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Abstract

First, we study recollement of a derived category of unbounded complexes of modules induced
by a partial tilting complex. Second, we give equivalent conditions for P· to be a recollement
tilting complex, that is, a tilting complex which induces an equivalence between recollements
{DA=AeA(A); D(A); D(eAe)} and {DB=BfB(B); D(B); D(fBf)}, where e, f are idempotents of A; B,
respectively. In this case, there is an unbounded bimodule complex �·

T which induces an equiv-
alence between DA=AeA(A) and DB=BfB(B). Third, we apply the above to a symmetric algebra A.
We show that a partial tilting complex P· for A of length 2 extends to a tilting complex, and
that P· is a tilting complex if and only if the number of indecomposable types of P· is one
of A. Finally, we show that for an idempotent e of A, a tilting complex for eAe extends to
a recollement tilting complex for A, and that its standard equivalence induces an equivalence
between Mod A=AeA and Mod B=BfB.
c© 2003 Elsevier B.V. All rights reserved.
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0. Introduction

The notion of recollement of triangulated categories was introduced by Beilinson
et al. in connection with derived categories of sheaves of topological spaces [1]. In
representation theory, Cline et al. applied this notion to <nite dimensional algebras over
a <eld, and introduced the notion of quasi-hereditary algebras [5,15]. In quasi-hereditary
algebras, idempotents of algebras play an important role. In [16], Rickard introduced the
notion of tilting complexes as a generalization of tilting modules. Many constructions
of tilting complexes have a relation to idempotents of algebras (e.g. [14,19,7,8]). We
studied constructions of tilting complexes of term length 2 which has an application to
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symmetric algebras [9]. In the case of algebras of in<nite global dimension, we cannot
treat recollement of derived categories of bounded complexes such as one in the case
of quasi-hereditary algebras. In this paper, we study recollement of derived categories
of unbounded complexes of modules for k-projective algebras over a commutative
ring k, and give the conditions that tilting complexes induce equivalences between
recollements induced by idempotents. Moreover, we give some constructions of tilting
complexes over symmetric algebras.

In Section 2, for a k-projective algebra A over a commutative ring k, we study a
recollement {KP; D(A); D(B)} of a derived category D(A) of unbounded complexes
of right A-modules induced by a partial tilting complex P·, where B = EndD(A)(P

·).
We show that there exists the triangle �V in D(Ae) which induce adjoint functors of
this recollement, and that the triangle �V is isomorphic to a triangle which is con-
structed by a P·-resolution of A in the sense of Rickard (Theorem 2.8, Proposition
2.15, Corollary 2.16). In general, this recollement is out of localizations of triangulated
categories which Neeman treated in [13] (Corollary 2.9). Moreover, we study a rec-
ollement {DA=AeA(A); D(A); D(eAe)} which is induced by an idempotent e of A (Propo-
sition 2.17, Corollary 2.19). In Section 3, we study equivalences between recollements
which are induced by idempotents. We give equivalent conditions for P· to be a tilting
complex inducing an equivalence between recollements {DA=AeA(A); D(A); D(eAe)} and
{DB=BfB(B); D(B); D(fBf)} (Theorem 3.5). We call this tilting complex a recollement
tilting complex related to an idempotent e. There are many symmetric properties be-
tween algebras A and B for a two-sided recollement tilting complex BT ·A (Corollaries
3.7 and 3.8). Moreover, we have an unbounded bimodule complex �·T ∈D(B◦ ⊗ A)
which induces an equivalence between DA=AeA(A) and DB=BfB(B). The complex �·T is a
compact object in DA=AeA(A), and satis<es properties such as a tilting complex (Propo-
sitions 3.11, 3.13 and 3.14, Corollary 3.12). In Section 4, we study constructions of
tilting complexes for a symmetric algebra A over a <eld. First, we construct a family
of complexes {
·n(P

·; A)}n¿0 from a partial tilting complex P·, and give equivalent
conditions for 
·n(P

·; A) to be a tilting complex (De<nition 4.3, Theorem 4.6, Corollary
4.7). As applications, we show that a partial tilting complex P· of length 2 extends
to a tilting complex, and that P· is a tilting complex if and only if the number of
indecomposable types of P· is one of A (Corollaries 4.8 and 4.9). This is a complex
version over symmetric algebras of Bongartz’s result on classical tilting modules [3].
Second, for an idempotent e of A, by the above construction a tilting complex for eAe
extends to a recollement tilting complex T · related to e (Theorem 4.11). This recolle-
ment tilting complex induces that A=AeA is isomorphic to B=BfB as a ring, and that
the standard equivalence RHom·A(T

·;−) induces an equivalence between Mod A=AeA
and Mod B=BfB (Corollary 4.12). This construction of tilting complexes contains con-
structions obtained by several authors.

1. Basic tools on k-projective algebras

In this section, we recall basic tools of derived functors in the case of k-projective
algebras over a commutative ring k. Throughout this section, we deal only with
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k-projective k-algebras, that is, k-algebras which are projective as k-modules. For a
k-algebra A, we denote by Mod A the category of right A-modules, and denote by
Proj A (resp., proj A) the full additive subcategory of Mod A consisting of projective
(resp., <nitely generated projective) modules. For an abelian category A and an addi-
tive category B, we denote by D(A) (resp., D+(A); D−(A); Db(A)) the derived cat-
egory of complexes of A (resp., complexes of A with bounded below cohomologies,
complexes of A with bounded above cohomologies, complexes of A with bounded
cohomologies), denote by K(B) (resp., Kb(B)) the homotopy category of complexes
(resp., bounded complexes) of B (see [6] for details). In the case of A=B=Mod A,
we simply write K∗(A) and D∗(A) for K∗(Mod A) and D∗(Mod A), respectively. Given
a k-algebra A we denote by A◦ the opposite algebra, and by Ae the enveloping algebra
A◦⊗k A. We denote by ResA :Mod B◦⊗k A → Mod A the forgetful functor, and use the
same symbol ResA :D(B◦ ⊗k A) → D(A) for the induced derived functor. Throughout
this paper, we simply write ⊗ for ⊗k .

In the case of k-projective k-algebras A; B and C, using [4, Chapter IX, Section 2],
we do not need to distinguish the derived functor

Resk ◦ (RHom·C) :D(A◦ ⊗ C)◦ × D(B◦ ⊗ C) → D(B◦ ⊗ A) → D(k)

(resp:; Resk ◦ (
·⊗L

B) :D(A◦ ⊗ B)× D(B◦ ⊗ C) → D(A◦ ⊗ C) → D(k))

with the derived functor

RHom·C ◦ ((ResC)◦ × ResC) :D(A◦ ⊗ C)◦ × D(B◦ ⊗ C)

→ D(C)◦ × D(C) → D(k)

(resp:;
·⊗L

B ◦ (ResB × ResB◦) :D(A◦ ⊗ B)× D(B◦ ⊗ C)

→ D(B)× D(B◦) → D(k))

(see [17,2,20] for details). We freely use this fact in this paper. Moreover, we have
the following statements.

Proposition 1.1. Let k be a commutative ring, A; B; C; D k-projective k-algebras. The
following hold.

1. For AU ·B ∈D(A◦⊗B); BV ·C ∈D(B◦⊗C); CW ·D ∈D(C◦⊗D), we have an isomorphism
in D(A◦ ⊗ D):

(AU ·
·⊗L

BV ·)
·⊗L

CW ·D ∼= AU ·
·⊗L

B(V
· ·⊗L

CW ·D):

2. For AU ·B ∈D(A◦⊗B); DV ·C ∈D(D◦⊗C); AW ·C ∈D(D◦⊗C), we have an isomorphism
in D(B◦ ⊗ D):

RHom·A(AU ·B;RHom·C(DV ·C; AW ·C)) ∼= RHom·C(DV ·C;RHom·A(AU ·B; AW ·C)):
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3. For AU ·B ∈D(A◦⊗B); BV ·C ∈D(B◦⊗C); DW ·C ∈D(D◦⊗C), we have an isomorphism
in D(D◦ ⊗ A):

RHom·C(AU ·
·⊗L

BV ·C; DW ·C) ∼= RHom·B(AU ·B;RHom·C(BV ·C; DW ·C)):

4. For AU ·B ∈D(A◦⊗B); BV ·C ∈D(B◦⊗C); AW ·C ∈D(A◦⊗C), we have an isomorphism
in D(k):

RHom·A◦⊗C(AU ·
·⊗L

BV ·C; AW ·C) ∼= RHom·A◦⊗B(AU ·B;RHom·C(BV ·C; AW ·C)):

5. For AU ·B ∈D(A◦ ⊗ B); BV ·C ∈D(B◦ ⊗ C); AW ·C ∈D(A◦ ⊗ C), we have a commutative
diagram:

HomD(A◦⊗C)(AU ·
·⊗L

BV ·C; AW ·C)
∼−→ HomD(A◦⊗B)(AU ·B;RHom·C(BV ·C; AW ·C));

ResC

�
� ResB

HomD(C)(U
· ·⊗L

BV ·C; W ·C)
∼−−−−−→HomD(B)(U

·
B;RHom∗C(BV ·C; W ·C));

where all horizontal arrows are isomorphisms induced by 3 and 4. Equivalently, we
do not need to distinguish the adjunction arrows induced by BV ·C (see [11, Chapter
IV, Section 7]).

De�nition 1.2. A complex X · ∈D(A) is called a perfect complex if X · is isomorphic to
a complex of Kb(proj A) in D(A). We denote by D(A)perf the triangulated full subcat-
egory of D(A) consisting of perfect complexes. A bimodule complex X · ∈D(B◦ ⊗k A)
is called a biperfect complex if ResA(X ·)∈D(A)perf and if ResB◦(X ·)∈D(B◦)perf .

