On semi-artinian V-modules

Nguyen V. Dung
Departamento de Matematicas, Universidad de Murcia, 30071 Murcia, Spain

Patrick F. Smith
Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland, United Kingdom

Communicated by C.A. Weibel
Received 4 March 1991
Revised 15 August 1991

Abstract

Over a general ring R, a quasi-projective right R-module M is a semi-artinian V-module if and only if for every $m \in M$ and submodule N of mR, mR/N contains a nonzero M-injective submodule.

Introduction

One consequence of the Osofsky–Smith Theorem [9] is the following fact: over an arbitrary ring R, a right R-module M is semisimple if and only if every cyclic subquotient of M is M-injective. Semisimple modules M are semi-artinian (i.e. every nonzero homomorphic image of M has nonzero socle), and are V-modules (i.e. every simple module is M-injective). The aim of this paper is to prove the following theorem:

Theorem. Let R be any ring. Then the following statements are equivalent for a quasi-projective right R-module M:

(i) M is a semi-artinian V-module.

(ii) Every nonzero cyclic subquotient of M contains a nonzero M-injective submodule.

We have been unable to derive this theorem from the Osofsky–Smith Theorem. Rather, we show that a module M satisfying (ii) has a nonzero submodule N.

Correspondence to: Dr. N.V. Dung, Institute of Mathematics, P.O. Box 631, Bo ho, Hanoi, Viet Nam.
whose endomorphism ring S is semiprime artinian. This is done by way of a
lemma essentially due to Osofsky [7] and used by her in her original proof that
rings for which every cyclic module is injective, are semiprime artinian. In order
to use S, we need the hypothesis that M be quasi-projective, because in this case
certain categorical facts are available. It is natural to ask whether the theorem can
be extended to general modules.

1. Semi-artinian modules

All rings are assumed to have identity elements and all modules are unital right
modules.

Let R be a ring and M an R-module. Then the socle series of M is the ascending
chain of submodules

$$0 = S_0(M) \subseteq S_1(M) \subseteq \cdots \subseteq S_{\alpha}(M) \subseteq S_{\alpha+1}(M) \subseteq \cdots,$$

where, for each ordinal $\alpha \geq 0$, $S_{\alpha+1}(M)/S_{\alpha}(M)$ is the socle of the module
$M/S_{\alpha}(M)$, and if α is a limit ordinal, then

$$S_{\alpha}(M) = \bigcup_{0 \leq \beta < \alpha} S_{\beta}(M).$$

The following result is well known.

Proposition 1. The following statements are equivalent for a module M:

(i) Every nonzero homomorphic image of M has essential socle.

(ii) Every nonzero homomorphic image of M has nonzero socle.

(iii) $S_{\rho}(M) = M$ for some ordinal $\rho \geq 0$.

(iv) There exists an ascending chain of submodules

$$0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_{\alpha} \subseteq M_{\alpha+1} \subseteq \cdots \subseteq M_{\tau} = M,$$

such that $M_{\alpha+1}/M_{\alpha}$ is semisimple for each $0 \leq \alpha < \tau$, and $M_{\alpha} = \bigcup_{0 \leq \beta < \alpha} M_{\beta}$ if α is
a limit ordinal. \square

Modules which satisfy the equivalent conditions of Proposition 1 are called semi-artinian. Clearly, artinian modules are semi-artinian. Moreover, the class \mathcal{A}'
of semi-artinian R-modules is closed under taking submodules, factor modules
and arbitrary direct sums. Let M be any module. Let $\sigma[M]$ denote the full
subcategory of $\text{mod-}R$ generated by M (see [11, 12]). The above remarks about
\mathcal{A}' show that, if M is any semi-artinian module, then any module in $\sigma[M]$ is
semi-artinian. We mention one further fact about semi-artinian modules, namely
that the class \mathcal{A}' is closed under extensions. Indeed much more is true, as the
following result shows. We give a proof for completeness.
Proposition 2. Let M be a module such that there exists a chain of submodules

$$0 = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_\alpha \subseteq L_{\alpha + 1} \subseteq \cdots \subseteq L_\nu = M,$$

such that $L_{\alpha + 1}/L_\alpha$ is semi-artinian for all ordinals $0 \leq \alpha < \nu$, and, for all limit ordinals α, $L_\alpha = \bigcup_{\beta < \alpha} L_\beta$. Then M is semi-artinian.

