K₂ of finite abelian group algebras

Yubin Gao, Guoping Tang*

School of Mathematical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049, China

1. Introduction

Let F be a finite field of characteristic p and G a finite abelian group. A general formula for K₂(FG) has been given in [7], Theorem 6.7; it is the quotient of G ⊗ A G with A the unramified p-ring such that F ≅ A/p. An upper bound for the order of K₂(FG) was also given in [7]. However, it is not so easy to determine the structure of K₂(FG) directly from this quotient, even its precise order. The result of Dennis and Stein in [6] (Corollary 4.4(a)) implies that for a cyclic group Cₙ, K₂(FCₙ) = 1. For an elementary abelian p-group G, Dennis, Keating and Stein [1] proved that K₂(FG) is an elementary abelian p-group whose precise rank is also given. In Magurn [2], when F is a characteristic 2, K₂(F[G × Z₂]) is isomorphic to the direct sum of K₂(FG) and an elementary abelian 2-group whose rank is determined. Using this result, Magurn calculated K₂(FG) when G is a finite abelian group with 4-ranking ≤ 1 and F is of characteristic 2. In Section 3 of this paper, we extend Magurn's results to the case when p is an odd prime. In Section 4, it will be shown that to get the precise order of K₂(FG), the only thing we need to know is the orders of kernels of \(\Omega^1_{FG/\mathbb{Z}} \to K_2(F\mathbb{G}/(t^{k^2}), (t^{k}))\), \(k \equiv 1 \mod p\), \(k > p\), where F is of odd characteristic p, G is a finite abelian p-group. We determine the de Rham cohomology group H₁^{dr}(FG) for arbitrary abelian p-groups G, and show how this cohomology group can be used to compute the above kernels in case G is an elementary abelian p-group.

2. Preliminaries

Suppose k is a commutative ring, A is a k-algebra, for an A-module M, a k-derivation from A to M is a k-linear map \(d: A \to M\) such that

\[d(ab) = (da)b + a(db), \quad (a, b \in A).\]

The set of all such derivations Derₖ(A, M) is an A-module, which is functorial in M. A universal k-derivation \(d: A \to \Omega^1_{A/\mathbb{K}}\) is defined by taking \(\Omega^1_{A/\mathbb{K}}\) to be the A-module defined by generators \(da \ (a \in A)\), and relations

\[d(ab) = adb + bda, \quad d(a + b) = da + dba, \quad b \in A, \quad \text{as well as} \quad dc = 0, \ c \in k.\]

\(\Omega^1_{A/\mathbb{K}}\) is called Kähler differentials of A over k and the universality is expressed by the natural isomorphism \(\text{Hom}_{A\text{-mod}}(\Omega^1_{A/\mathbb{K}}', M) \to \text{Der}_k(A, M)\) sending \(f\) to \(f \circ d\).
The algebra of differential forms over an algebra A is the exterior algebra $\Omega^*_{A/K} = \bigoplus_q \Omega^q_{A/K}$, $\Omega^q_{A/K} = \wedge^q_A \Omega^1_{A/K}$, any element of Ω^q_A is called a differential form of degree q. The morphism $d : \Omega^q_{A/K} \to \Omega^{q+1}_{A/K}$ of degree +1, defined by $d(a_0 a_1 \cdots a_q) = a_0 a_1 \cdots a_q$, changes $\Omega^*_{A/K}$ into a complex. $(\Omega^*_{A/K}, d)$ is called the de Rham complex of A and the cohomology algebra $H^*_D(A)$ is called the de Rham cohomology of A over k.

Let R be a commutative ring with identity. $\Phi_1(R) (i \geq 2)$ is defined by the following exact sequence in [1].

$$1 \to \Phi_1(R) \to K_2(R[t]/(t^i)) \to K_2(R[t]/(t^{i-1})) \to 1.$$

The following theorem is due to Bloch [5].

Theorem 2.1. If R is a commutative local F_p-algebra and p is odd, then

$$\Phi_1(R) \approx \begin{cases} \Omega^1_{R/Z} & i \neq 0, 1 \mod p, \\ \Omega^1_{R/Z} \oplus R/R^p & i = mp^r, (p, m) = 1, r \geq 1. \end{cases}$$

Note that there are no formulas for $\Phi_k(R)$ when $k \equiv 1 \mod p$. In fact it is very difficult to determine them. The following result of Magurn [2] gives the structure of $\Omega^1_{FG/Z}$.