For an object C of a triangulated category D; C is called a compact object in D if
HomD(C;−) commutes with arbitrary coproducts on D.

For a complex X · = (X i; di), we de<ne the following truncations:

�6nX · : · · · → X n−2 → X n−1 → Ker dn → 0 → · · · ;
�′¿nX · : · · · → 0 → Cok dn−1 → X n+1 → X n+2 → · · · :

The following characterization of perfect complexes is well known (cf. [16]). For the
convenience of the reader, we give a simple proof.

Proposition 1.3. For X · ∈D(A), the following are equivalent.

1. X · is a perfect complex.
2. X · is a compact object in D(A).

Proof. 1 ⇒ 2. It is trivial, because we have isomorphisms:

HomD(A)(X
·;−)∼= R0 Hom·A(X

·;−)

∼=H0(− ·⊗L
ARHom·A(X

·; A)):
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2 ⇒ 1. According to [2] or [20], there is a complex P· : · · · → Pn−1 dn−1

→ Pn →
· · · ∈K(Proj A) such that

(a) P· ∼= X · in D(A),
(b) HomK(A)(P

·;−) ∼= HomD(A)(P
·;−).

Consider the complex C· : · · · 0→Cok dn−1 0→ · · ·, then it is easy to see that C· = the
coproduct

∐
n∈Z Cok dn−1[−n]=the product

∏
n∈Z Cok dn−1[−n], that is the biproduct⊕

n∈Z Cok dn−1[− n] of Cok dn−1[− n]. Since we have isomorphisms in Mod k:∐
n∈Z

HomK(A)(P
·;Cok dn−1[− n])∼=HomK(A)

(
P·;
⊕
n∈Z

Cok dn−1[− i]

)

∼=
∏
n∈Z

HomK(A)(P
·;Cok dn−1[− n]);

it is easy to see HomK(A)(P
·;Cok dn−1[− n]) = 0 for all but <nitely many n∈Z.

Then there are m6 n such that P· ∼= �′¿m�6nP· and �′¿m�6nP· ∈Kb(Proj A).
According to Proposition 6.3 of Rickard [16] we complete the proof.

De�nition 1.4. We call a complex X · ∈D(A) a partial tilting complex if

(a) X · ∈D(A)perf ,
(b) HomD(A)(X

·; X ·[n]) = 0 for all n �= 0.

De�nition 1.5. Let X · ∈D(A) be a partial tilting complex, and B = EndD(A)(X
·).

According to the theorem of Keller [10], there exists a unique bimodule complex
V · ∈D(B◦ ⊗ A) up to isomorphism such that

(a) there is an isomorphism � :X · ∼→ResA V · in D(A) such that �f = �B(f)� for any
f∈EndD(A)(X

·), where �B :B → EndD(A)(V
·) is the left multiplication morphism.

We call V · the associated bimodule complex of X ·. In this case, the left multiplication
morphism �B : B → RHom·A(V

·; V ·) is an isomorphism in D(Be).

Rickard showed that for a tilting complex P· in D(A) with B = EndD(A)(P
·), there

exists a two-sided tilting complex BT ·A ∈D(B◦ ⊗ A) [17].

De�nition 1.6. A bimodule complex BT ·A ∈D(B◦ ⊗k A) is called a two-sided tilting
complex provided that

(a) BT ·A is a biperfect complex.
(b) There exists a biperfect complex AT∨·B such that

(b1) BT ·
·⊗L

AT∨·B
∼= B in D(Be),

(b2) AT∨·
·⊗L

BT ·A ∼= A in D(Ae).

We call AT∨·B the inverse of BT ·A.
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Proposition 1.7 (Rickard [17]). For a two-sided tilting complex BT ·A ∈D(B◦ ⊗ A), the
following hold:

1. We have isomorphisms in D(A◦ ⊗ B):

AT∨·B
∼=RHom·A(T; A)

∼=RHom·B(T; B):

2. RHom·A(T
·;−) ∼= − ·⊗L

AT∨· :D∗(A) → D∗(B) is a triangle equivalence, and has

RHom·B(T
∨·;−) ∼= − ·⊗L

BT · :D∗(B) → D∗(A) as a quasi-inverse, where ∗= nothing,
+;−; b.

In the case of k-projective k-algebras, by Rickard [17] we have also the following
result (see also Lemma 2.6).

Proposition 1.8. For a bimodule complex BT ·A, the following are equivalent.

1. BT ·A is a two-sided tilting complex.
2. BT ·A satis;es that:

(a) BT ·A is a biperfect complex,
(b) the right multiplication morphism �A :A → RHom·B(T

·; T ·) is an isomorphism
in D(Ae),

(c) the left multiplication morphism �B :B → RHom·A(T
·; T ·) is an isomorphism

in D(Be).

2. Recollement and partial tilting complexes

In this section, we study recollements of a derived category D(A) induced by a partial
tilting complex P·A and induced by an idempotent e of A. Throughout this section, all
algebras are k-projective algebras over a commutative ring k.

De�nition 2.1. Let D;D′′ be triangulated categories, and j∗ :D → D′′ a @-functor. If
j∗ has a fully faithful right (resp., left) adjoint j∗ :D′′ → D (resp., j! :D′′ → D), then
{D;D′′; j∗; j∗} (resp., {D;D′′; j!; j∗}) is called a localization (resp., colocalization) of
D. Moreover, if j∗ has a fully faithful right adjoint j∗ :D′′ → D and a fully faithful
left adjoint j! :D′′ → D, then {D;D′′; j!; j∗; j∗} is called a bilocalization of D.

For full subcategories U and V of D; (U;V) is called a stable t-structure in D
provided that

(a) U and V are stable for translations.
(b) HomD(U;V) = 0.
(c) For every X ∈D, there exists a triangle U → X → V → U [1] with U ∈U and

V ∈V.

We have the following properties.
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Proposition 2.2 (Beilinson et al. [1], cf. Miyachi [12]). Let (U;V) be a stable t-
structure in a triangulated category D, and let U → X → V → U [1] and U ′ →
X ′ → V ′ → U ′[1] be triangles in D with U; U ′ ∈U and V; V ′ ∈V. For any mor-
phism f :X → X ′, there exist a unique fU :U → U ′ and a unique fV :V → V ′

which induce a morphism of triangles:

U −−−−−→ X −−−−−→ V −−−−−→ U [1]

fU

�
� f

� fV

� fU[1]

U ′ −−−−−→ X ′ −−−−−→ V ′ −−−−−→ U ′[1]:

In particular, for any X ∈D, the above U and V are uniquely determined up to
isomorphism.

Proposition 2.3 (Miyachi [12]). The following hold:

1. If {D;D′′; j∗; j∗} (resp., {D;D′′; j!; j∗}) is a localization (resp., a colocalization)
of D, then (Ker j∗; Im j∗) (resp., (Im j!;Ker j∗)) is a stable t-structure. In this case,
the adjunction arrow 1D → j∗j∗ (resp., j!j∗ → 1D) implies triangles

U → X → j∗j∗X → U [1]

(resp:; j!j∗X → X → V → X [1])

with U ∈Ker j∗; j∗j∗X ∈ Im j∗ (resp., j!j∗X ∈ Im j!; V ∈Ker j∗) for all X ∈D.
2. If {D;D′′; j!; j∗; j∗} is a bilocalization of D, then the canonical embedding i∗ :

Ker j∗ → D has a right adjoint i! :D → Ker j∗ and a left adjoint i∗ :D → Ker j∗

such that {Ker j∗;D;D′′; i∗; i∗; i!; j!; j∗; j∗} is a recollement in the sense of [1].
3. If {D′;D;D′′; i∗; i∗; i!; j!; j∗; j∗} is a recollement, then {D;D′′; j!; j∗; j∗} is a bilo-

calization of D.

Proposition 2.4 (Beilinson et al. [1]). Let {D′;D;D′′; i∗; i∗; i!; j!; j∗; j∗} be a recolle-
ment, then (Im i∗; Im j∗) and (Im j!; Im i∗) are stable t-structures in D. Moreover, the
adjunction arrows $ : i∗i! → 1D; % : 1D → j∗j∗, & : j!j∗ → 1D; ' : 1D → i∗i∗ imply
triangles in D:

i∗i!X
$X→X

%X→ j∗j∗X → i∗i!X [1];

j!j∗X
&X→X 'X→ i∗i∗X → j!j∗X [1]

for any X ∈D.

By De<nition 2.1, we have the following properties.

Corollary 2.5. Under the condition of Proposition 2.4, the following hold for X ∈D.

1. i∗i!X ∼= X (resp., X ∼= j∗j∗X ) in D if and only if $X (resp., %X ) is an isomorphism.
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2. j!j∗X ∼= X (resp., X ∼= i∗i∗X ) in D if and only if &X (resp., 'X ) is an isomorphism.

For X ∈Mod C◦ ⊗ A; Q∈Mod B◦ ⊗ A, let

)Q(X ) :X ⊗A HomA(Q; A) → HomA(Q; X )

be the morphism in Mod C◦ ⊗ B de<ned by (x ⊗ f �→ (q �→ xf(q))) for x∈X; q∈Q;
f∈HomA(Q; A). We have the following functorial isomorphism of derived functors.

Lemma 2.6. Let k be a commutative ring, A; B; C k-projective k-algebras, BV ·A ∈
D(B◦ ⊗ A) with ResA V · ∈D(A)perf , and V ?· = RHom·A(V

·; A)∈D(A◦ ⊗ B). Then we
have the (@-functorial) isomorphism:

)V : − ·⊗L
AV ?· ∼→RHom·A(V

·;−)

as derived functors D(C◦ ⊗ A) → D(C◦ ⊗ B).

