChR�/
CXCR4+/C-MET�). Gate I: HNK� cells were selected to exclude HNK+ neural/neural crest component. Gate II: selection of HNK�/AChR�
cells for myogenic progenitor isolation at subsequent steps or direct isolation of HNK�/AChR+ mature myocytes. Gate III: selection of
CXCR4+/� cells. Gate IV: isolation of myogenic progenitor cell populations (HNK�/AChR�/CXCR4�/C-MET+ from gated CXCR4� cells, and
HNK�/AChR�/CXCR4+/C-MET+, and HNK�/AChR�/CXCR4+/C-MET�from gated CXCR4+ cells).
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In contrast, an insignificant activation of myogenic-

specifier genes occurred during differentiation of untreated

hPSCs.

Interestingly, PARAXIS exhibited a second peak of expres-

sion beginning at day 21, correlating with the activation

of SIX1, SIX4, PAX3, and PAX7. Although it is known to

regulate somite epithelization, Paraxis has also been shown

to be expressed in migratory hypaxial muscle progenitors

(Delfini and Duprez, 2000). Therefore, secondary activa-

tion of PARAXIS expression, in conjunction with expres-

sion of LBX1, suggests a bias toward hypaxial myogenesis

within our system.

FACS Isolation of Hypaxial Skeletal Muscle Precursors

The expression of the migratory skeletal muscle progeni-

tor marker LBX1 observed in CHIR-treated differentiating

hPSCs led us to purify this putative migratory muscle

compartment by using CXCR4 and C-MET surface

markers, which together are reported to define migratory

muscle precursors. Within the hypaxial domain of the

embryonic dermomyotome, C-MET expression is critical

for the delamination of PAX3+ LBX1+ migratory muscle

precursors (Bladt et al., 1995; Dietrich et al., 1999),

whereas the subsequent survival and distribution of pre-

cursors at the site of migration is CXCR4 dependent

(Buckingham, 2006; Vasyutina et al., 2005). However,

CXCR4 and C-MET may also be expressed in cells of

different origins, such as neural and neural crest cells,
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Therefore, to exclude these cell types, we used CD57/

HNK-1 as a negative selection marker (Morita et al.,

2008). Although CXCR4 can be used to define and isolate

definitive endoderm from hPSCs (Teo et al., 2012), the

CHIR treatment used in our protocol was not permissive

for the generation of endoderm cells, as confirmed by

the lack of specific endodermal markers in our cultures

(data not shown). Because of the observed activation of

myogenic specification genes beginning at day 21 of

hPSC differentiation (Figure 2), we isolated skeletal mus-

cle precursors by FACS at three time points (days 25, 30,

and 35). The following cell populations were isolated:

HNK�/AChR�/CXCR4�/C-MET� (all negative), HNK�/

AChR�/CXCR4+/C-MET� (CXCR4+/C-MET�), HNK�/

AChR�/CXCR4+/C-MET+ (CXCR4+/C-MET+), and

HNK�/AChR�/CXCR4�/C-MET+ (CXCR4�/C-MET+). A

detailed gating strategy for the FACS protocol is shown

in Figure 3.

Postsorting analysis revealed the presence of myogenic

cells only in the populations in which CXCR4 and/or C-

MET were present (CXCR4+/C-MET�, CXCR4+/C-MET+,

and CXCR4�/C-MET+; Figure 4). To quantify the level of

purity in these populations, we performed an immediate

postsort immunocytochemical analysis on cytospin

preparations. The cytocentrifugation technique spins

a cell suspension onto a defined area of a glass slide,

creating a monolayer of flattened cells and thus allowing
eports j Vol. 1 j 620–631 j December 17, 2013 j ª2013 The Authors 623



Figure 4. Characterization of CXCR4�/C-MET+ and CXCR4+/C-MET+ Sorted Populations
(A) Cytospin preparations of muscle progenitor cell populations CXCR4�/C-MET+ (top) and CXCR4+/C-MET+ (bottom) sorted at day 35 of
hESC (HES3) differentiation. Cells were cytospun on glass slides and analyzed by immunocytochemistry for myogenic stem cell markers
PAX3 (green) and PAX7 (red) immediately following sorting. Each dot represents one nucleus as confirmed by DAPI counterstaining.
(B) Immunostaining of replated muscle progenitors CXCR4�/C-MET+ (left) and CXCR4+/C-MET+ (right) (from hESCs [MEL1]) at days 3, 6,
and 9 of postsorting cultures shows progression toward a muscle terminal differentiation phenotype.
(C) RT-PCR analysis of skeletal muscle progenitor genes (PAX3, PAX7, and LBX1) and neural gene (SOX1) in all sorted populations
(from DPL-iPS) derived under treatment conditions. Myog, myogenin; MF20, sarcomeric myosin. Scale bars, 50 mm.
See also Figure S2.
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prominent nuclear presentation. Based on nuclear stain-