Theorem 2.2. Suppose F is a finite field of characteristic p, G is a finite abelian group, and $\bar{a}_1, \ldots, \bar{a}_i$ is an F_p-basis of G/G^p, then $\Omega^1_{FG/Z}$ is a free FG-module with basis da_1, \ldots, da_i.

When R is a commutative ring with identity and I is a radical ideal, $K_2(R, I)$ is the abelian group which has a presentation with generators the Dennis–Stein symbols (a, b) for every $(a, b) \in R \times I \cup I \times R$ and the following relations

- (D1) $(a, b) = -(b, a)$ if $a \in I$;
- (D2) $(a, b) + (a, c) = (a, b + c - abc)$ if $a \in I$ or $b, c \in I$;
- (D3) $(a, bc) = (ab, c) + (ac, b)$ if $a \in I$.

Let \tilde{R} be a ring containing R. If $a \in I$ and $b \in R \cap \tilde{R}$, then the image of (a, b) under the map $K_2(R, I) \to K_2(\tilde{R})$ is the Steinberg symbol $[1 - ab, b]$. One can consult [3] to see more about Dennis–Stein symbols.

3. Adding \mathbb{Z}_p summands to G

Suppose F is a finite field of characteristic p, G is a finite abelian group, and $Z_{p^s} = \langle \sigma \rangle$ is a cyclic group of order p^s. Let $A = F[G \times Z_{p^s}]$. Then there is a partial augmentation map $\varepsilon : A \to F[G]$ sending σ to 1; the kernel of ε is $I = (1 - \sigma)A$. Since ε is a split surjective map and K_ε are functors, we have a split exact sequence which is just a part of the long exact sequence in K-theory with respect to the pair (A, I):

$$1 \to K_2(A, I) \to K_2(A) \to K_2(FG) \to 1.$$

So obviously $K_2(A) \approx K_2(FG) \oplus K_2(A, I)$. From the isomorphisms

$$A \approx FG[t]/(t^{p^s} - 1) \approx FG[t]/(t^{p^s}),$$

it follows that $K_2(A, I) \approx K_2(FG[t]/(t^{p^s}), (t))$; thus

$$K_2(F[G \times Z_{p^s}]) \approx K_2(FG) \oplus K_2(FG[t]/(t^{p^s}), (t)). \tag{3.1}$$

Theorem 3.1. Suppose F is a finite field of characteristic p, G is a finite abelian group whose Sylow p-subgroups is G_p, then $K_2(FG)$ is a finite p-group annihilated by the exponent of G_p.

Proof. Decompose G as the direct sum $G_p \oplus H$ with G_p the Sylow p-subgroup of G. By Maschke’s Theorem, FH is a semisimple ring. Then the Wedderburn–Artin Theorem implies that $FH \approx \bigoplus_i F_i$, where F_i is a finite field with the same characteristic as F. Now $FG \approx (FH)[G_p] \approx \bigoplus_i F_i G_p$, and $K_2(FG) \approx \bigoplus_i K_2(F_i G_p)$.

Decompose G_p as a finite direct sum of cyclic p-groups. $G_p \approx C_{p^1} \oplus \cdots \oplus C_{p^r}$, where $p^1 \leq \cdots \leq p^r$. Let $R_j = F_i[C_{p^1} \oplus \cdots \oplus C_{p^j}]$, $1 \leq j \leq r$. Using (3.1) we get the following isomorphism

$$K_2(F_i G_p) \approx \bigoplus_{j=1}^{r-1} K_2(R_j[t]/(t^{p^{j+1}}), (t)) \bigoplus K_2(F_i C_{p^j}).$$

The last summand vanishes; and $K_2(R_j[t]/(t^{p^{j+1}}), (t))$ has exponent p^{j+1} since it is generated by (a, b) with $a \in (t)$, and $p^{j+1} (a, b) = (a^{p^{j+1}}, b^{p^{j+1}} - 1)$, $b = 0$ since $a^{p^{j+1}} \in (t^{p^{j+1}})$. Thus $K_2(F_i C_{p^j})$ has exponent p^j and accordingly $K_2(FG)$ is a p-group with exponent p^r. \(\square\)
When \(FG \) is not a local \(F_p \)-algebra, one cannot use Theorem 2.5 directly to compute \(\Phi_i(FG) \). In order to be more convenient in concrete calculation, we partially extend Theorem 2.1 to the form we need.