Proof. It is easy to see that we have a @-functorial morphism of derived functors
D(C◦ ⊗ A) → D(C◦ ⊗ B):

)V : − ·⊗L
AV ?· → RHom·A(V

·;−):

Let P· ∈Kb(proj A) which has a quasi-isomorphism P· → ResA V ·. Then we have a
@-functorial isomorphism of @-functors D(C◦ ⊗ A) → D(C◦)

)P : − ·⊗AHom·A(P
·; A) ∼→Hom·A(P

·;−):

Since ResC◦ ◦ )V
∼= )P and H·()P) is an isomorphism, )V is a @-functorial isomor-

phism.

Concerning adjoints of the derived functor—
·⊗L

AV ?·, by direct calculation we have
the following properties.

Lemma 2.7. Let k be a commutative ring, A; B; C k-projective k-algebras, BV ·A ∈
D(B◦⊗A) with ResA V · ∈D(A)perf , and AV ?·

B =RHom·A(V
·; A)∈D(A◦⊗B). Then the

following hold.

1. )V induces the adjoint isomorphism:

- : HomD(C◦⊗B)(−; ?
·⊗L

AV ?·) ∼→HomD(C◦⊗A)(−
·⊗L

BV ·; ?):

Therefore, we get the morphism .V :V ?· ·⊗L
BV · → A in D(Ae) (resp., #V :B →

V ·
·⊗L

AV ?· in D(Be)) from the adjunction arrow of A∈D(Ae) (resp., B∈D(Be)).

2. In the adjoint isomorphism of 1, the adjunction arrow − ·⊗L
AV ?· ·⊗L

BV · → 1D(C◦⊗A)

(resp., 1D(C◦⊗B) → − ·⊗L
BV ·

·⊗L
AV ?·) is isomorphic to − ·⊗L

A.V (resp., − ·⊗L
B#V ).

3. In the adjoint isomorphism:

HomD(C◦⊗A)(−;RHom·B(V
?·; ?)) ∼→HomD(C◦⊗B)(−

·⊗L
AV ?·; ?);
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the adjunction arrow 1D(C◦⊗A) → RHom·B(V
?·;− ·⊗L

AV ?·) (resp., RHom·B(V
?·;−)

·⊗L
AV ?· → 1D(C◦⊗B)) is isomorphic to RHom·A(.V ;−) (resp., RHom·B(#V ;−)).

Let A; B be k-projective algebras over a commutative ring k. For a partial tilting
complex P· ∈D(A) with B ∼= EndD(A)(P

·), let BV ·A be the associated bimodule complex
of P·. By Lemma 2.6, we can take

jV ! =− ·⊗L
BV · :D(B) → D(A);

j∗V =− ·⊗L
AV ?· ∼= RHom·A(V

·;−) :D(A) → D(B);

jV∗ = RHom·B(V
?·;−) :D(B) → D(A):

By Lemma 2.7, we get the triangle �V in D(Ae):

V ?· ·⊗L
BV · .V→A

0V→�·A(V
·) → V ?· ·⊗L

BV ·[1]:

Let KP be the full subcategory of D(A) consisting of complexes X · such that
HomD(A)(P

·; X ·[i]) = 0 for all i∈Z.

Theorem 2.8. Let A; B be k-projective algebras over a commutative ring k; P· ∈D(A)
a partial tilting complex with B ∼= EndD(A)(P

·), and let BV ·A be the associated bi-
module complex of P·. Take

i∗V =− ·⊗L
A�·A(V

·) :D(A) → KP; jV ! =− ·⊗L
BV · :D(B) → D(A);

iV∗=the embedding colonKP →D(A); j∗V=− ·⊗L
AV ?· :D(A)→D(B);

i!V = RHom·A(�
·
A(V

·);−) :D(A) → KP; jV∗ = RHom·B(V
?·;−) :D(B) → D(A);

then {KP; D(A); D(B); i∗V ; iV∗; i!V ; jV !; j∗V ; jV∗}:
KP

←
�D(A)

←
�D(B)

is a recollement.

Proof. Since it is easy to see that )V (V ·)◦#V is the left multiplication morphism B →
RHom·A(V

·; V ·), by the remark of De<nition 1.5, #V :B → V ·
·⊗L

AV ?· is an isomorphism
in D(Be). By Lemma 2.7, {D(A); D(B); jV !; j∗V ; jV∗} is a bilocalization. By Proposition
2.3, there exist i∗V :D(A) → KP , iV∗ = the embedding :KP → D(A), i!V :D(A) →
KP such that {KP; D(A); D(B); i∗V ; iV∗; i!V ; jV !; j∗V ; jV∗} is a recollement. For X · ∈D(A),

by Lemma 2.7, X ·
·⊗L

A.V is isomorphic to the adjunction arrow jV !j∗V (X
·) → X ·.

Then X ·
·⊗L

A0V is isomorphic to the adjunction arrow X · → iV∗i∗V (X
·), and hence

we can take i∗V = − ·⊗L
A�·A(V

·) by Propositions 2.2 and 2.4. Similarly, we can take
i!V = RHom·A(�

·
A(V

·);−).

In general, the above �·A(V
·) and �·A(e) in Proposition 2.17 are unbounded com-

plexes. Then, by the following corollary we have unbounded complexes which are
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compact objects in KP and in DA=AeA(A). This shows that recollements of Theorem
2.8 and Proposition 2.17 are out of localizations of triangulated categories which Nee-
man treated in [13].

Corollary 2.9. Under the condition Theorem 2.8, the following hold:

1. KP is closed under coproducts in D(A).

2. For any X · ∈D(A)perf , X ·
·⊗L

A�·A(V
·) is a compact object in KP .

Proof. 1. Since P· is a compact object in D(A), it is trivial.
2. Since we have an isomorphism:

HomD(A)(i
∗
V X ·; Y ·) ∼= HomD(A)(X

·; Y ·)

for any Y · ∈KP , we have the statement.

Corollary 2.10. Let A; B be k-projective algebras over a commutative ring k, P· ∈
D(A) a partial tilting complex with B ∼= EndD(A)(P

·), and let BV ·A be the associated
bimodule complex of P·. Then the following hold.

1. �·A(V
·) ∼= �·A(V

·)
·⊗L

A�·A(V
·) in D(Ae).

2. RHom·A(�
·
A(V

·); �·A(V
·)) ∼= �·A(V

·) in D(Ae).

Proof. Since �·A(V
·)
·⊗L

AV ?·[n] ∼= j∗V iV∗i∗V (A[n]) = 0 for all n; �·A(V
·)
·⊗L

A0V is an iso-
morphism in D(Ae). Similarly, since

RHom·A(V
?· ·⊗L

BV ·; �·A(V
·))[n]∼=RHom·B(V

?·; �·A(V
·)
·⊗L

AV ?·)[n]

= 0

for all n, RHom·A(0V ; �·A(V
·)) is an isomorphism in D(Ae).

Lemma 2.11. Let D be a triangulated category with coproducts. Then the following
hold:

1. For morphisms of triangles in D (n¿ 1):

Ln −−−−−→ Mn −−−−−→ Nn −−−−−→ Ln[1]�
�

�
�

Ln+1−−−−−→Mn+1−−−−−→Nn+1−−−−−→Ln+1[1];

there exists a triangle
∐

Ln → ∐
Ln → L → ∐

Ln[1] such that we have the
following triangle in D:

L → hocolim→ Mn → hocolim→ Nn → L[1]:
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2. For a family of triangles in D :Cn → Xn−1 → Xn → Cn[1] (n¿ 1), with X0 = X ,
there exists a family of triangles in D:

Cn[− 1] → Yn−1 → Yn → Cn (n¿ 1)

with Y0 = 0, such that we have the following triangle in D:

Y → X → hocolim→ Xn → Y [1];

where
∐

Yn →∐
Yn → Y →∐

Yn[1] is a triangle in D.

Proof. 1. By the assumption, we have a commutative diagram:∐
Ln −−−−−→

∐
Mn −−−−−→

∐
Nn −−−−−→

∐
Ln[1]� 1−shift

� 1−shift

∐
Ln −−−−−→

∐
Mn −−−−−→

∐
Nn −−−−−→

∐
Ln[1]:

According to Beilinson [1, Proposition 1.1.11], we have the statement.
2. By the octahedral axiom, we have a commutative diagram:

where all lines are triangles in D. By 1, we have the statement.

For an object M in an additive category B, we denote by Add M (resp., add M)
the full subcategory of B consisting of objects which are isomorphic to summands of
coproducts (resp., <nite coproducts) of copies of M .