ing, only CXCR4�/C-MET+ and CXCR4+/C-MET+ cell

populations allowed the isolation of highly pure skeletal

muscle precursors. At day 35, the percentage of total cells

immunoreactive for the muscle stem cell marker PAX3

was 97% ± 0.5% in CXCR4�/C-MET+ and 98% ± 0.2% in

CXCR4+/C-MET+. The percentage of PAX7 was 84% ±

1.7% in CXCR4�/C-MET+ and 96% ± 2.8% in CXCR4+/
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C-MET+ (Figure 4A). Immunocytochemical analysis of

precursor populations sorted at earlier time points revealed

developmental progression of the myogenic program.

CXCR4�/C-MET+ and CXCR4+/C-MET+ cells sorted at

day 23 were characterized by expression of early myogenic

specifier genes SIX4 and PAX3 prior to PAX7 expression.

Subsequent acquisition of PAX7 expression, starting at

day 25, marked lineage progression (Figure S2). By day
Authors



Figure 5. Isolation of AChR+ Skeletal Myocytes
(A) Phase-contrast image (left) and immunocytochemical analysis for AChR expression (right) on hESC-derived (MEL1) skeletal myocytes
prior to FACS isolation.
(B) FACS profile of AChR+ cell population (from hESC-H9).
(C) RT-PCR analysis of mature skeletal muscle marker MYH2 in AChR� cells (Neg) and AChR+ cells (from HES3).
(D) Immunocytochemical analysis of hESC-derived AChR+ myocytes (H9) 24 hr postsort, expressing mature skeletal muscle proteins (MF20
and Myog).
(E) Phase-contrast image showing the morphology of AChR+ myocyte-derived myotubes (from H9) after prolonged cell culture (>20 days).
Scale bars, 50 mm.
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35, close to all CXCR4�/C-MET+ CXCR4+/C-MET+ cells

coexpressed PAX3 and PAX7 (Figure 4A). However, an over-

all lower expression of PAX7 was observed in CXCR4�/C-

MET+ cells compared with CXCR4+/C-MET+ cells. Given

the earlier activation of Pax3 (Horst et al., 2006) and

the expression of Cxcr4 in late-stage migratory precursors

(Vasyutina et al., 2005) during muscle development, we

speculate that CXCR4�/C-MET+ cells could represent a

more primitive progenitor population.

Postsorting cultures of CXCR4�/C-MET+ and CXCR4+/

C-MET+ cells isolated at day 35 of hPSC differentiation

confirmed the validity of the sorting strategy, with all

plated cells from both populations undergoing progressive

terminal muscle differentiation as shown by expression of

MYF5, MYOG, and MF20 (Figure 4B). After 3 days of cul-

ture, few cells retained expression of PAX7, whereas all

cells expressed MYF5, indicating muscle commitment. By

day 9 the majority of cells were in an advanced stage of

muscle differentiation.

Gene-expression analysis by RT-PCR confirmed the

immunocytochemical data, demonstrating the presence

of PAX3 and PAX7 mRNA transcripts together with LBX1

in both CXCR4�/C-MET+ and CXCR4+/C-MET+ sorted
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populations, and, importantly, their absence in all negative

cell populations (Figure 4C).

Although it was enriched in muscle precursors, the

CXCR4+/C-MET� cell population showed heterogeneity,

with gene-expression analysis revealing the presence of

muscle together with SOX1+ neural cells (Figure 4C), and

thus would not be useful for in vitro or in vivo studies.

Single-Step FACS Isolation of Mature Skeletal

Myocytes

In addition to their potential use in clinical applications,

enriched populations of hPSC-derived skeletal muscle cells

also provide a platform for basic research investigations.

Purification of hPSC-derived mature myocytes offers an

unlimited source of cells for large-scale screening of novel

therapeutic compounds and toxicity studies. Here, we

developed a simple single-antigen strategy for the direct

isolation and purification of mature skeletal myocytes.