Theorem 3.2. Suppose \(F \) is a finite field of odd prime characteristic and \(G \) is a finite abelian group and \(R = FG \). Then Bloch's calculation still works for \(FG \):

\[
\Phi_i(FG) \approx \begin{cases}
\Omega^1_{FG/Z} & i \neq 0, \text{ mod } p, \\
\Omega^1_{FG/Z} \oplus R/R^p & i = mp^t, (p, m) = 1, r \geq 1.
\end{cases}
\]

Proof. As in the proof of Theorem 3.1, \(FG \approx \bigoplus F_j G_p \), where \(G_p \) is the Sylow \(p \)-subgroup of \(G \) and \(F_j \) has the same characteristic as \(F \). Say \(G_p \cong C_{p^1} \oplus \cdots \oplus C_{p^t} = \langle g_1 \rangle \times \cdots \times \langle g_r \rangle \). By the definition of \(\Phi_i \) we have \(\Phi_1(FG) \approx \bigoplus \Phi_1(F_j G_p) \). Since \(F_j G_p \) is a local \(F_p \)-algebra, then by Theorem 2.1

\[
\Phi_1(F_j G_p) \approx \begin{cases}
\Omega^1_{F_j G_p/Z} & i \neq 0, \text{ mod } p, \\
\Omega^1_{F_j G_p/Z} \oplus F_j G_p/(F_j G_p)^p & i = mp^t, (p, m) = 1, r \geq 1.
\end{cases}
\]

By Theorem 2.2, \(\Omega^1_{FC/Z} \) is a free \(FG \)-module with basis \(dg_1, \ldots, dg_r \), \(\Omega^1_{F_j G_p/Z} \) is a free \(F_j G_p \)-module with basis \(dg_1, \ldots, dg_r \), so \(\Omega^1_{FC/Z} \approx \bigoplus \Omega^1_{F_j G_p/Z} \neq G_p \) as abelian groups. Obviously \(FG/(FG)^p \approx \bigoplus (F_j G_p)/(F_j G_p)^p \), the theorem now follows. \(\square \)

The following theorem and corollary extend the results of Magurn [2] (Theorems 4 and 5) to the case when \(p \) is an odd prime.

Theorem 3.3. Suppose \(F \) is finite field with \(p' \) elements, \(p \) is an odd prime, \(G \) is a finite abelian group of order \(n \), and \(r \) is the dimension of the \(F_p \)-space \(G/G_p \). Then

\[
K_2(F[G \times \mathbb{Z}_p]/\mathbb{Z}_p) \cong K_2(FG) \oplus \mathbb{Z}_p^{f(n(1/2 + (p-1)r)).}
\]

Proof. By (3.1) we have the following isomorphism

\[
K_2(F[G \times \mathbb{Z}_p]) \cong K_2(FG) \oplus K_2(FG/(t^p), (t)).
\]

Since \(p(a, b) = \langle a^p b^{-1}, b \rangle \), \(K_2(FG/(t^p), (t)) \) is an elementary abelian \(p \)-group. By the isomorphism \(F[G \times \mathbb{Z}_p] \cong FG[\mathbb{Z}_p] \cong FG(t)/\langle t^p \rangle \) and the exact sequence

\[
1 \rightarrow \Phi_1(FG) \rightarrow K_2(FG(t)/\langle t^p \rangle) \rightarrow K_2(FG(t)/\langle t^{i-1} \rangle) \rightarrow 1, \quad 2 \leq i \leq p,
\]

we have

\[
|K_2(FG(t)/\langle t^p \rangle, (t))| = \prod_{i=2}^{p} |\Phi_i(FG)|.
\]

By Theorem 3.2, \(\Phi_1(FG) \approx \Omega^1_{FG/Z}, 2 \leq i < p, \Phi_i(FG) \approx \Omega^1_{FG/Z} \oplus FG/(FG)^p \). \(\Omega^1_{FG/Z} \) is a free \(FG \)-module of rank \(r \), so it has rank \(nfr \) as an \(F_p \)-vector space. The group \(G \) has \(p' \) \(p \)-th power classes, so there are \(n(1 - 1/p) \) elements of \(G \) that are not elements of \(G^p \), hence \(FG/F[G^p] \) has \(F_p \)-dimension \(n(1 - 1/p^t) \). Thus

\[
dim_{F_p} (K_2(FG(t)/\langle t^p \rangle, (t))) = (p - 1)nfr + n^f \left(1 - \frac{1}{p^t} \right) = n^f \left(1 - \frac{1}{p^t} + (p - 1)r \right) .
\]