Proof. Let N be a proper submodule of M. There exists a least ordinal α such that $L_\alpha \not\subseteq N$. It is clear that α is not a limit ordinal and hence $\alpha - 1$ exists. Note that $L_{\alpha - 1} \subseteq N$. It follows that $(N + L_\alpha)/N$ is a homomorphic image of the semi-artinian module $L_\alpha/L_{\alpha - 1}$. By Proposition 1, $(N + L_\alpha)/N$ has nonzero socle. Thus M/N has nonzero socle. By Proposition 1, M is semi-artinian. \(\square\)

Note finally in this section that the class \mathcal{A}' is a torsion class in the sense of [10]. For any module M, any sum of semi-artinian submodules of M is semi-artinian, and thus M contains a unique maximal semi-artinian submodule (the torsion submodule of M in this torsion theory) and it is not difficult to see that this submodule is none other than the union of the socle series of M.

2. Quasi-projective modules

In this section we make some observations about quasi-projective modules which will be required in the proof of the theorem. A submodule N of a module M will be called fully invariant if $\varphi(N) \subseteq N$ for every endomorphism φ of M.

Lemma 3. Let N be a fully invariant submodule of a quasi-projective module M. Then M/N is quasi-projective.

Proof. Let K be any submodule of M containing N and consider the diagram

$$
\begin{array}{ccc}
M/N & \overset{\theta}{\longrightarrow} & 0 \\
\downarrow & & \\
M/N & \overset{\chi}{\longrightarrow} & M/K & \longrightarrow & 0 & \text{exact}
\end{array}
$$

where θ and χ are homomorphisms. Let $\pi : M \rightarrow M/N$ denote the canonical epimorphism. Form the diagram

$$
\begin{array}{ccc}
M & \overset{\pi}{\longrightarrow} & M/N & \overset{\theta}{\longrightarrow} & 0 & \text{exact}.
\end{array}
$$

By hypothesis, there exists a homomorphism $\varphi : M \rightarrow M$ such that $\theta \pi = \chi \pi \varphi$.
Now \(\varphi(N) \subseteq N \), so that \(\varphi \) induces a homomorphism \(\varphi' : M/N \rightarrow M/N \) defined by

\[
\varphi'(m + N) = \varphi(m) + N \quad (m \in M).
\]

Now, for any \(m \in M \),

\[
\chi \varphi'(m + N) = \chi \pi \varphi(m) = \theta \pi(m) = \theta(m + N).
\]

Thus \(\chi \varphi' = \theta \). It follows that \(M/N \) is quasi-projective.

Lemma 4. For any module \(M \), any submodule \(\text{Soc}_\alpha(M) \) in the socle series of \(M \) is fully invariant.

Proof. Suppose that the result is false. Then there exists a least ordinal \(\alpha \) such that \(\text{Soc}_\alpha(M) \) is not fully invariant. Note that \(\alpha > 0 \). Clearly, \(\alpha \) is not a limit ordinal. Let \(\varphi \) be any endomorphism of \(M \). Then \(\varphi(\text{Soc}_{\alpha-1}(M)) \subseteq \text{Soc}_{\alpha-1}(M) \).

Thus \(\varphi \) induces a homomorphism \(\varphi' : M' \rightarrow M' \), where \(M' = M/(\text{Soc}_{\alpha-1}(M)) \).

Now \(\varphi'(\text{Soc}_\alpha(M')) \subseteq \text{Soc}_\alpha(M') \). Thus \(\varphi(\text{Soc}_\alpha(M)) \subseteq \text{Soc}_\alpha(M) \). It follows that \(\text{Soc}_\alpha(M) \) is fully invariant, a contradiction. The result follows.

Corollary 5. Let \(M \) be a quasi-projective module. Then \(M/(\text{Soc}_\alpha(M)) \) is quasi-projective for all ordinals \(\alpha \geq 0 \).

Proof. By Lemmas 3 and 4.

We do not require the next lemma in its fully generality, but include it for the sake of interest.