De�nition 2.12. Let A be a k-projective algebra over a commutative ring k, and P· ∈
D(A) a partial tilting complex. For X · ∈D−(A), there exists an integer r such that
HomD(A)(P

·; X ·[r + i]) = 0 for all i ¿ 0. Let X ·0 = X ·. For n¿ 1, by induction we
construct a triangle:

P·n[n − r − 1]
gn→X ·n−1

hn→X ·n → P·n[n − r]

as follows. If HomD(A)(P
·; X ·n−1[r − n + 1]) = 0, then we set P·n = 0. Otherwise, we

take P·n ∈Add P· and a morphism g′n :P
·
n → X ·n−1[r − n+1] such that HomD(A)(P

·; g′n)
is an epimorphism, and let gn = g′n[n − r − 1]. By Lemma 2.11, we have triangles:

P·n[n − r − 2] → Y ·n−1 → Y ·n → P·n[n − r − 1]
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and Y ·0=0. Then we de<ne ∇·∞(P·; X ·) and �·∞(P·; X ·) to be the complex Y of Lemma
2.11 (2) and hocolim→ X ·n , respectively. Moreover, we have a triangle:

∇·∞(P·; X ·) → X · → �·∞(P·; X ·) → ∇·∞(P·; X ·)[1]:

Lemma 2.13. Let A; B be k-projective algebras over a commutative ring k, P· ∈D(A)
a partial tilting complex with B ∼= EndD(A)(P

·), and BV ·A the associated bimodule
complex of P·. For X · ∈D−(A), we have an isomorphism of triangles in D(A):

Proof. By the construction, we have HomD(A)(P
·; �·∞(P·; X ·)[i]) = 0 for all i, and

then �·∞(P·; X ·)∈ Im iV∗ (see Lemma 4.5). Since jV ! is fully faithful and P· ∈ Im jV !,
it is easy to see Y ·n ∈ Im jV !. Then ∇·∞(P·; X ·)∈ Im jV !, because jV ! commutes with
coproducts. By Proposition 2.2, we complete the proof.

De�nition 2.14. Let A be a k-projective algebra over a commutative ring k, and P· ∈
D(A) a partial tilting complex. Given X · ∈D(A), for n¿ 0, we have a triangle:

∇·∞(P·; �6nX ·) → �6nX · → �·∞(P·; �6nX ·) → ∇·∞(P·; �6nX ·)[1]:

According to Lemma 2.13 and Proposition 2.2, for n¿ 0 we have a morphism of
triangles:

∇·∞(P·; �6nX ·) → �6nX · → �·∞(P·; �6nX ·) → ∇·∞(P·; �6nX ·)[1];

∇·∞(P·; �6n+1X ·) → �6n+1X · → �·∞(P·; �6n+1X ·) → ∇·∞(P·; �6n+1X ·)[1]:

Then we de<ne ∇·∞(P·; X ·) and �·∞(P·; X ·) to be the complex L of Lemma 2.11 (1)
and hocolim→ �·∞(P·; �6nX ·), respectively. Moreover, we have a triangle:

∇·∞(P·; X ·) → X · → �·∞(P·; X ·) → ∇·∞(P·; X ·)[1];

because X · ∼= hocolim→ �6nX ·.

Proposition 2.15. Let A; B be k-projective algebras over a commutative ring k, P· ∈
D(A) a partial tilting complex with B ∼= EndD(A)(P

·), and BV ·A the associated bimodule
complex of P·. For X · ∈D(A), we have an isomorphism of triangles in D(A):
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Proof. By Lemma 2.13, ∇·∞(P·; �6nX ·)∈ Im jV ! and �·∞(P·; �6nX ·)∈ Im iV∗. Since
P· is a perfect complex, HomD(A)(P

·;−) commutes with coproducts. Then we have
�·∞(P·; X ·)∈ Im iV∗. We have also ∇·∞(P·; X ·)∈ Im jV !, because jV ! is fully faithful
and commutes with coproducts. By Proposition 2.2, we complete the proof.

Corollary 2.16. Let A; B be k-projective algebras over a commutative ring k, P· ∈
D(A) a partial tilting complex with B ∼= EndD(A)(P

·), and BV ·A the associated bimodule
complex of P·. For X · ∈D(A), we have isomorphisms in D(A):

X ·
·⊗L

AV ?· ·⊗L
BV · ∼= ∇·∞(P·; X ·);

X ·
·⊗L

A�·A(V
·) ∼= �·∞(P·; X ·):

Proof. By Theorem 2.8 and Proposition 2.15, we complete the proof.

For an idempotent e of a ring A, by HomA(eA; A) ∼= Ae, we have

je
A! =− ·⊗L

eAeeA :D(eAe) → D(A);

je∗
A =−⊗A Ae ∼= HomA(eA;−) :D(A) → D(eAe);

je
A∗ = RHom·eAe(Ae;−) :D(eAe) → D(A):

And we also get the triangle �e in D(Ae):

Ae
·⊗L

eAe eA
.e→ A

0e→ �·A(e) → Ae
·⊗L

eAeeA[1]:

Throughout this paper, we identify Mod A=AeA with the full subcategory of Mod A
consisting of A-modules M such that HomA(eA; M)=0. We denote by D∗A=AeA(A) the full
subcategory of D∗(A) consisting of complexes whose cohomologies are in Mod A=AeA,
where ∗= nothing, +;−; b. According to Theorem 2.8, we have the following.

Proposition 2.17. Let A be a k-projective algebra over a commutative ring k; e an
idempotent of A, and let

ie∗A =− ·⊗L
A�·A(e) :D(A) → DA=AeA(A); je

A! =− ·⊗L
eAeeA :D(eAe) → D(A);

ieA∗ = the embedding :DA=AeA(A) → D(A); je∗
A =−⊗A Ae :D(A) → D(eAe);

ie!A = RHom·A(�
·
A(e);−) :D(A) → DA=AeA(A);

je
A∗ = RHom·eAe(Ae;−) :D(eAe) → D(A):

Then {DA=AeA(A); D(A); D(eAe); ie∗A ; ieA∗; i
e!
A ; je

A!; j
e∗
A ; je

A∗} is a recollement.

Remark 2.18. According to Proposition 1.1 and Lemma 2.7, it is easy to see that
{DC◦⊗A=AeA(C◦ ⊗ A); D(C◦ ⊗ A); D(C◦ ⊗ eAe); ie∗A ; ieA∗; i

e!
A ; je

A!; j
e∗
A ; je

A∗} is also a recolle-
ment for any k-projective k-algebra C.
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Corollary 2.19. Let A be a k-projective algebra over a commutative ring k, and e an
idempotent of A, then the following hold:

1. �·A(e)
·⊗L

A�·A(e) ∼= �·A(e) in D(Ae).
2. RHom·A(�

·
A(e); �

·
A(e)) ∼= �·A(e) in D(Ae).

3. We have the following isomorphisms in Mod Ae:

A=AeA ∼= EndD(A)(�
·
A(e)) ∼= H0(�·A(e)):

Moreover, the ;rst isomorphism is a ring isomorphism.

Proof. 1 and 2. By Corollary 2.10.
3. Applying HomD(A)(−; �·A(e)) to �e, we have an isomorphism in Mod Ae:

HomD(A)(�
·
A(e); �

·
A(e)) ∼= HomD(A)(A; �·A(e));

because HomD(A)(Ae
·⊗L

eAeeA; �·A(e)[n]) ∼= HomD(A)(j
e
A!j

e∗
A (A); ieA∗i

e!
A (A)[n]) = 0 for all

n∈Z by Proposition 2.3, 1. Applying HomD(A)(A;−) to �e, we have an isomorphism
between exact sequences in Mod Ae:

HomD(A)(A; Ae
·⊗L

eAeeA)−→HomD(A)(A; A)−→HomD(A)(A; �·A(e)) −→ 0;� 

� 


� 

Ae ⊗eAe eA −−−−−−−−−→ A −−−−−−−−−→ A=AeA −−−−−−−−−→ 0:

Consider the inverse of HomD(A)(�
·
A(e); �

·
A(e))

∼→HomD(A)(A; �·A(e)), then it is easy
to see that HomD(A)(A; A) → HomD(A)(A; �·A(e)) → HomD(A)(�

·
A(e); �

·
A(e)) is a ring

morphism.

Remark 2.20. It is not hard to see that the above triangle �e also play the same role
in the left module version of Corollary 2.19. Then we have also

1. RHom∗A◦(�·A(e); �
·
A(e)) ∼= �·A(e) in D(Ae).

2. We have a ring isomorphism (A=AeA)◦ ∼= EndD(A◦)(�
·
A(e)).

3. Equivalences between recollements

In this section, we study triangle equivalences between recollements induced by
idempotents.

De�nition 3.1. Let {Dn;D′′n ; jn∗; j∗n} (resp., {Dn;D′′n ; jn!; j∗n ; jn∗}) be a colocalization
(resp., a bilocalization) of Dn (n = 1; 2). If there are triangle equivalences F :D1 →
D2; F ′′ :D′′1 → D′′2 such that all squares are commutative up to (@-functorial)
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isomorphism in the diagram:

then we say that a colocalization {D1;D′′1 ; jn∗; j∗1} (resp., a bilocalization {D1;D′′1 ;
j1!; j∗1 ; j1∗}) is triangle equivalent to a colocalization {D2;D′′2 ; jn∗; j∗2} (resp., a bilocal-
ization
{D2;D′′2 ; jn!; j∗2 ; j2∗}).

For recollements {D′n;Dn;D′′n ; i
∗
n ; in∗; i!n; jn!; j∗n ; jn∗} (n = 1; 2), if there are triangle

equivalences F ′ :D′1 → D′2, F :D1 → D2; F ′′ :D′′1 → D′′2 such that all squares are
commutative up to (@-functorial) isomorphism in the diagram:

then we say that a recollement {D′1;D1;D′′1 ; i
∗
1 ; i1∗; i!1; j1!; j

∗
1 ; j1∗} is triangle equivalent

to a recollement {D′2;D2;D′′2 ; i
∗
2 ; i2∗; i!2; j2!; j

∗
2 ; j2∗}.

We simply write a localization {D;D′′}, etc. for a localization {D;D′′; j∗; j∗}, etc.
when we do not confuse them. Parshall and Scott showed the following.