The theorem now follows. \(\square \)

Corollary 3.4. Suppose \(F \) is a finite field with \(p' \) elements, and \(G \) is a finite abelian group of order \(n \) with \(p \)-rank \(t \), \(p^2 \)-rank \(\leq 1 \), then

\[
K_2(FG) \cong \mathbb{Z}_p^{nf(t(1)-(p-1))/p}.
\]

Proof. If \(p = 2 \), the theorem is just Theorem 5 in [2]; if \(p \) is an odd prime, repeated use of Theorem 3.3 yields the result. Since the process has been shown in Theorem 5 in [2], we omit the details. \(\square \)

Example 1. A direct use of Theorem 3.4 yields \(K_2(F_3[\mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_{25} \times \mathbb{Z}_2]) \approx \mathbb{Z}_5^{7440}. \)
4. The order of $K_2(F_\varphi G)$

Suppose F is a finite field of odd prime characteristic p and G is a finite abelian group. By the definition of $\Phi_i(R)$ and the isomorphism $F[\eta \times \mathbb{Z}_{p^l}] \cong F[t]/(t^{p^l})$, we have

$$|K_2(F[\eta \times \mathbb{Z}_{p^l}])| = |K_2(FG)| \cdot \prod_{i=2}^{p^l} |\Phi_i(FG)|.$$

When $i \not\equiv 1 \mod p$, the order of $\Phi_i(FG)$ can be determined by Theorem 3.2. When $i \equiv 1 \mod p$, it is very difficult to determine the precise order of $\Phi_i(FG)$. We have the following commutative diagram, let $R = FG$.

$$
\begin{array}{ccccccc}
1 & \rightarrow & K_2(R[t]/(t^{mp^l} + 1), (t)) & \xrightarrow{f} & K_2(R[t]/(t^{mp^l} + 1)) & \rightarrow & K_2(R) & \rightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
1 & \rightarrow & K_2(R[t]/(t^{mp^l}), (t)) & \rightarrow & K_2(R[t]/(t^{mp^l})) & \rightarrow & K_2(R) & \rightarrow & 1.
\end{array}
$$

We will use the injectivity of f to determine whether a Dennis–Stein symbol is trivial in $K_2(R[t]/(t^{mp^l} + 1), (t))$. By (1.6) and (1.10) in [3], we have the following exact sequences

$$\Omega_{1,R}^{\eta} \xrightarrow{\psi_{m,r}} K_2(R[t]/(t^{mp^l} + 1), (t)) \rightarrow K_2(R[t]/(t^{mp^l}), (t)) \rightarrow 1,$$

where $\psi_{m,r}(ab) = (at^{mp^l}, b)$. So we have $\Phi_{mp^l+1}(FG) \cong \Omega_{1,R}^{\eta}/\text{Ker} \psi_{m,r}$. If we can determine orders of all $\text{Ker} \psi_{m,r}$, then we can get the order of $K_2(FG)$. By the facts in the proof in Theorem 3.1, we only need to deal with the case when G is a finite abelian p-group.

When R is a regular ring, essentially of finite type over a field of positive characteristic $p > 0$, by Theorem 2.5 in [3], $\text{Ker} \psi_{m,r}$ depends only on r and is the subgroup $D_{r,R}$ of $\Omega_{1,R}^{\eta}$ generated by $\{a(d^{p^l-1}-1)da \mid 0 \leq l < r, a \in R\}$. When R is not regular, for example $R = FG$, where F is a finite field of characteristic p and G is a finite abelian p-group, by the computations in Lemma 1.10 in [3], $\text{Ker} \psi_{m,r}$ still contains $D_{r,R}$ but does not coincide in general. Here is an example.