Lemma 6. Let \(M \) be a quasi-injective module with endomorphism ring \(S \). Suppose that every nonzero submodule of \(M \) contains a nonzero \(M \)-projective submodule. Then \(S \) is a von Neumann regular right self-injective ring.

Proof. Let \(\varphi \in S \) and suppose that the kernel \(K \) of \(\varphi \) is an essential submodule of \(M \). Suppose that \(\varphi \neq 0 \). By hypothesis, \(\varphi(M) \) contains a nonzero \(M \)-projective submodule \(N \). There exists a submodule \(L \) of \(M \), properly containing \(K \), such that \(L/K \equiv N \). Thus \(L/K \) is \(M \)-projective, and hence \(L \)-projective (see, for example, [1, Proposition 16.12]). It follows that \(L = K \oplus K' \) for some submodule \(K' \) of \(L \). But \(K \) is essential in \(M \), so that \(K' = 0 \), \(L = K \) and \(N = 0 \), a contradiction. Thus \(\varphi = 0 \). Now by [8, Lemma 7 and Theorem 12] (or see [2, Theorem 19.27]), the result follows.

We shall require the following corollary of Lemma 6 in the proof of the theorem.
Corollary 7. Let M be a quasi-projective, quasi-injective module with endomorphism ring S. Suppose that every nonzero submodule of M contains a nonzero M-injective submodule. Then S is a von Neumann regular right self-injective ring.

Proof. By Lemma 6, because every M-injective submodule of M is a direct summand and hence is M-projective. □

3. A lemma of Osofsky

The following lemma of Osofsky [7] plays a crucial role in her proof that rings are semiprime artinian if their cyclic modules are injective.

Lemma 8. Let R be a right self-injective von Neumann regular ring and let \{$e_i; i \in I$\} be an infinite set of orthogonal idempotents in R. Then the right R-module $R/(\bigoplus_i e_iR)$ is not injective. □

Corollary 9. Let R be a right self-injective von Neumann regular ring and let E be a right ideal of R which is countably, but not finitely, generated. Then the right R-module R/E is not injective.

Proof. Suppose that $E = a_1R + a_2R + a_3R + \cdots$, where $a_i \neq 0 \ (i \geq 1)$. Because R is regular, we can suppose that a_i is idempotent for all $i \geq 1$. By [4, p. 68, Lemma] we can suppose that $a_1a_2 = a_2a_1 = 0$, and that

$$a_1R + a_2R = a_1R \oplus a_2R = (a_1 + a_2)R,$$

where $a_1 + a_2$ is idempotent. Again by [4] we can suppose that $(a_1 + a_2)a_3 = a_3(a_1 + a_2) = 0$. Thus a_1, a_2, a_3 are orthogonal idempotents. In this way, without loss of generality, we can suppose that \{$a_i; i \geq 1$\} is a set of orthogonal idempotents. By Lemma 8, R/E is not an injective R-module. □

Using Corollary 9 we can now prove the key lemma in our investigation.

Lemma 10. Let R be a right self-injective ring such that every nonzero right R-module contains a nonzero injective submodule. Then R is semiprime artinian.

Proof. It is clear that every nonzero right ideal contains an idempotent and hence R has zero Jacobson radical. Thus R is von Neumann regular (see, for example, [2, Corollary 19.28] or [7, Lemma 7]). Suppose that R is not semiprime artinian. Then R contains a countably, but not finitely, generated right ideal A. Now A is essential in the right ideal eR, for some idempotent e. Let $B = A \oplus (1 - e)R$. Then B is a countably, but not finitely, generated essential right ideal of R.
Because \(B \neq R \), the module \(R/B \) contains a nonzero injective submodule \(C/B \), for some right ideal \(C \) containing \(B \). Now \(C/B \) is a direct summand of \(R/B \), and hence there exists a right ideal \(D \) containing \(B \) such that \(R/B = (C/B) \oplus (D/B) \). Note that \(R/D \cong C/B \), so that \(R/D \) is injective. Moreover, \(D/B \) is cyclic, so that \(D \) is countably generated. By Corollary 9, \(D \) is finitely generated. There exists an idempotent \(f \) such that \(D = fR \). Then \(B \subseteq fR \). But \(B \) is essential, so that \(f = 1 \) and \(D = R \), a contradiction. \(\square \)

4. The theorem

By a subquotient of a module \(M \) we mean a module of the form \(N/K \), where \(N \) and \(K \) are submodules of \(M \) with \(K \subseteq N \).