In our two-step culture system, bipolar skeletal myocytes

appeared at approximately 4weeks of hPSC differentiation.

Immunocytochemical analysis revealed strong expression

of the muscle-specific nicotinic AChR on these cells (Fig-

ure 5A). These receptors are among the first membrane
eports j Vol. 1 j 620–631 j December 17, 2013 j ª2013 The Authors 625



(legend on next page)

626 Stem Cell Reports j Vol. 1 j 620–631 j December 17, 2013 j ª2013 The Authors

Stem Cell Reports
GSK-3b Inhibition Promotes Skeletal Muscle from hPSC



Stem Cell Reports
GSK-3b Inhibition Promotes Skeletal Muscle from hPSC
proteins to be expressed during skeletal muscle develop-

ment. However, their presence is required only later during

synaptogenesis, when they mediate synaptic transmission

at the neuromuscular junction (Brehm and Henderson,

1988). At days 30 and 35 of hPSC differentiation, an easily

distinguishable AChR+ population (up to 8% of total cells)

was identified and isolated by FACS (Figure 5B). Analysis of

both AChR+ and AChR� fractions showed that expression

of the mature muscle marker myosin heavy chain 2a

(MYHC2) was restricted only to AChR+ cells (Figure 5C).

Following isolation, the AChR+ cells were plated onto

fibronectin/laminin-coated plates in the presence of ITS

medium. At 24 hr after plating, as expected, all AChR+ cells

were immunoreactive for the mature muscle markers

myogenin and MF20 (Figure 5D). Prolonged cell culture

(>20 days) of AChR+ cells led to the progressive fusion of

myocytes into multinucleated myotubes (Figure 5E).

GSK-3 Inhibition Is Required for Efficient Muscle

Derivation

We next determined the efficacy of our two-step protocol

by comparing four different sorted populations (AChR+,

CXCR4+/C-MET+, CXCR4�/C-MET+, and CXCR4+/C-

MET�) derived under different culture conditions (CHIR+

FGF2, CHIR only, FGF2 only, and untreated). Muscle

precursors were already present at day 25 of hPSC differ-

entiation, as indicated by the presence of both CXCR4+/

C-MET+ (Figure 6A-II) and CXCR4�/C-MET+ (Figure 6A-

III) cell populations. As expected, the overall percentage

of each myogenic population increased over time, and

thus at day 35, under CHIR+FGF2 treatment, we collec-

tively obtained up to 20% of muscle cells from the

AChR+, CXCR4+/C-MET+, and CXCR4�/C-MET+ cell

populations (Figures 6A-I, 6A-II, and 6A-III). Significantly,

a large component of these cells consisted of PAX3+ and

PAX7+ precursors (CXCR4+/C-MET+; CXCR4-/C-MET+),

comprising more than 12% of total cells (Figures 6A-II
Figure 6. Quantification of Muscle-Enriched Cell Populations und
AChR+, CXCR4+/C-MET+, CXCR4�/C-MET+, and CXCR4+/C-MET� cell p
conditions (CHIR+FGF2, CHIR only, FGF2 only, and untreated) were q
(A) Percentage of AChR+ myocytes (I), CXCR4+/C-MET+ (II) and C
population from multiple FACS purification experiments at three di
represent three experiments averaged from each of the four hPSC line
treatment and all other conditions at each time point. CHIR+FGF2 tr
populations at day 35 of differentiation compared with FGF2-only or un
of treatment; however, cell composition is altered (refer to Figure 7)
(B) Representative FACS profile of hPSCs (H9) at day 35 of differentiat
of the respective parent population. AChR+ (top) and CXCR4+/C-MET+
whereas CXCR4+/C-MET� (middle) and CXCR4�/C-MET+ (bottom) cel
populations based on HNK� gated fractions; * % of CXCR4+/C-MET+
CXCR4+ gated fractions; v % of CXCR4�/C-MET+ gated populations ba
Error bars represent the SEM of three or more individual experiments
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and 6A-III). A similar robust percentage of muscle cells

was observed across all four cell lines (three hESCs and

one hiPSC), demonstrating the efficiency of our two-step

protocol (Figure S3).