Example 2. Suppose $R = F_3[\mathbb{Z}_3 \times \mathbb{Z}_3], \mathbb{Z}_3 \times \mathbb{Z}_3 = \langle \sigma \rangle \times \langle \tau \rangle$. Then by Theorem 2.2, $\Omega_{1,R}^{\eta}$ is the free R-module with basis $d\sigma, d\tau$. Put $m = 1, p = 3, r = 1$, we have

$$\Omega_{1,R}^{\eta} \xrightarrow{\Omega_{1,R}^{\eta}} K_2(R[t]/(t^4), (t)) \xrightarrow{f} K_2(R[t]/(t^4)).$$

By the definition $D_{1,R} = \langle (d^{p^l-1}-1)da \mid 0 \leq l < 1 \rangle = \{da \mid a \in R\}$. An easy computation shows that $D_{1,R}$ is the free R-space over basis $\{d\sigma, d\tau, d\sigma d\tau, d\sigma \tau + d\tau \sigma, 2d\tau d\sigma + \sigma^2d\sigma, 2\sigma d\tau + d\sigma d\tau + \sigma^2d\sigma\}$. Obviously $\sigma^2d\sigma, \tau^2d\tau \notin D_{1,R}$. However

$$f \circ \varphi(\sigma^2d\sigma) = f(\sigma^2d\sigma, \sigma) = (1 - \sigma^3, \sigma) = (1 - t, \sigma^3) = 1.$$

Similarly, $f \circ \varphi(\tau^2d\tau) = 1$. Since f is an injective map, $\varphi(\sigma^2d\sigma) = \varphi(\tau^2d\tau) = 1$. Then $\sigma^2d\sigma, \tau^2d\tau \in \text{Ker} \varphi$. Hence $\text{Ker} \varphi \supsetneq D_{1,R}$.

Theorem 4.1. Suppose $R = FG, F$ is a finite field of odd characteristic p and G is a finite abelian group. Let $A = R[t]/(t^{mp^l} + 1)$ with $r \geq 1, (m, p) = 1$. If $\mathfrak{A}_1, \ldots, \mathfrak{A}_r$ is the F_P-basis of $G/\mathfrak{P}^r, A^\vee$ is the free A-module with generators da_1, \ldots, da_n, then there is a map $K_2(A, (t)) \xrightarrow{\psi} \bigwedge^2_A(A^\vee)$.

Proof. First we consider the test map

$$d \log : K_2(A, (t)) \rightarrow \bigwedge^2_A \Omega_{A,Z}$$

$$(a, b) \mapsto \frac{da \wedge db}{1 - ab}.$$

Let $D : A \rightarrow \Omega_{A,Z}^{1} \otimes_R A$ be defined by applying the derivative $d : R \rightarrow \Omega_{R,Z}^{1}$ to each coefficient, then according to Section 2 of [4], there is an A-module isomorphism

$$\Omega_{A,Z}^{1} \cong \bigwedge_{A,R} \otimes (\Omega_{R,Z}^{1} \otimes_R A)$$

$$df \mapsto \left(\frac{df}{dt}, Df\right).$$

Then $\bigwedge^2_A \Omega_{A,Z}^{1} \cong \bigwedge^2_A \Omega_{A,R}^{1} \oplus (\bigwedge^1_A \otimes (\Omega_{R,Z}^{1} \otimes_R A)) \otimes \bigwedge^2_A (\Omega_{R,Z}^{1} \otimes_R A)$, and by Theorem 2.2, $\Omega_{R,Z}^{1}$ is a free R-module with generators da_1, \ldots, da_n, so $\bigwedge^1_A \otimes (\Omega_{R,Z}^{1} \otimes_R A)$ is a free A-modules with the same generators, now

$$K_2(A, (t)) \xrightarrow{\psi} \bigwedge^2_A \Omega_{A,Z}^{1} \xrightarrow{\pi_3} \bigwedge^2_A (\Omega_{R,Z}^{1} \otimes_R A) \xrightarrow{\psi} \bigwedge^2_A A^\vee.$$

The $f = \psi \circ \pi_3 \circ d \log$ is the map we want to obtain. \hfill \Box
Let R be as above, $\wedge^*_R \Omega^1_{R/\mathbb{Z}}$, the algebra of differential forms over R, $(\wedge^*_R \Omega^1_{R/\mathbb{Z}}, d)$ the de Rham complex of R, and $H^*_\text{DR}(R)$ the de Rham cohomology of R.

Corollary 4.2. Let A, R and f be as above, $\varphi_m: \Omega^1_{R/\mathbb{Z}} \to K_2(A, (t))$, then the cocycle Z^1 of the de Rham complex $(\wedge^*_R \Omega^1_{R/\mathbb{Z}}, d)$ is equal to the $\text{Ker}(f \circ \varphi_{m,r})$.