Lemma 11. The following statements are equivalent for a module \(M \):

(i) Every nonzero cyclic subquotient of \(M \) contains an \(M \)-injective submodule.

(ii) Every nonzero module in \(\sigma[M] \) contains a nonzero \(m \)-injective submodule.

Proof. (ii) \(\Rightarrow \) (i) Clear.

(i) \(\Rightarrow \) (ii) Let \(X \) be any nonzero submodule in \(\sigma[M] \). In order to prove that \(X \) contains a nonzero \(M \)-injective subquotient, we can suppose, without loss of generality, that \(X \) is cyclic. There exists a nonempty index set \(I \) and a module \(M' = \bigoplus_{i \in I} M_i \) such that \(M_i = M \) (\(i \in I \)) and \(X \cong N/K \) for some submodules \(K \subseteq N \) of \(M' \). There exists \(x \in N \) such that \(N = xR + K \) and hence \(X \cong N/K = (xR + K)/K \cong xR/(xR \cap K) \). Thus we can suppose, without loss of generality, that \(N \) is cyclic. There exists a finite subset \(J \) of \(I \) such that \(N \subseteq \bigoplus_{j \in J} M_j \). Thus we can suppose that \(N \subseteq M_{j_1} \oplus \cdots \oplus M_{j_n} \), where \(n \) is a positive integer and \(M_i = M \) (\(1 \leq i \leq n \)).

We shall prove that \(X \) contains a nonzero \(M \)-injective subquotient by induction on \(n \). If \(n = 1 \), then this is clear by (i). Suppose that \(n \geq 2 \). Let \(L = M_{j_1} \oplus \cdots \oplus M_{j_n} \). If \(K \cap L \neq N \cap L \), then

\[
(N \cap L)/(K \cap L) \cong [(N \cap L) + K]/K \nsubseteq N/K \cong X.
\]

By induction on \(n \), \((N \cap L)/(K \cap L) \), and hence \(X \), contains a nonzero \(M \)-injective subquotient.

Now suppose that \(N \cap L = K \cap L \). Then \(N + L \neq K + L \), and hence \((K + L)/L \nsubseteq (N + L)/L \) are distinct submodules of the module \(M/L \cong M \). Thus, by (i), \((N + L)/(K + L)\) contains a nonzero \(M \)-injective subquotient. But

\[
(N + L)/(K + L) \cong N/[K + (N \cap L)] = N/K \cong X.
\]

Thus \(X \) contains a nonzero \(M \)-injective submodule. \(\square \)
Given a ring R, a right R-module M is called a V-module if every simple right R-module is M-injective. Note the following elementary fact.

Lemma 12. A module M is a V-module if and only if every simple subquotient of M is M-injective.

Proof. The necessity is clear. Now suppose that every simple subquotient of M is M-injective. Let U be any simple module. Let N be a submodule of M and $\varphi : N \to U$ a homomorphism. If $\varphi = 0$, then φ lifts to M trivially. If φ is nonzero, then $U \cong N/K$, where $K = \ker \varphi$. By hypothesis, N/K, and hence U, is M-injective. \square

We are now in a position to prove the following theorem:

Theorem 13. Let M be a quasi-projective module. Then M is a semi-artinian V-module if and only if every nonzero cyclic subquotient of M contains a nonzero M-injective submodule.

Proof. The necessity is clear.

Conversely, suppose that every nonzero cyclic subquotient of M contains a nonzero M-injective submodule. In particular, every simple subquotient of M is M-injective. By Lemma 12, M is a V-module. Moreover, for any submodule N of M, every nonzero cyclic subquotient of M/N contains a nonzero (M/N)-injective submodule (see, for example, [1, Proposition 16.13]).