Proposition 3.2 (Parshall and Scott [15]). Let {D′n;Dn;D′′n } be recollements (n=1; 2).
If triangle equivalences F :D1 → D2, F ′′ :D′′1 → D′′2 induce that a bilocalization
{D1;D′′1 } is triangle equivalent to a bilocalization {D2;D′′2 }, then there exists a unique
triangle equivalence F ′ :D′1 → D′2 up to isomorphism such that F ′; F; F ′′ induce that
a recollement {D′1;D1;D′′1 } is triangle equivalent to a recollement {D′2;D2;D′′2 }.

Lemma 3.3. Let A be a k-projective algebra over a commutative ring k, and e an
idempotent of A. For X · ∈D(A)perf , the following are equivalent.

1. X · ∼= P· in D(A) for some P· ∈Kb(add eA).
2. je

A!j
e∗
A (X ·) ∼= X · in D(A).

3. &X is an isomorphism, where & : je
A!j

e∗
A → 1D(A) is the adjunction arrow.

Proof. 1 ⇒ 2. Since je
A!j

e∗
A (P) ∼= P in Mod A for any P ∈ add eA, it is trivial.

2 ⇔ 3. By Corollary 2.5.
3 ⇒ 1. Let {Y ·i }i∈I be a family of complexes of D(A). By Proposition 1.3, we have

isomorphisms:∐
i∈I

HomD(eAe)(j
e∗
A (X ·); je∗

A (Y ·i ))∼=
∐
i∈I

HomD(A)(j
e
A!j

e∗
A (X ·); Y ·i )
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∼=
∐
i∈I

HomD(A)(X
·; Y ·i )

∼=HomD(A)

(
X ·;
∐
i∈I

Y ·i

)

∼=HomD(A)

(
je
A!j

e∗
A (X ·);

∐
i∈I

Y ·i

)

∼=HomD(eAe)

(
je∗
A (X ·); je∗

A

(∐
i∈I

Y ·i

))

∼=HomD(eAe)

(
je∗
A (X ·);

∐
i∈I

je∗
A (Y ·i )

)
:

Since any complex Z · of D(eAe) is isomorphic to je∗
A (Y ·) for some Y · ∈D(A), by

Proposition 1.3 the above isomorphisms imply that je∗
A (X ·) is a perfect complex of

D(eAe). Therefore, je
A!j

e∗
A (X ·) is isomorphic to P· for some P· ∈Kb(add eA).

Lemma 3.4. Let A; B be k-projective algebras over a commutative ring k, and e; f
idempotents of A; B, respectively. For X ·; Y · ∈D(B◦ ⊗ A), we have an isomorphism
in D((fBf)e):

fB ⊗B RHom·A(X
·; Y ·)⊗B Bf ∼= RHom·A(fX ·; fY ·):

Proof. First, by Proposition 1.1, 2, we have isomorphisms in D((fBf)◦ ⊗ B):

fB ⊗B RHom·A(X
·; Y ·)∼=HomB(Bf;RHom·A(X

·; Y ·))

∼=RHom·A(X
·;HomB(Bf; Y ·))

∼=RHom·A(X
·; fY ·):

Then we have isomorphisms in D((fBf)e):

fB ⊗B RHom·A(X
·; Y ·)⊗B Bf ∼=RHom·A(X

·; fY ·)⊗B Bf

∼=HomB(fB;RHom·A(X
·; fY ·))

∼=RHom·A(fX ·; fY ·):

Theorem 3.5. Let A; B be k-projective algebras over a commutative ring k, and e; f
idempotents of A; B, respectively. Then the following are equivalent.

1. The colocalization {D(A); D(eAe); je
A!; j

e∗
A } is triangle equivalent to the colocaliza-

tion {D(B); D(fBf); jf
B!; j

f∗
B }.
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2. There is a tilting complex P· ∈Kb(proj A) such that P· = P·1 ⊕ P·2 in Kb(proj A)
satisfying:
(a) B ∼= EndD(A)(P

·),
(b) under the isomorphism of (a), f∈B corresponds to the canonical morphism

P· → P·1 → P· ∈EndD(A)(P
·),

(c) P·1 ∈Kb(add eA), and je∗
A (P·1) is a tilting complex for eAe.

3. The recollement {DA=AeA(A); D(A); D(eAe)} is triangle equivalent to the recollement
{DB=BfB(B); D(B); D(fBf)}.

Proof. 1 ⇒ 2. Let G :D(B) → D(A); G′′ :D(fBf) → D(eAe) be triangle equivalences
such that

is commutative up to isomorphism. Then G(B) and G′′(fBf) are tilting complexes
for A and for eAe with B ∼= EndD(A)(G(B)), fBf ∼= EndD(eAe)(G

′′(B)), respectively.
Considering G(B) = G(fB) ⊕ G((1 − f)B), by the above commutativity, we have
isomorphisms:

G(fB)∼= Gjf
B!(fBf)

∼= je
A!G
′′(fBf)

∼= je
A!G
′′jf∗

B (fB)

∼= je
A!j

e∗
A G(fB);

je∗
A G(fB)∼= G′′jf∗

B (fB)

∼= G′′(fBf):

By Lemma 3.3, G(fB) is isomorphic to a complex of Kb(add eA), and je∗
A G(fB) is a

tilting complex for eAe.
2 ⇒ 3. Let BT ·A be a two-sided tilting complex which is induced by P·A. By the

assumption, ResA(fT ·) ∼= P·1 in D(A). By Lemma 3.3, &fT : je
A!j

e∗
A (fT ·) ∼→fT · is an

isomorphism in D(A). By Remark 2.18, Proposition 1.1 and 5, we have fT ·e
·⊗L

eAeeA ∼=
fT · in D((fBf)◦⊗A). By Proposition 1.8 and Lemma 3.4, we have isomorphisms in
D((fBf)e):

fBf ∼=RHom·A(fT ·; fT ·)

∼=RHom·A(fT ·e
·⊗L

eAeeA; fT ·e
·⊗L

eAeeA)

∼=RHom·A(fT ·e; fT ·e
·⊗L

eAeeAe)

∼=RHom·eAe(fT ·e; fT ·e):
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By taking cohomology, we have

fBf ∼= HomD(eAe)(fT ·e; fT ·e):

By the assumption, fT ·e ∼= je∗
A (fT ·) ∼= je∗

A (P·1) is a tilting complex for eAe. Since it
is easy to see the above isomorphism is induced by the left multiplication, by Rickard
[17, Lemma 3.2] and Keller [10, Theorem], fT ·e is a two-sided tilting complex in
D((fBf)◦ ⊗ eAe). Let

F = RHom·A(T
·;−) :D(B◦ ⊗ A) → D(B◦ ⊗ B);

F ′′ = RHom·eAe(fT ·e;−) :D(B◦ ⊗ eAe) → D(B◦ ⊗ fBf);

G =− ·⊗L
BT · :D(B◦ ⊗ B) → D(B◦ ⊗ A);

G′′ =− ·⊗L
fBffT ·e :D(B◦ ⊗ eAe) → D(B◦ ⊗ fBf):

Using the same symbols, consider a triangle equivalence between colocalizations
{D(B◦⊗A); D(B◦⊗eAe); je

A!; j
e∗
A } and {D(B◦⊗B); D(B◦⊗fBf); jf

B!; j
f∗
B }. And we use

the same symbols

F = RHom·A(T
·;−) :D(A) → D(B);

F ′′ = RHom·eAe(fT ·e;−) :D(eAe) → D(fBf);

G =− ·⊗L
BT · :D(B) → D(A); G′′ =− ·⊗L

fBffT ·e :D(eAe) → D(fBf):

For any X · ∈D(B◦⊗A) (resp., X · ∈D(A)), by Proposition 1.1, 3, we have isomorphisms
in D(B◦ ⊗ fBf) (resp., D(fBf)):

jf∗
B F(X ·)∼=RHom·B(fB;RHom·A(T

·; X ·))

∼=RHom·A(fT ·; X ·)

∼=RHom·A(j
e
A!j

e∗
A (fT ·); X ·)

∼=RHom·eAe(j
e∗
A (fT ·); je∗

A (X ·))

∼= F ′′je∗
A (X ·):

Since G; G′′ are quasi-inverses of F; F ′′, respectively, for B∈D(B◦ ⊗ B) we have
isomorphisms in D(B◦ ⊗ eAe):

T ·e ∼= je∗
A G(B)

∼= G′′jf∗
B (B)

∼= Bf
·⊗L

fBffT ·e:
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Therefore, for any Y · ∈D(eAe), we have isomorphisms in D(B):

jf
B∗F
′′(Y ·)∼=RHom∗fBf(Bf;RHom·eAe(fT ·e; Y ·))

∼=RHom·B(Bf
·⊗L

fBffT ·e; Y ·)

∼=RHom·B(T
·e; Y ·)

∼=RHom·B(j
e∗
A (T ·); Y ·)

∼=RHom·B(T
·; je

A∗(Y
·))

∼= Fje
A∗(Y

·):

For any Z · ∈D(fBf), we have isomorphisms in D(A):

je
A!G
′′(Z ·) = Z ·

·⊗L
fBffT ·e

·⊗L
eAeeA

∼= Z ·
·⊗L

fBffT ·

∼= Z ·
·⊗L

fBffB ⊗B T ·

∼= G′′jf
B!(Z

·):

Since F; F ′′ are quasi-inverses of G; G′′, respectively, we have jf
B!F
′′ ∼= Fje

A!. By
Proposition 3.2, we have the statement.

3 ⇒ 1. It is trivial.

De�nition 3.6. Let A be a k-projective algebra over a commutative ring k, and e
an idempotent of A. We call a tilting complex P· ∈Kb(proj A) a recollement tilting
complex related to an idempotent e of A if P· satis<es the condition of Theorem 3.5
and 2. In this case, we call an idempotent f∈B an idempotent corresponding to e.