Proof. By the definition, $f \circ \varphi_{m,r}$ is the composite of the following maps

$$
\Omega^1_{R/\mathbb{Z}} \xrightarrow{\varphi_{m,r}} K_2(A, (t)) \xrightarrow{d \log} \wedge^2 \Omega^1_{A/\mathbb{Z}} \xrightarrow{\partial} \wedge^2 \Omega^1_{R/\mathbb{Z} \otimes R} \xrightarrow{\psi} \wedge^2 A^1
$$

where $f \circ \varphi_{m,r}(ab) = \psi \circ \partial \circ \log((at, b)) = \psi \circ \partial \circ \log((at \cdot da \otimes 1) \vee (db \otimes 1)) = \psi(t, da \otimes db)$. By Theorem 2.2, $\Omega^1_{R/\mathbb{Z}}$ is the free R-module with basis da_1, \ldots, da_n, hence $\Omega^1_{R/\mathbb{Z}}$ is the free R-module with basis $da_i \otimes da_j$, $1 \leq i < j \leq s$, and $\wedge^2 A^1$ is a free A-module with the same generators. Define an R-homomorphism $g: \Omega^1_{R/\mathbb{Z}} \to \wedge^2 A^1$ by

$$
g(da_1 \otimes da_2) = t, da_1 \otimes da_2, \text{obviously } g \text{ is injective. The } g \circ d^1 \text{ is a homomorphism } \Omega^1_{R/\mathbb{Z}} \to \wedge^2 A^1 \text{ such that } g \circ d^1(ab) = t \cdot da_1 \otimes da_2 = f \circ \varphi_{m,r}(ab). \text{ Hence } g \circ d^1 = f \circ \varphi_{m,r}. \text{ Since } g \text{ is an injective map, we have } \text{Ker}(f \circ \varphi_{m,r}) = \text{Ker}(g \circ d^1) = \text{Ker}(d^1) = Z^1. \square$

Theorem 4.3. Suppose F is a finite field of odd prime characteristic p, G is a finite abelian p-group with cyclic decomposition $G = \langle x_1 \rangle \times \cdots \times \langle x_n \rangle$, $\text{ord}(x_i) = p^i$, $1 \leq i \leq n$. Let $G_i = \prod_{j \neq i} \langle x_j \rangle$. Then $H^1_{\text{DR}}(FG)$ is an F-space with basis $S = \{ x_i \text{d}x_i | 1 \leq i \leq n, 0 \leq j < p^i, j \equiv -1 \text{ mod } p, g \in G_i \}$.

Proof. If $T = \sum f_{a_1, \ldots, a_n} x_1^{a_1} \cdots X_n^{a_n} \in F[X_1, \ldots, X_n]$, the polynomial ring in X_1, \ldots, X_n over F, the formal partial derivative $\frac{\partial T}{\partial X_i}$ is defined by

$$
\frac{\partial T}{\partial X_i} = \sum \alpha_{a_1, \ldots, a_n} x_1^{a_1} \cdots X_i^{a_i-1} \cdots X_n^{a_n}.
$$

If $x \in FG$, then $x = H(x_1, \ldots, x_n)$ for some polynomial $H(X_1, \ldots, X_n)$ in $F[X_1, \ldots, X_n]$, thus $dx = \sum_{i=1}^n \frac{\partial H}{\partial x_i}(X_1, \ldots, X_n) dx_i \in \Omega^1_{FG/\mathbb{Z}}$. By Theorem 2.2, $\Omega^1_{FG/\mathbb{Z}}$ is a free FG-module with basis dx_1, \ldots, dx_n. If $v \in \Omega^1_{FG/\mathbb{Z}}$, then

$$
v = \sum_{j=1}^n H_j(x_1, \ldots, x_n) dx_j,
$$

where $H_j(x_1, \ldots, x_n) \in F[X_1, \ldots, X_n]$, $j = 1, \ldots, n$. Then

$$
dv = \sum_{i,j} \left(\frac{\partial H_j}{\partial X_i} - \frac{\partial H_i}{\partial X_j} \right) (x_1, \ldots, x_n) dx_i \wedge dx_j.
$$

Since $\Omega^2_{FG/\mathbb{Z}}$ is the free FG-module with basis $dx_i \wedge dx_j$, $1 \leq i < j \leq n$, then $dv = 0$ if and only if

$$
\frac{\partial H_j}{\partial X_i} = \frac{\partial H_i}{\partial X_j}, \quad 1 \leq i < j \leq n. \quad (4.1)
$$