CHIR+FGF2 treatment resulted in the efficient derivation

of muscle precursors; however, exposure of hPSCs to CHIR

only was sufficient for myogenic induction. A reduction

in the percentage of CXCR4+/C-MET+ and AChR+ popu-

lations compared with CHIR+FGF2 cultures indicated an

active role for FGF2 in the expansion of the myogenic

compartment (Figures 6A-I, 6A-II, and 6B, top andmiddle).

In stark contrast, the absence of CHIR treatment resulted in

almost complete loss of both of these cell fractions (Figures

6A-I, 6A-II, and 6B, top and middle). Interestingly, the

overall percentage of CXCR4+/C-MET� and CXCR4�/C-

MET+ cells did not change significantly among the four

different treatment conditions (Figures 6A-III, 6A-IV, and

6B, middle and bottom). However, a comparative analysis

of cell composition among these cell fractions isolated

from CHIR+FGF2- or FGF2-only-treated cultures revealed

a fundamental shift from a myogenic to a nonmyogenic

cell fate in the absence of CHIR treatment (Figure 7). These

data illustrate a requirement of CHIR-mediated GSK3b

inhibition for the robust induction of muscle cells from

hPSCs. The addition of FGF2 is then necessary to achieve

optimal expansion of skeletal muscle precursors.
DISCUSSION

The successful use of hPSC-derived progeny for in vitro

screening (e.g., for disease modeling, drug development,

and toxicity studies) or regenerative medicine requires

tight control of the cell differentiation process and

isolation of pure, specialized cell types. At present, the

controlled derivation and efficient isolation of hPSC-

derived myogenic precursors equivalent to in vivo
er Four Different Treatment Conditions
opulations derived from hPSCs differentiated under four treatment
uantified.
XCR4�/C-MET+ (III) precursors, and CXCR4+/C-MET� (IV) mixed
fferent time points. Results shown for each treatment condition
s. (I and II) Fold change difference is observed between CHIR+FGF2
eatment significantly (p < 0.001) improves induction of both cell
treated cultures. (III and IV) The percentage of cells is independent
.
ion. The sorted populations are represented as percentage fractions
(middle) cell populations are only present in CHIR-treated hPSCs,

l populations are present under all conditions. ^% of AChR+ gated
and CXCR4+/C-MET� gated populations based on HNK�/AChR�/
sed on HNK�/AChR�/CXCR4� gated fractions.
. See also Figure S3.
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Figure 7. Lack of CHIR Treatment during hPSC Differentiation Results in the Absence of a Muscle Phenotype
(A–D) Immunocytochemical analysis from cytospin preparations of CXCR4+/C-MET� (A and B) and CXCR4�/C-MET+ (C and D) sorted cells.
(A) Under CHIR+FGF2 treatment, the majority of CXCR4+/C-MET� cells are PAX7+, indicating a predominant muscle phenotype.
(B) A complete switch toward SOX1 expression is observed in FGF2-only conditions.
(C) The CXCR4�/C-MET+ cell population derived from CHIR+FGF2-treated hPSCs is composed of highly enriched PAX3+/PAX7+ muscle
precursors.
(D) PAX3+ and PAX7+ cells are not present under FGF2-alone conditions, with a large number of cells instead expressing the nonneural
ectoderm marker AP2a. Scale bars, 50 mm. All images from hESC HES3.
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PAX3+/PAX7+ satellite cells has not been accomplished.

Attempts to derive such cells are hindered by our lack of

knowledge about the essential factors required in vitro to

recapitulate the in vivo patterning of myogenic somitic

mesoderm and the timing of their distribution. This may

explain the limited success to date and the large number

of published protocols that rely on an artificial system of

derivation utilizing forced transgene expression (Darabi

et al., 2012; Goudenege et al., 2012). Although Ryan et al.

(2012) recently provided evidence of muscle differen-

tiation from hESCs without genetic modification, their

approach was hindered by the use of serum in themedium,

low myogenic induction, and fundamentally the lack of

any purification strategy.

Here, we present a simple, two-step differentiation

method that recapitulates the early events of embryo-

genesis to efficiently derive PAX3+/PAX7+ skeletal muscle

precursors from hPSCs. We demonstrate the feasibility of

deriving robust numbers of skeletal muscle cells without

the aid of transgene-driven differentiation.