It remains to prove that M is semi-artinian. To do so, it is sufficient to prove that M has nonzero socle. For, assume that this is the case. By Corollary 5 and the above remark, it will follow that, for all ordinals $\alpha \geq 0$, $M/(\text{Soc}_\alpha(M))$ has nonzero socle if $M \neq \text{Soc}_\alpha(M)$. Thus the socle series of M must terminate in M.

By Proposition 1, M is semi-artinian.

Let $0 \neq m \in M$. Then mR contains a nonzero M-injective submodule N. Thus N is a direct summand of M, so that N is cyclic, quasi-projective and quasi-injective. Let S denote the endomorphism ring of N. Because every nonzero cyclic subquotient of N contains a nonzero M-injective (and hence N-injective) submodule, Corollary 7 gives that S is von Neumann regular right self-injective.

By Lemma 11, every nonzero module in $\sigma[N]$ contains a nonzero N-injective submodule. But N is a generator in $\sigma[N]$, by [12, 23.8]. Thus the category $\sigma[N]$ is equivalent to the category of right S-modules (see [12, 46.2] or [3]). It follows that every nonzero right S-module contains a nonzero injective submodule. By Lemma 10, S is semiprime artinian.

Now consider N. Because S is semiprime artinian, we know that N has finite Goldie dimension. Thus N contains a (nonzero) uniform submodule U. Let $0 \neq u \in U$. Then uR contains a nonzero direct summand of U, by hypothesis. Thus $U = uR$. It follows that U is simple. Therefore, U is a simple submodule of M. Thus M has nonzero socle, as required. \square
5. Examples

In this section we give a method for producing many examples of semi-artinian V-modules. A ring \(R \) is called right semi-artinian if the right \(R \)-module \(R \) is semi-artinian. On the other hand, the ring \(R \) is a right \(V \)-ring if every simple right \(R \)-module is injective, equivalently the right \(R \)-module is a \(V \)-module. For a discussion of right \(V \)-rings see [5]. The next result is clear.

Proposition 14. Let \(R \) be a ring.

(i) If \(R \) is right semi-artinian, then every right \(R \)-module is semi-artinian.

(ii) If \(R \) is a right \(V \)-ring, then every right \(R \)-module is a \(V \)-module.

In view of Proposition 14, in order to find examples of semi-artinian \(V \)-modules it is sufficient to produce examples of right semi-artinian right \(V \)-rings, and this is what we shall do. Note that right semi-artinian right (or left) \(V \)-rings are von Neumann regular (see [6, Corollary 4.3]).

Let \(K \) be a field and \(R \) a \(K \)-algebra. We shall consider \(K \) as a subring of \(R \) in the usual way. For each positive integer \(i \), let \(R_i = R \). Let \(R^* \) denote the subring of the complete direct product \(\prod R_i \), consisting of all elements \((r_1, r_2, r_3, \ldots)\) such that there exists \(n \geq 1 \) with

\[r_n = r_{n+1} = r_{n+2} = \cdots \quad \text{and} \quad r_n \in K. \]

Clearly, \(I = \bigoplus R_i \) is an ideal of \(R^* \).

Lemma 15. With the above notation,

\[\text{Soc}_1(R^*) = \text{Soc}_1(R_1) \oplus \text{Soc}_1(R_2) \oplus \text{Soc}_1(R_3) \oplus \cdots. \]

Proof. Let \(U \) be any minimal right ideal of the ring \(R^* \). Suppose that \(0 \neq r = (r_1, r_2, r_3, \ldots) \in U \). There exists a positive integer \(n \geq 1 \) such that \(r_n \neq 0 \). Let \(e = (e_1, e_2, e_3, \ldots) \in R^* \), where \(e_n = 1 \) and \(e_m = 0 \) \((m \neq n) \). Then \(0 \neq re = (0, \ldots, 0, r_n, 0, 0, \ldots) \in U \). Thus \(U = reR^* \subseteq I \). It follows that \(\text{Soc}_1(R^*) = \text{Soc}_1(I) = \bigoplus \text{Soc}_1(R_i) \), by [1, Proposition 9.19].

Corollary 16. With the above notation, for any ordinal \(\alpha \geq 0 \),

\[\text{Soc}_\alpha(R^*) = \text{Soc}_\alpha(R_1) \oplus \text{Soc}_\alpha(R_2) \oplus \text{Soc}_\alpha(R_3) \oplus \cdots. \]

Proof. By transfinite induction using Lemma 15.
the socle length of M. In particular, if R is right semi-artinian, then the socle length of R is defined to be the socle length of the right R-module R.