We can write $H_1(X_1, \ldots, X_n)$ in the following

$$
H_1(X_1, \ldots, X_n) = \sum_{i=0}^{p^1-1} Q_i(X_2, \ldots, X_n) X_1^i,
$$

with $Q_i \in F[X_2, \ldots, X_n]$. Let $w = \sum_{i \equiv 1 \text{ mod } p} (i + 1)^{-1} Q_i(X_2, \ldots, X_n) x_1^{i+1}$. Then

$$
v - dw = H_1'(x_1, \ldots, x_n) dx_1 + \sum_{j=2}^n H_j'(x_1, \ldots, x_n) dx_j,
$$

where $H_j' = \sum_{i=1}^n Q_i$. Since $d(v - dw) = dv - ddw = 0$, then $v - dw \in Z^1$, by (4.1) we have

$$
\frac{\partial H_j'}{\partial X_j} = \frac{\partial H_j'}{\partial X_i}, \quad 2 \leq j \leq n. \quad (4.2)
$$
Suppose \(H'_j(X_1, \ldots, X_n) = \sum_{i=1}^{p^j-1} Q_i(X_2, \ldots, X_n)X_1^i, \ j \geq 2 \) then by (4.2)
\[
\sum_{i = 1 \mod p} \frac{\partial Q_i(X_2, \ldots, X_n)}{\partial X_j} X_1^i = \sum_{i = 1}^{p^j-1} iQ_i(X_2, \ldots, X_n)X_1^{i-1}.
\]
By comparing the degree of \(X_1 \) of the two polynomials above, we conclude that both sides are equal to 0, so we have
\[
Q_i(X_2, \ldots, X_n) = P_i(X_2^p, \ldots, X_n^p), \ i \equiv -1 \mod p ;
\]
\[
H'_j(X_1, \ldots, X_n) = P'_j(X_1^p, X_2, \ldots, X_n), \ j = 2, \ldots, n.
\]
Now we have found \(v_1 \in Z^1 \) with \(\bar{\omega}_1 = \bar{v} \) in \(H^1_{\text{DR}}(FG) \), and
\[
v_1 = \left(\sum_{i = 1}^n P_i(x_2, \ldots, x_n)x_1^i \right) dx_1 + \sum_{j=2}^n P'_j(x_1, x_2, \ldots, x_n)dx_j.
\]
Now using induction and repeating the above process we can eventually find \(v_n \in Z^1 \) such that \(\bar{\omega}_n = \bar{v} \) in \(H^1_{\text{DR}} \) and
\[
v_n = \sum_{i = 1}^n \left(\sum_{j = 1}^n T_i(x_2^p, \ldots, x_n^p)x_j^i \right) dx_i.
\]
Obviously \(v_n \) can be generated by \(S, S \subseteq Z^1, S \cap B^1 = \{0\} \), and \(S \) is an \(F \)-independent set since \(\Omega^1_{FG} \) is an \(F \)-space with basis \(\{dg/g \in G, 1 \leq i \leq n\} \). So \(S \) is an \(F \)-basis of \(H^1_{\text{DR}}(FG) \).

Corollary 4.4. Let \(F \) be as above, \(G \) an elementary abelian \(p \)-group with independent generators \(x_1, \ldots, x_n \). Then \(H^1_{\text{DR}}(FG) \) is an \(n \)-dimensional \(F \)-vector space with basis \(\{x_i^{p-1}dx_i\} 1 \leq i \leq n \).

Proof. Since \(G \) is an elementary abelian \(p \)-group, \(G_i^p = 1, i = 1, \ldots, n \). Now the conclusion follows immediately from Theorem 4.3. \(\Box \)

Proposition 4.5. Let \(F \) and \(G \) be as in Theorem 4.3, then the coboundary \(B^1 \) of \(\left(\Omega^1_{FG/Z}, d \right) \) has basis \(S = \{dg/g \in G - G^p\} \) as an \(F \)-vector space.