We see the following symmetric properties of a two-sided tilting complex which is
induced by a recollement tilting complex. We will call the following two-sided tilting
complex a two-sided recollement tilting complex BT ·A related to idempotents e∈A and
f∈B.

Corollary 3.7. Let A; B be k-projective algebras over a commutative ring k, and e; f
idempotents of A; B, respectively. Let BT ·A be a two-sided tilting complex such that

(a) fT ·e∈D((fBf)◦ ⊗ eAe) is a two-sided tilting complex and

(b) fT ·e
·⊗L

eAeeA ∼= fT · in D((fBf)◦ ⊗ A).

Then the following hold:

1. Bf
·⊗L

fBffT ·e ∼= T ·e in D(B◦ ⊗ eAe).
2. eT∨·f is the inverse of fT ·e, where T∨· is the inverse of T ·.
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3. Ae
·⊗L

eAeeT∨·f ∼= T∨·f in D(A◦ ⊗ fBf).

4. eT∨·f
·⊗L

fBffB ∼= eT∨· in D((eAe)◦ ⊗ B).

Proof. Here we use the same symbols in the proof 2 ⇒ 3 of Theorem 3.5. It is
easy to see that F and F ′′ induce a triangle equivalence between bilocalizations
{D(B◦⊗A); D(B◦⊗ eAe); je

A!; j
e∗
A ; je

A∗} and {D(B◦⊗B); D(B◦⊗fBf); jf
B!; j

f∗
B ; jf

B∗}. By
the proof of Theorem 3.5, we get the statement 1, and jf∗

B F ∼= F ′′je∗
A ; jf

B!F
′′ ∼= Fje

A!

and jf
B∗F
′′ ∼= Fje

A∗. Then we have isomorphisms jf∗
B Fje

A!
∼= F ′′je∗

A je
A!

∼= F ′′. Since

− ·⊗L
AT∨·B

∼= F , we have isomorphisms eT∨·f ∼= RHom·eAe(fT ·e; eAe) in D((eAe)◦ ⊗
fBf), and − ·⊗L

eAeeT∨·f ∼= F ′′. This means that eT∨·f is the inverse of a two-sided
tilting complex fT ·e. Similarly, jf∗

B F ∼= F ′′je∗
A and jf

B!F
′′ ∼= Fje

A! imply the statements
3 and 4, respectively.

Corollary 3.8. Let A; B be k-projective algebras over a commutative ring k, and e; f
idempotents of A; B, respectively. For a two-sided recollement tilting complex BT ·A
related to idempotents e; f, we have an isomorphism between triangles T ·

·⊗L
A�e and

�f
·⊗L

BT · in D(B◦ ⊗ A):

Proof. According to Proposition 3.2, for the triangle equivalence between colocaliza-
tions in the proof of Corollary 3.7 there exists F ′ :DB◦⊗B=BfB(B◦⊗B) → DB◦⊗A=AeA(B◦⊗
A) such that the recollement

{DB◦⊗B=BfB(B◦ ⊗ B); D(B◦ ⊗ B); D(B◦ ⊗ fBf); if∗B ; ifB∗; i
f!
B ; jf

B!; j
f∗
B ; jf

B∗}
is triangle equivalent to the recollement

{DB◦⊗A=AeA(B◦ ⊗ A); D(B◦ ⊗ A); D(B◦ ⊗ eAe); ie∗A ; ieA∗; i
e!
A ; je

A!; j
e∗
A ; je

A∗}:

By Proposition 1.1, Lemma 2.7, the triangle T ·
·⊗L

A�e is isomorphic to the following
triangle in D(B◦ ⊗ A):

je
A!j

e∗
A (T ·) → T · → ieA∗i

e∗
A (T ·) → je

A!j
e∗
A (T ·)[1]:

On the other hand, the triangle �f
·⊗L

BT · is isomorphic to the following triangle in
D(B◦ ⊗ A):

Fjf
B!j

f∗
B (B) → F(B) → FifB∗i

f∗
B (B) → Fjf

B!j
f∗
B (B)[1]:

Since F(B) ∼= T ·, Fjf
B!j

f∗
B (B) ∼= je

A!F
′′jf∗

B (B) ∼= je
A!j

e∗
A F(B), FifB∗i

f∗
B (B) ∼= ieA∗F

′if∗B (B) ∼=
ieA∗i

e∗
A F(B), by Proposition 2.2, we complete the proof.



J.-I. Miyachi / Journal of Pure and Applied Algebra 183 (2003) 245–273 265

Corollary 3.9. Let A; B be k-projective algebras over a commutative ring k, and e; f
idempotents of A; B, respectively. For a two-sided recollement tilting complex BT ·A
related to idempotents e; f, the following hold:

1. T ·
·⊗L

A�·A(e) ∼= �·B(f)
·⊗L

BT · in D(B◦ ⊗ A).

2. �·A(e)
·⊗L

AT∨· ∼= T∨·
·⊗L

B�·B(f) in D(A◦ ⊗ B).

Proof. 1. By Corollary 3.8.
2. We have isomorphisms in D(A◦ ⊗ B):

�·A(e)
·⊗L

AT∨· ∼= T∨·
·⊗L

BT ·
·⊗L

A�·A(e)
·⊗L

AT∨·

∼= T∨·
·⊗L

B�·B(f)
·⊗L

BT ·
·⊗L

AT∨·

∼= T∨·
·⊗L

B�·B(f):

De�nition 3.10. Let A; B be k-projective algebras over a commutative ring k, and e; f
idempotents of A; B, respectively. For a two-sided recollement tilting complex BT ·A
related to idempotents e; f, we de<ne

�·T = T ·
·⊗L

A�·A(e)∈D(B◦ ⊗ A); �∨·T = �·A(e)
·⊗L

AT∨· ∈D(A◦ ⊗ B):

Proposition 3.11. Let A; B be k-projective algebras over a commutative ring k, and
e; f idempotents of A; B, respectively. For a two-sided recollement tilting complex
BT ·A related to idempotents e; f, let

F ′ = RHom·A(�
·
T ;−) :DA=AeA(A) → DB=BfB(B);

F = RHom·A(T
·;−) :D(A) → D(B);

F ′′ = RHom·eAe(fT ·e;−) :D(eAe) → D(fBf):

Then the following hold:

1. We have an isomorphism F ′ ∼= − ·⊗L
A�∨·T .

2. A quasi-inverse G′ of F ′ is isomorphic to RHom·B(�
∨·
T ;−) ∼= − ·⊗L

B�·T .
3. F ′; F; F ′′ induce that the recollement {DA=AeA(A); D(A); D(eAe)} is triangle equiv-

alent to the recollement {DB=BfB(B); D(B); D(fBf)}.

Proof. According to Proposition 3.2, F ′ exists and satis<es F ′ ∼= if∗B FieA∗ ∼= if!
B FieA∗.

By Proposition 2.17, we have isomorphisms

if∗B FieA∗ ∼=RHom·A(T
·;−)

·⊗L
B�·B(f)

∼=− ·⊗L
AT∨·

·⊗L
B�·B(f);
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if!
B FieA∗ ∼=RHom·B(�

·
B(f);RHom·A(T

·;−))

∼=RHom·A(�
·
B(f)

·⊗L
AT ·;−):

Let G = RHom·B(T
∨·;−). Since G′ ∼= ie∗A GifB∗ ∼= ie!B GifB∗, we have isomorphisms

ie∗A GifB∗ ∼=RHom·B(T
∨·;−)

·⊗L
A�·A(e)

∼=− ·⊗L
BT ·

·⊗L
A�·A(e);

ie!A GifB∗ ∼=RHom·A(�
·
A(e);RHom·B(T

∨·;−))

∼=RHom·B(�
·
A(e)

·⊗L
AT∨·;−):

By Corollary 3.9, we complete the proof.

Corollary 3.12. Under the condition of Proposition 3.11, the following hold:

1. ResA�·T is a compact object in DA=AeA(A).
2. ResB◦�·T is a compact object in D(B=BfB)◦(B◦).
3. RHom·A(�

·
T ;−) :D∗A=AeA(A)

∼→D∗B=BfB(B) is a triangle equivalence, where ∗= noth-
ing, +;−; b.

Proof. 1 and 2. By Corollary 2.9, it is trivial.
3. Since for any X · ∈DA=AeA(A) we have isomorphisms in DB=BfB(B):

F ′(X ·) =RHom·A(�
·
T ; X ·)

=RHom·A(T
· ·⊗L

A�·A(e); X
·)

∼=RHom·A(T
·;RHom·A(�

·
A(e); X

·))

∼=RHom·A(T
·; X ·);

we have Im F ′|D∗
A=AeA(A)

⊂ D∗B=BfB(B), where ∗= nothing, +;−; b. Let G′=RHom·B(�
∨·
T ;

−), then we have also Im G′|D∗
B=BfB(B)

⊂ D∗A=AeA(A), where ∗= nothing, +;−; b. Since

G′ is a quasi-inverse of F ′, we complete the proof.

Proposition 3.13. Let A; B be k-projective algebras over a commutative ring k, and
e; f idempotents of A; B, respectively. For a two-sided recollement tilting complex
BT ·A related to idempotents e; f, the following hold:

1. RHom·A(�
·
T ; �·T ) ∼= �·T

·⊗L
A�∨·T

∼= �·B(f) in D(Be).

2. RHom∗B◦(�·T ; �·T ) ∼= �∨·T

·⊗L
B�·T ∼= �·A(e) in D(Ae).