Central to this method is the activation of canonical

WNT signaling by the GSK3b inhibitor CHIR. Expression

profiling of hPSCs over the course of guided differentia-

tion showed progression through defined developmental

milestones leading to myogenesis. This transition was

initiated by a strong induction of TBX6, MESP1, and
628 Stem Cell Reports j Vol. 1 j 620–631 j December 17, 2013 j ª2013 The
MSGN1 in CHIR-treated hPSCs, followed by high levels

of PARAXIS expression, indicating progression into so-

mitic mesoderm. In addition to the induction of paraxial

mesoderm, activation of WNT signaling by CHIR was

responsible for generating dorsal tissues, such as dorsal

neural tube cells marked by LMX1A expression, along

with SOX10+ neural crest cells and AP2a+ nonneural

ectoderm (Figure S1). It has been established that myo-

genic patterning of the dermomyotome requires WNT

signaling from the dorsal neural tube and overlying

ectoderm (Tajbakhsh and Buckingham, 2000), together

with transient, neural-crest-mediated notch activation

of myogenic precursors (Rios et al., 2011). Early GSK3b

inhibition during hPSC differentiation allowed us to

reproduce the conditions necessary for the specification

of skeletal muscle cells, closely replicating the events

that occur during normal development in vivo. We spec-

ulate that the generation of dorsal tissues played an essen-

tial role in delivering the appropriate signals required for

the patterning of the presomitic mesoderm within our

culture system. Conversely, prolonged exposure to CHIR

for up to 10 days was shown to have a negative effect

on muscle derivation, and no muscle cells were identified

in the treated dishes (data not shown). Although we show

that CHIR alone is sufficient for myogenic induction, pro-

longed FGF2 exposure proved to play a proliferative role
Authors
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by significantly increasing the number of myogenic

precursors.

We validated the robustness of our protocol by obtaining

similar results with four hPSC lines, confirming that

small-molecule-mediated GSK3b inhibition is a simple

but highly efficient approach for directing the differentia-

tion of hPSCs into skeletal muscle precursors.

Progress in considering hPSC-derived muscle as a valid

source of cells for basic and translational research applica-

tions has been hindered by the lack of an efficient

method to isolate muscle precursors. To overcome this

limitation, we developed a FACS strategy to purify muscle

precursors generated in our differentiation system. Since

we detected LBX1 transcripts during directed myogenic

commitment of hPSCs, we considered the use of two

markers that are known to be highly expressed in hypax-

ial migratory muscle precursors during development:

C-MET and CXCR4. FACS selection of two populations,

CXCR4�/C-MET+ and CXCR4+/C-MET+, allowed the

isolation of PAX3+/PAX7+ precursors at high purity.

Notably, the negative cell population (HNK�/AChR�/

CXCR4�/C-MET�) was devoid of any muscle markers,

indicating not only that our sorting strategy is sufficient

to isolate all skeletal muscle cells generated in our culture

system but also that all PAX3+/PAX7+ precursors are of

hypaxial origin. The specificity of this strategy is also

confirmed by the complete absence of CXCR4+/C-MET+

cells and by a nonmuscle identity of CXCR4-/C-MET+

cells in the absence of early GSK3b inhibition during

hPSC differentiation.

Transplantation of highly purified skeletal muscle pre-

cursors has been considered a possible option for the treat-

ment of degenerative muscle disorders, such as muscular

dystrophy. Our findings will accelerate the evaluation of

the therapeutic potential of hPSC-derived muscle cells in

preclinical models. Moreover, future applications of our

method to patient-specific iPSC lines will aid in the study

of muscle development during disease.

In addition to the isolation of skeletal muscle precursors,

we described a simple strategy for the direct isolation of

mature skeletal myocytes through the positive selection

of AChR+ cells. This highly efficient derivation and direct

isolation of mature embryonic stage skeletal myocytes pro-

vides a platform for developmental modeling and candi-

date drug screening.

In conclusion, we have developed a small-molecule-

based approach and identified GSK3b inhibition as a

requirement for the efficient, nongenetic derivation of

skeletal muscle cells from hPSCs. Our cell-sorting strategy

based on the use of functional markers allows the purifica-

tion of hPSC-derived PAX3+/PAX7+ skeletal muscle precur-

sors. This work describes the derivation and isolation of

early muscle precursors with a defined phenotype.
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EXPERIMENTAL PROCEDURES

Culture of Undifferentiated hPSCs
hPSC lines (WA-09 [H9], Mel1, HES3, and PDL-iPS), passages

p40–65, were maintained on hESC-qualified Matrix (BDMatrigel;

BD Biosciences) in the presence of mTESR1 medium (Stem Cell

Technologies) as previously described (Ludwig and Thomson,

2007). The experiments performed with hESCs in this study

were approved by the Monash University Human Research Ethics

Committee (CF09/2725).