Proof. Suppose \(x \in FG \), then \(x = H(x_1, \ldots, x_n) \), where \(H(x_1, \ldots, x_n) \) is a polynomial in \(F[X_1, \ldots, X_n] \). Thus \(dx = \sum_{i = 1}^n \frac{\partial H}{\partial x_i}(x_1, \ldots, x_n)dx_i \). Hence \(dx = 0 \) if and only if \(\frac{\partial H}{\partial x_i}(x_1, \ldots, x_n) = 0, 1 \leq i \leq n \). This implies \(H(x_1, \ldots, x_n) = H_1(x_1^p, \ldots, x_n^p) \) for some polynomial \(H_1(x_1, \ldots, x_n) \). If \(g_1, \ldots, g_m \in G - G^p \), \(\sum_{i=1}^m f_idg_i = 0, f_i \in F \), that is \(d \left(\sum_{i=1}^m f_ig_i \right) = 0 \), so
\[
\sum_{i=1}^m f_ig_i = H'(x_1^p, \ldots, x_n^p), \ H' \in F[X_1, \ldots, X_n].
\]
We conclude that \(f_i = 0, 1 \leq i \leq m \), \(S \) is an \(F \)-independent set. Obviously \(B^1 \) is generated by \(S \), now the proposition is proved. \(\Box \)

Theorem 4.6. Suppose \(F \) is a finite field of odd prime characteristic \(p \), \(G \) is an elementary abelian \(p \)-group with independent generators \(g_1, \ldots, g_n \). Set \(\varphi_{m, r} : \Omega^1_{FG/Z} \to K_2(FG[t]/(t^{mp^r-1}), (t)), (m, p) = 1, r \geq 1 \). Then \(\text{Ker} \varphi_{m, r} \) has basis \(S = \{dg_i, g_i^{p^r-1}dg_i/g \in G - \{1\}, 1 \leq i \leq n \} \) as an \(F \)-vector space.

Proof. By Theorem 4.3, \(\text{Ker} \varphi_{m, r} \subseteq (S) \), where \((S) \) is the \(F \)-vector space generated by \(S \). By Lemma (1.10) in [3], \(\{dg/g \in G - \{1\}\} \subseteq \text{Ker} \varphi_{m, r} \). Since \(f : K_2(FG[t]/(t^{mp^r-1}), (t)) \to K_2(FG[t]/(t^{mp^r-1})) \) is injective and
\[
f \circ \varphi(g_i^{p^r-1}dg_i) = f \left((g_i^{p^r-1}t^{mp^r-1}, g_i) \right) = \{1 - t^{mp^r}, g_i\} = \{1 - t^{mp^r-1}, 1\} = 1,
\]
it implies that \((S) \subseteq \text{Ker} \varphi_{m, r} \). Thus \(\text{Ker} \varphi_{m, r} = (S) \). The independence of \(S \) follows from Proposition 4.5. \(\Box \)

Theorem 4.7. Let \(F \) be a finite field of odd prime characteristic \(p \), \(G \) is an arbitrary finite abelian \(p \)-group. Let \(\bar{S} = \{a^{d-1}da, g^{p^r-1}dg \mid 0 \leq l < r, g \in G, g^{p^r} = 1\} \), then \(\bar{S} \subseteq \text{Ker} \varphi_{m, r} \).
Proof. By Theorem 2.5 in [3], $D_{r,FG} = \langle a^{p^{l-1}d} | a \in FG, 0 \leq l < r \rangle \subseteq \text{Ker} \varphi_{m,r}$. Since $f : K_2(FG[t]/(t^{mp^r+1}), (t)) \rightarrow K_2(FG[t]/(t^{mp^r+1}))$ is injective, and

$$f \circ \varphi_{m,r}(g^{p^{l-1}d}) = f((g^{p^{l-1}t^{mp^r}}, g))$$

$$= \{1 - g^{p^r}t^{mp^r}, g\}$$

$$= \{1 - gt^m, g\}$$

$$= \{1 - gt^m, 1\} = 1.$$

Thus $g^{p^{l-1}d} \in \text{Ker} \varphi_{m,r},$ so $\langle \tilde{S} \rangle \subseteq \text{Ker} \varphi_{m,r}$. □

Remark. For an arbitrary finite abelian p-group G, we guess that $\text{Ker} \varphi_{m,r}$ is generated by $\{a^{p^{l-1}d}, g^{p^{l-1}d} | a \in FG, 0 \leq l < r, g \in G, g^{p^r} = 1\}$. By Theorem 4.6, this is true when G is an elementary abelian p-group.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 10671202) and Hundred Talent program of Chinese Academy of Sciences.

References

Further reading