3. We have a ring isomorphism EndD(A)(�
·
T ) ∼= B=BfB.

4. We have a ring isomorphism EndD(B◦)(�
·
T ) ∼= (A=AeA)◦.
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Proof. 1. By Corollaries 2.19, 3.9, Proposition 3.11, we have isomorphisms in D(Be):

RHom·A(�
·
T ; �·T )∼= �·T

·⊗L
A�∨·T

∼= �·B(f)
·⊗L

BT ·
·⊗L

AT∨·
·⊗L

B�·B(f)

∼= �·B(f)
·⊗L

B�·B(f)

∼= �·B(f):

2. By Remark 2.20, Corollary 2.19, we have isomorphisms in D(Ae):

RHom∗B◦(�·T ; �·T ) =RHom∗B◦(T ·
·⊗L

A�·A(e); T
· ·⊗L

A�·A(e))

∼=RHom∗A◦(�·A(e);RHom∗B◦(T ·; T ·
·⊗L

A�·A(e)))

∼=RHom∗A◦(�·A(e); �
·
A(e))

∼= �·A(e)

and have isomorphisms in D(Ae):

�∨·T

·⊗L
B�·T ∼= �·A(e)

·⊗L
AT∨·

·⊗L
BT ·

·⊗L
A�·A(e)

∼= �·A(e)
·⊗L

A�·A(e)

∼= �·A(e):

3. By Corollaries 2.19 and 3.9, we have ring isomorphisms:

EndD(A)(�
·
T )∼=EndD(B)(�

·
T

·⊗L
AT∨·)

∼=EndD(B)(�
·
B(f)

·⊗L
BT ·

·⊗L
AT∨·)

∼=EndD(B)(�
·
B(f))

∼= B=BfB:

4. By taking cohomology of the isomorphism of 2, we have the statement by Remark
2.20.

We give some tilting complexes satisfying the following proposition in Section 4.

Proposition 3.14. Let A; B be k-projective algebras over a commutative ring k; e an
idempotent of A, P· a recollement tilting complex related to e, and B ∼= EndD(A)(P

·).

If P·
·⊗L

A�·A(e) ∼= �·A(e) in D(A), then the following hold.

1. A=AeA ∼= B=BfB as a ring, where f is an idempotent of B corresponding to e.
2. The standard equivalence RHom·A(T

·;−) :D(A) → D(B) induces an equivalence
R0 Hom·A(T

·;−)|Mod A=AeA :Mod A=AeA → Mod B=BfB, where BT ·A is the associated
two-sided tilting complex of P·.
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Proof. 1. By the assumption, we have an isomorphism ResA�·T ∼= ResA�·A(e) in D(A).
By Corollary 2.19, Proposition 3.13, we have the statement.

2. Let D0
A=AeA(A) (resp., D0

B=BfB(B)) be the full subcategory of DA=AeA(A) (resp.,
DB=BfB(B)) consisting of complexes X · with Hi(X ·) = 0 for i �= 0. This category is
equivalent to Mod A=AeA (resp., Mod B=BfB). By Corollary 3.9, we have isomorphisms
in D(B):

�∨·T
∼= �·A(e)

·⊗L
AT∨·

∼= T ·
·⊗L

A�·A(e)
·⊗L

AT∨·

∼= �·B(f)
·⊗L

BT ·
·⊗L

AT∨·

∼= �·B(f):

De<ne

F ′ = RHom·A(�
·
T ;−) :DA=AeA(A) → DB=BfB(B);

G′ = RHom·A(�
∨·
T ;−) :DB=BfB(B) → DA=AeA(A);

then they induce an equivalence between DA=AeA(A) and DB=BfB(B), by Proposition 3.11.
For any X ∈Mod A=AeA, we have isomorphisms in D(k):

ReskRHom·A(�
·
T ; X )∼=ReskRHom·A(�

·
A(e); X )

∼= X:

This means that Im F ′|Mod A=AeA is contained in D0
B=BfB(B). Similarly since we have

isomorphisms in D(k):

ReskRHom·B(�
∨·
T ; Y )∼=ReskRHom·B(�

·
B(f); Y )

∼= Y;

for any Y ∈Mod B=BfB; Im G′|Mod B=BfB is contained in D0
A=AeA(A). Therefore F ′ and

G′ induce an equivalence between D0
A=AeA(A) and D0

B=BfB(B). Since we have isomor-
phisms in D(B):

RHom·A(T
·; X )∼=RHom·A(T

·; ieA∗(X ))

∼= ifB∗RHom·A(�
·
T ; X )

for any X ∈Mod A=AeA, we complete the proof.

4. Tilting complexes over symmetric algebras

Throughout this section, A is a <nite dimensional algebra over a <eld k, and D =
Homk(−; k). A is called a symmetric k-algebra if A ∼= DA as A-bimodules. In the case
of symmetric algebras, the following basic property has been seen in [18].
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Lemma 4.1. Let A be a symmetric algebra over a ;eld k, and P· ∈Kb(proj A). For a
bounded complex X · of ;nitely generated right A-modules, we have an isomorphism:

Hom·A(P
·; X ·) ∼= D Hom·A(X

·; P·):

In particular we have an isomorphism:

HomK(A)(P
·; X ·[n]) ∼= D HomK(A)(X

·; P·[− n])

for any n∈Z.

De�nition 4.2. For a complex X ·, we denote l(X ·) = max{n |Hn(X ·) �= 0} − min{n |
Hn(X ·) �= 0}+ 1. We call l(X ·) the length of a complex X ·.

We rede<ne precisely De<nition 2.12 for constructing tilting complexes.

De�nition 4.3. Let A be a <nite dimensional algebra over a <eld k; M a <nitely
generated A-module, and P· :Ps−r → · · · → Ps−1 → Ps ∈Kb(proj A) a partial tilting
complex of length r + 1. For an integer n¿ 0, by induction, we construct a family
{�·n(P

·; M)}n¿0 of complexes as follows.
Let �·0(P

·; M) = M . For n¿ 1, by induction we construct a triangle ?n(P·; M):

P·n[n + s − r − 1]
gn→�·n−1(P

·; M)
hn→�·n(P

·; M) → P·n[n + s − r]

as follows. If HomK(A)(P
·; �·n−1(P

·; M)[r−s−n+1])=0, then we set P·n=0. Otherwise,
we take P·n ∈ add P· and a morphism g′n :P

·
n → �·n−1(P

·; M)[r − s − n + 1] such that
HomK(A)(P

·; g′n) is a projective cover as EndD(A)(P
·)-modules, and gn=g′n[n+s−r−1].

Moreover, �·∞(P·; M)= hocolim→ �·n(P
·; M) and 
·n(P

·; M)=�·n(P
·; M)⊕P·[n+ s− r].

By the construction, we have the following properties.

Lemma 4.4. For {�·n(P
·; M)}n¿0, we have isomorphisms:

Hr−n+i(�·n(P
·; M)) ∼= Hr−n+i(�·n+j(P

·; M))

for all i ¿ 0 and ∞¿ j¿ 0.

Lemma 4.5. For {�·n(P
·; M)}n¿0 and ∞¿ n¿ r, we have

HomD(A)(P
·; �·n(P

·; M)[i]) = 0

for all i �= r − n − s.

Proof. Applying HomD(A)(P
·;−) to ?n(P·; M) (n¿ 1), in case of 06 n6 r we have

HomD(A)(P
·[s]; �·n(P

·; M)[i]) = 0
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for i ¿ r − n or i ¡ 0. Then in case of n¿ r we have

HomD(A)(P
·; �·n(P

·; M)[i]) = 0

for i �= r − n − s.

Theorem 4.6. Let A be a symmetric algebra over a ;eld k, and P· ∈Kb(proj A) a
partial tilting complex of length r + 1. Then the following are equivalent:

1. Hi(�·r(P
·; A)) = 0 for all i ¿ 0.

2. 
·n(P
·; A) is a tilting complex for any n¿ r.

Proof. According to the construction of �·n(P
·; A), it is clear that 
·n(P

·; A) generates
Kb(proj A). By Lemmas 4.1 and 4.5, it is easy to see that 
·n(P

·; A) is a tilting complex
for A if and only if HomD(A)(�

·
n(P
·; A); �·n(P

·; A)[i])= 0 for all i ¿ 0. By Lemma 4.4,
we have

Hi(�·r(P
·; A))∼=Hi(�·n(P

·; A))

∼=HomD(A)(A; �·n(P
·; A)[i])

for all i ¿ 0. For j6 n, applying HomD(A)(−; �·n(P
·; A)) to ?j(P·; A), we have

HomD(A)(�
·
j(P
·; A); �·n(P

·; A)[i]) ∼= HomD(A)(�
·
j−1(P

·; A); �·n(P
·; A)[i])

for all i ¿ 0, because HomD(A)(P
·[j+s−r−1]; �·n(P

·; A)[i])=0 for all i¿ 0. Therefore
HomD(A)(A; �·n(P

·; A)[i]) = 0 for all i ¿ 0 if and only if HomD(A)(�
·
n(P
·; A); �·n(P

·;
A)[i]) = 0 for all i ¿ 0.

Corollary 4.7. Let A be a symmetric algebra over a ;eld k, P· ∈Kb(proj A) a partial
tilting complex of length r +1, and V · the associated bimodule complex of P·. Then
the following are equivalent:

1. Hi(�·A(V
·)) = 0 for all i ¿ 0.

2. 
·n(P
·; A) is a tilting complex for any n¿ r.

Proof. According to Corollary 2.16, we have �·A(V
·) ∼= �·∞(P·; A) in D(A). Since

Hi(�·∞(P·; A)) ∼= Hi(�·r(P
·; A)) for i ¿ 0, we complete the proof by Theorem 4.6.