Directed Differentiation of hPSCs into Skeletal Muscle

Cells
Experiments were performed with all four hPSC lines. When the

colony size reached >600 mm in diameter and the colony density

on the plate was approximately 30%–40%, we induced differenti-

ation of hPSC by switching the culture medium from mTESR1 to

a chemically defined, serum-free medium, DMEM-F12, supple-

mented with ITS (all from Sigma-Aldrich). Starting at day 0 of

differentiation, cells were cultured in the presence of 3 mM CHIR

99021 (Miltenyi Biotech) for 4 days. The culture medium was

then replaced by ITS containing 20 ng/ml of FGF2 (Miltenyi

Biotech) for a further 14 days. For each experimental control

condition, hPSC differentiation was induced by (1) CHIR only

(ITS medium containing 3 mM CHIR from days 0 to 4, followed

by ITS medium only until the day of analysis) or (2) FGF2 only

(ITS medium only between days 0 and 4, followed by ITS medium

containing 20 ng/ml FGF2 for 14 days). The medium was replaced

daily until the day of analysis.

FACS
Cells were dissociated with 0.05% trypsin or TrypLE Select

(Invitrogen) to a single-cell suspension and incubated with the

appropriate fluorochrome-labeled antibodies (Table S2) at a con-

centration of 107 cells/ml for 30 min on ice. Indirect labeling of

HNK and AChR antibodies was done using goat anti-mouse Alexa

Fluor 488 and goat anti-mouse PE (both from Molecular Probes/

Invitrogen) as secondary antibodies. Labeled cells were sorted

through a BD Influx (five lasers) flow sorter (BD Biosciences)

according to the excitation requirements of the fluorochromes.

Sorted populations were analyzed using FlowJo software (Tree

Star).

Immunocytochemistry
For cytospin preparations of FACS-sorted populations, cells were

spun onto glass slides using Cytospin 4 (Shandon; Thermo-

fisher). Cells were then fixed with 100% cold methanol for

5 min and subsequently rehydrated in PBS for 15–20 min. The

cultured cells were fixed with 4% paraformaldehyde for 10 min

at room temperature and permeabilized with 0.3% Triton

X-100 in PBS for 30 min. A complete list of the primary and fluo-

rochrome-labeled secondary antibodies used in this study is pro-

vided in Table S2. Incubations with primary and subsequently

secondary antibodies were performed in incubation buffer

(0.1% BSA, 2% fetal bovine serum [FBS], 0.1% Triton X-100 in

PBS) for 40 min at 37�C. Image acquisition was performed on

an inverted Nikon Eclipse Ti epifluorescence microscope with
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the appropriate filter sets using single-channel acquisition on a

Nikon Digital sight DS-U2 camera. Images were analyzed with

Nikon NIS-Elements 3.2 software. All immunofluorescence

images are representative of one individual experiment. Three

experiments per cell line were performed. Similar results were

obtained in all cell lines.

Gene-Expression Analysis
Total RNAwas extracted using the RNeasy Mini kit (QIAGEN), and

DNase I treatment (QIAGEN) was performed to avoid genomic

DNA contamination. The Ambion RETROscript First Strand

Synthesis Kit (Invitrogen) was used to reverse transcribe total

RNA (500 ng each sample). PCR was performed using the

Mastercyler proS (Eppendorf AG). We optimized the PCR condi-

tions and determined the linear amplification range for each

primer by varying the annealing temperature and cycle number.

Primer sequences, cycle numbers, and annealing temperatures

are provided in Table S1. All RT-PCR data shown are representative

of one individual experiment. Three experiments per cell line were

performed. Similar results were obtained in all cell lines.

For qPCR, GAPDH was used as a reference gene and reactions

were run using LightCycler480 SYBR Green I Master (Roche

Applied Science) on a LightCycler 480 system (Roche Applied

Science). Target gene expression was normalized to the reference

gene (GAPDH), and subsequent quantification of gene expression

was compared relative to day 0 undifferentiated hPSCs (Pfaffl,

2001).