In the case of symmetric algebras, we have a complex version of extensions of
classical partial tilting modules which was showed by Bongartz [3].

Corollary 4.8. Let A be a symmetric algebra over a ;eld k, and P· ∈Kb(proj A) a
partial tilting complex of length 2. Then 
·n(P

·; A) is a tilting complex for any n¿ 1.

Proof. By the construction, �i
1(P
·; A) = 0 for i ¿ 0. According to Theorem 4.6 we

complete the proof.

For an object M in an additive category, we denote by n(M) the number of inde-
composable types in add M .
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Corollary 4.9. Let A be a symmetric algebra over a ;eld k, and P· ∈Kb(proj A) a
partial tilting complex of length 2. Then the following are equivalent:

1. P· is a tilting complex for A.
2. n(P·) = n(A).

Proof. We may assume P· :P−1 → P0. Since 
·1(P
·; A)=P·⊕�·1(P

·; A), by Corollary
4.8, we have n(A) = n(
·1(P

·; A)) = n(P·) + m for some m¿ 0. It is easy to see that
m = 0 if and only if add 
·1(P

·; A) = add P·.

Lemma 4.10. Let A : 1D(eAe) → je∗
A je

A! be the adjunction arrow, and let X · ∈D(eAe)
and Y · ∈D(A). For h∈HomD(A)(j

e
A!(X

·); Y ·), let -(h)=je∗
A (h)◦AX , then - : HomD(A)

(je
A!(X

·); Y ·) ∼→HomD(A)(X
·; je∗

A Y ·) is an isomorphism as EndD(A)(X
·)-modules.

Theorem 4.11. Let A be a symmetric algebra over a ;eld k; e an idempotent of
A, Q· ∈Kb(proj eAe) a tilting complex for eAe, and P· = je

A!(Q
·)∈Kb(proj A) with

l(P·) = r + 1. For n¿ r, the following hold.

1. 
·n(P
·; A) is a recollement tilting complex related to e.

2. A=AeA ∼= B=BfB, where B = EndD(A)(

·
n(P
·; A)) and f is an idempotent of B

corresponding to e.

Proof. We may assume P· :P−r → : : : P−1 → P0. Since je
A! is fully faithful, HomD(A)

(P·; P·[i]) = 0 for i �= 0. Consider a family {�·n(P
·; A)}n¿0 of De<nition 4.3 and

triangles ?n(P·; A):

P·n[n − r − 1]
gn→�·n−1(P

·; A) hn→�·n(P
·; A) → P·n[n − r]:

The morphism - of Lemma 4.10 induces isomorphisms between exact sequences in
Mod B:

HomD(A)(P
·; P·n[n − r − 1 + i])−−−−−−−−−→HomD(A)(P

·; �·n−1(P
·; A)[i]) −→� -

� -

HomD(eAe)(Q
·; je∗

A P·n[n − r − 1 + i]) −−−−−→ HomD(eAe)(Q
·; je∗

A �·n−1(P
·; A)[i]) −→

HomD(A)(P
·; �·n(P

·; A)[i])−−−−−−−−−→ HomD(A)(P
·; P·n[n − r + i]);� -

� -

HomD(eAe)(Q
·; je∗

A �·n(P
·; A)[i]) −−−−−→ HomD(eAe)(Q

·; je∗
A P·n[n − r + i])

for all i. By Lemma 4.10, we have je∗
A (?n(P·; A)) ∼= ?n(Q·; je∗

A A) in D(eAe), and then
{je∗

A (�·n(P
·; A))}n¿0

∼= {�·n(Q
·; Ae)}n¿0. By Lemma 4.5, it is easy to see that

HomD(eAe)(Q
·; �·∞(Q·; Ae)[i]) = 0
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for all i∈Z. Since Q· is a tilting complex for eAe, �·∞(Q·; Ae) is a null complex, that is
Hi(�·∞(Q·; Ae))=0 for all i∈Z. By Lemma 4.4, for n¿ r we have Hi(�·n(Q

·; Ae))=0
for all i ¿ 0. By the above isomorphism, for n¿ r we have Hi(�·n(P

·; A))∈Mod A=AeA
for all i ¿ 0. On the other hand, �·n(P

·; A) has the form:

R· :R−n → · · · → R0 → R1 → · · · → Rr−1;

where Ri ∈ add eA for i �= 0, and R0=A⊕R
′0 with R

′0 ∈ add eA. Since HomA(eA; Mod A=
AeA) = 0, it is easy to see that �·n(P

·; A) ∼= �60�·n(P
·; A) (∼= �60 : : : �6r−2�·n(P

·; A)
if r¿ 2). Therefore, Hi(�·n(P

·; A)) = 0 for all i ¿ 0, and hence 
·n(P
·; A) is a rec-

ollement tilting complex related to e by Theorem 4.6. Since 
·n(P
·; A) ∼= P·[n − r] ⊕

R· and je
A!(X

·)
·⊗L

A�·A(e) = ie∗A je
A!(X

·) = 0 for X · ∈D(eAe), we have an isomorphism


·n(P
·; A)

·⊗A�·A(e) ∼= �·A(e) in D(A). By Proposition 3.14, we complete the proof.

Corollary 4.12. Under the condition of Theorem 4.11, let BT ·A be the associated
two-sided tilting complex of 
·n(P

·; A). Then the standard equivalence RHom·A(T
·;−) :

D(A) ∼→D(B) induces an equivalence R0 Hom·A(T
·;−)|Mod A=AeA :Mod A=AeA ∼→

Mod B=BfB.

Proof. By the proof of Theorem 4.11, we have T ·
·⊗L

A�·A(e) ∼= �·A(e) in D(A). By
Proposition 3.14, we complete the proof.

Remark 4.13. For a symmetric algebra A over a <eld k and an idempotent e of
A; eAe is also a symmetric k-algebra. Therefore, we have constructions of tilting com-
plexes with respect to any sequence of idempotents of A. Moreover, if a recollement
{DA=AeA(A); D(A); D(eAe)} is triangle equivalent to a recollement {DB=BfB(B); D(B);
D(fBf)}, then B and fBf are also symmetric k-algebras.

Remark 4.14. According to [17], under the condition of Theorem 4.11 we have a
stable equivalence mod A ∼→mod B which sends A=AeA-modules to B=BfB-modules,
where mod A; mod B are stable categories of <nitely generated modules. In particular,
this equivalence sends simple A=AeA-modules to simple B=BfB-modules.

Remark 4.15. Let A be a ring, and e an idempotent of A such that there is a <nitely
generated projective resolution of Ae in Mod eAe. Then Hoshino and Kato showed that

·n(eA; A) is a tilting complex if and only if ExtiA(A=AeA; eA)= 0 for 06 i ¡ n [8]. In
even this case, we have also A=AeA ∼= B=BfB, where B = EndD(A)(


·
n(eA; A)) and f

is an idempotent of B corresponding to e. Moreover if A; B are k-projective algebras
over a commutative ring k, then by Proposition 3.14 the standard equivalence induces
an equivalence Mod A=AeA ∼→Mod B=BfB.

References

[1] A.A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, AstPerisque 100 (1982) pp. 5–171.



J.-I. Miyachi / Journal of Pure and Applied Algebra 183 (2003) 245–273 273

[2] M. BQockstedt, A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993)
209–234.

[3] K. Bongartz, Tilted Algebras, Lecture Notes in Mathematics, Vol. 903, Springer, Berlin, 1982,
pp. 26–38.

[4] H. Cartan, S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.
[5] E. Cline, B. Parshall, L. Scott, Finite dimensional algebras and highest weight categories, J. Reine

Angew. Math. 391 (1988) 85–99.
[6] R. Hartshorne, Residues and Duality, in: Lecture Notes in Mathematics, Vol. 20, Springer, Berlin, 1966.
[7] M. Hoshino, Y. Kato, Tilting complexes de<ned by idempotent, preprint.
[8] M. Hoshino, Y. Kato, A construction of tilting complexes via colocalization, preprint.
[9] M. Hoshino, Y. Kato, J. Miyachi, On t-structures and torsion theories induced by compact objects,

J. Pure Appl. Algebra 167 (2002) 15–35.
[10] B. Keller, A remark on tilting theory and DG algebras, Manuscripta Math. 79 (1993) 247–252.
[11] S. Mac Lane, Categories for the Working Mathematician, GTM 5, Springer, Berlin, 1972.
[12] J. Miyachi, Localization of triangulated categories and derived categories, J. Algebra 141 (1991)

463–483.
[13] A. Neeman, The connection between the K-theory localization theorem of Thomason, Trobaugh and

Yao and the smashing subcategories of Bouse<eld and Ravenel, Ann. Sci. PEc. Norm. Sup. IV. SPer. 25
(1992) 547–566.

[14] T. Okuyama, Some examples of derived equivalent blocks of <nite groups, preprint, Hokkaido, 1998.
[15] B. Parshall, L. Scott, Derived Categories, Quasi-hereditary Algebras, and Algebraic Groups, Carlton

University Mathematical Notes, Vol. 3, 1989, pp. 1–111.
[16] J. Rickard, Morita theory for derived categories, J. London Math. Soc. 39 (1989) 436–456.
[17] J. Rickard, Derived equivalences as derived functors, J. London Math. Soc. 43 (1991) 37–48.
[18] J. Rickard, Equivalences of derived categories for symmetric algebras, preprint.
[19] R. Rouquier, A. Zimmermann, Picard groups for derived module categories, preprint.
[20] N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988) 121–154.


	Recollement and tilting complexes
	Introduction
	Basic tools on k-projective algebras
	Recollement and partial tilting complexes
	Equivalences between recollements
	Tilting complexes over symmetric algebras
	References