Culture of FACS-Isolated Cell Populations
FACS-purified AChR+ myocytes and CXCR4�/C-MET+ and

CXCR4+/C-MET+ precursors were plated onto tissue culture wells

coated with 2 mg/ml fibronectin and 2 mg/ml laminin (both from

Invitrogen) in ITS medium supplemented with 10 mM Rock

Inhibitor Y-27632 (Sigma Aldrich). Myocytes were maintained in

ITS medium in the presence of 50 ng/ml IGF1 (Peprotech) until

they were analyzed. Progenitor cell populations were cultured in

ITS medium until terminal muscle differentiation occurred.

Statistical Analysis
Data were analyzed by two-way ANOVA followed by Bonferroni’s

post test to calculate p values. Analyses were performed using

statistical software (GraphPad Prism 5.04; GraphPad Software).

Probability values < 0.05 were considered statistically significant.

Error bars in each figure represent the SEM of three or more indi-

vidual experiments. For qPCR data, p values were calculated for

changes in expression of markers over time compared with day

0. For quantitative analysis of FACS sorting data, the percentage

of myogenic cells relative to the total number of cells was obtained

for each experimental culture treatment, and p values were calcu-

lated for differences between the means of each experimental

condition.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and two tables

and can be found with this article online at http://dx.doi.org/10.

1016/j.stemcr.2013.10.007.
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Aulehla, A., and Pourquié, O. (2010). Signaling gradients during

paraxial mesoderm development. Cold Spring Harb. Perspect.

Biol. 2, a000869.

Barberi, T., Bradbury, M., Dincer, Z., Panagiotakos, G., Socci, N.D.,

and Studer, L. (2007). Derivation of engraftable skeletal myoblasts

from human embryonic stem cells. Nat. Med. 13, 642–648.

Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A., and Birchme-

ier, C. (1995). Essential role for the c-met receptor in the migration

of myogenic precursor cells into the limb bud. Nature 376,

768–771.

Brehm, P., and Henderson, L. (1988). Regulation of acetylcholine

receptor channel function during development of skeletal muscle.

Dev. Biol. 129, 1–11.

Buckingham, M. (2006). Myogenic progenitor cells and skeletal

myogenesis in vertebrates. Curr. Opin. Genet. Dev. 16, 525–532.

Burgess, R., Rawls, A., Brown, D., Bradley, A., and Olson, E.N.

(1996). Requirement of the paraxis gene for somite formation

and musculoskeletal patterning. Nature 384, 570–573.

Chakkalakal, J.V., Jones, K.M., Basson,M.A., and Brack, A.S. (2012).

The aged niche disrupts muscle stem cell quiescence. Nature 490,

355–360.

Chan, S.S., Shi, X., Toyama, A., Arpke, R.W., Dandapat, A., Iaco-

vino, M., Kang, J., Le, G., Hagen, H.R., Garry, D.J., and Kyba, M.

(2013). Mesp1 patterns mesoderm into cardiac, hematopoietic,

or skeletal myogenic progenitors in a context-dependent manner.

Cell Stem Cell 12, 587–601.

Chizhikov, V.V., and Millen, K.J. (2004). Mechanisms of roof plate

formation in the vertebrate CNS. Nat. Rev. Neurosci. 5, 808–812.

Cohen, P., and Goedert, M. (2004). GSK3 inhibitors: development

and therapeutic potential. Nat. Rev. Drug Discov. 3, 479–487.

Darabi, R., Arpke, R.W., Irion, S., Dimos, J.T., Grskovic, M., Kyba,

M., and Perlingeiro, R.C. (2012). Human ES- and iPS-derived

myogenic progenitors restore DYSTROPHIN and improve contrac-

tility upon transplantation in dystrophic mice. Cell Stem Cell 10,

610–619.

Delfini, M.C., and Duprez, D. (2000). Paraxis is expressed in myo-

blasts during their migration and proliferation in the chick limb

bud. Mech. Dev. 96, 247–251.

Dietrich, S., Abou-Rebyeh, F., Brohmann,H., Bladt, F., Sonnenberg-

Riethmacher, E., Yamaai, T., Lumsden, A., Brand-Saberi, B., and
Authors

http://dx.doi.org/10.1016/j.stemcr.2013.10.007
http://dx.doi.org/10.1016/j.stemcr.2013.10.007


Stem Cell Reports
GSK-3b Inhibition Promotes Skeletal Muscle from hPSC
Birchmeier, C. (1999). The role of SF/HGF and c-Met in the

development of skeletal muscle. Development 126, 1621–1629.

Gammill, L.S., and Bronner-Fraser, M. (2003). Neural crest specifi-

cation: migrating into genomics. Nat. Rev. Neurosci. 4, 795–805.

Goudenege, S., Lebel, C., Huot, N.B., Dufour, C., Fujii, I., Gekas, J.,

Rousseau, J., and Tremblay, J.P. (2012). Myoblasts derived from

normal hESCs and dystrophic hiPSCs efficiently fuse with existing

muscle fibers following transplantation.Mol. Ther. 20, 2153–2167.

Grifone, R., Demignon, J., Houbron, C., Souil, E., Niro, C., Seller,

M.J., Hamard, G., and Maire, P. (2005). Six1 and Six4 homeopro-

teins are required for Pax3 and Mrf expression during myogenesis

in the mouse embryo. Development 132, 2235–2249.

Gross, M.K., Moran-Rivard, L., Velasquez, T., Nakatsu, M.N., Jagla,

K., and Goulding, M. (2000). Lbx1 is required for muscle precursor

migration along a lateral pathway into the limb. Development

127, 413–424.

Horst, D., Ustanina, S., Sergi, C., Mikuz, G., Juergens, H., Braun, T.,

and Vorobyov, E. (2006). Comparative expression analysis of Pax3

and Pax7 during mouse myogenesis. Int. J. Dev. Biol. 50, 47–54.

Ikeya, M., Lee, S.M., Johnson, J.E., McMahon, A.P., and Takada, S.

(1997). Wnt signalling required for expansion of neural crest and

CNS progenitors. Nature 389, 966–970.

Karlin, A. (2002). Emerging structure of the nicotinic acetylcholine

receptors. Nat. Rev. Neurosci. 3, 102–114.

Kos, L., Aronzon, A., Takayama, H., Maina, F., Ponzetto, C., Mer-

lino, G., and Pavan, W. (1999). Hepatocyte growth factor/scatter

factor-MET signaling in neural crest-derived melanocyte develop-

ment. Pigment Cell Res. 12, 13–21.

Lagha, M., Kormish, J.D., Rocancourt, D., Manceau, M., Epstein,

J.A., Zaret, K.S., Relaix, F., and Buckingham, M.E. (2008). Pax3

regulation of FGF signaling affects the progression of embryonic

progenitor cells into the myogenic program. Genes Dev. 22,

1828–1837.

Ludwig, T., and Thomson, J.A. (2007). Defined, feeder-indepen-

dentmedium for human embryonic stem cell culture. Curr. Protoc.

Stem Cell Biol. 2, 1C.2.1–1C.2.16.

Menendez, L., Yatskievych, T.A., Antin, P.B., and Dalton, S. (2011).

Wnt signaling and a Smad pathway blockade direct the differen-

tiation of humanpluripotent stem cells tomultipotent neural crest

cells. Proc. Natl. Acad. Sci. USA 108, 19240–19245.

Millonig, J.H., Millen, K.J., and Hatten, M.E. (2000). The mouse

Dreher gene Lmx1a controls formation of the roof plate in the

vertebrate CNS. Nature 403, 764–769.

Morita, I., Kizuka, Y., Kakuda, S., and Oka, S. (2008). Expression

and function of the HNK-1 carbohydrate. J. Biochem. 143,

719–724.
Stem Cell R
Pfaffl, M.W. (2001). A new mathematical model for relative

quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.

Relaix, F., Rocancourt, D., Mansouri, A., and Buckingham, M.

(2005). A Pax3/Pax7-dependent population of skeletal muscle

progenitor cells. Nature 435, 948–953.

Rios, A.C., Serralbo,O., Salgado,D., andMarcelle, C. (2011). Neural

crest regulates myogenesis through the transient activation of

NOTCH. Nature 473, 532–535.

Rudnicki, M.A., Schnegelsberg, P.N., Stead, R.H., Braun, T., Arnold,

H.H., and Jaenisch, R. (1993). MyoD or Myf-5 is required for the

formation of skeletal muscle. Cell 75, 1351–1359.

Ryan, T., Liu, J., Chu, A., Wang, L., Blais, A., and Skerjanc, I.S.

(2012). Retinoic acid enhances skeletal myogenesis in human

embryonic stem cells by expanding the premyogenic progenitor

population. Stem Cell Rev. 8, 482–493.
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