Lemma 17. With the above notation, if R is a right semi-artinian ring of socle length $\alpha \geq 1$, then R^* is a right semi-artinian ring of socle length $\alpha + 1$.

Proof. By Corollary 16, $\text{Soc}_\alpha(R^*) = I \neq R$. Moreover, $R/I \cong K$ gives $\text{Soc}_{\alpha+1}(R^*) = R^*$. By Proposition 1, R^* is right semi-artinian of socle length $\alpha + 1$. □

Lemma 18. Let K be a field. For any nonlimit ordinal $\alpha \geq 0$, there exists a right semi-artinian K-algebra of socle length α.

Proof. Suppose not. Then there exists at least a nonlimit ordinal $\alpha \geq 1$ such that no right semi-artinian K-algebra of socle length α exists. If $\alpha - 1$ is not a limit ordinal, then there exists a right semi-artinian K-algebra R of socle length $\alpha - 1$. By Lemma 17, R^* is a right semi-artinian K-algebra of socle length α.

Now suppose that $\alpha - 1$ is a limit ordinal. We adapt the above construction. For each ordinal $1 \leq \beta < \alpha - 1$, there exists a right semi-artinian K-algebra R_β of socle length β. Again we think of K as a subring of R_β for all β. Let R^+ denote the subring of the direct product of the rings R_β consisting of all elements $r = \{r_\beta\}$ such that $r_\beta \in R_\beta (1 \leq \beta < \alpha)$ and there exists an element $k, \in K$ such that $r_\beta = k,_{\beta}$ for all but a finite number of ordinals $1 \leq \beta < \alpha$. By adapting the earlier proofs, it can be checked that $\text{Soc}_{\alpha-1}(R^+) = \bigoplus_\beta \text{Soc}_{\alpha-1}(R_\beta) = \bigoplus R_\beta = I$ (say). But $R^+/I \cong K$, so that $\text{Soc}_\alpha(R^+) = R^*$. This contradiction proves the result. □

Note that if α is a limit ordinal, then a right semi-artinian ring R cannot have socle length α. For, in this case $R = \text{Soc}_\alpha(R) = \bigcup \text{Soc}_\beta(R)$, where the union is taken over all ordinals β with $1 \leq \beta < \alpha$, and this gives $1 \in \text{Soc}_\beta(R)$ and hence $R = \text{Soc}_\beta(R)$ for some $1 \leq \beta < \alpha$. This problem disappears for modules. In fact, in the proof of Lemma 18 we saw how to deal with limit ordinals, because I is a semi-artinian right R^+-module of socle length the limit ordinal $\alpha - 1$. Thus we have the following result:

Theorem 19. Let K be a field. For any ordinal $\alpha \geq 0$ there exists a K-algebra R and a semi-artinian right R-module M such that M has socle length α. □

Of course, there are other (and easier) constructions of right semi-artinian rings. We mention one of these. Let K be a field and R a K-algebra. Let S denote the subring of the ring of 2×2 matrices with entries in R which consists of all matrices of the form

$$
\begin{bmatrix}
a & b \\
0 & c
\end{bmatrix}
$$
where \(a \in K \) and \(b, c \in R \). It is easy to check that if \(R \) is right semi-artinian of socle length \(\alpha \), for some ordinal \(\alpha \geq 0 \), then \(S \) is right semi-artinian of socle length \(\alpha + 1 \). However, right V-rings are semiprime (see [5, Corollary 2.2] or [6, Corollary 4.3]), so that these matrix examples will not give right semi-artinian right V-rings. No such problem arises with our earlier construction, as we now prove.

Theorem 20. With the above notation, if the \(K \)-algebra \(R \) is a right V-ring, then \(R^* \) is also a right V-ring.

Proof. Let \(A \) be a proper right ideal of the ring \(R^* \). Let \(r \in R^* \), \(r \not\in A \). We shall show that there exists a maximal right ideal \(P \) of \(R^* \) such that \(A \subseteq P \), but \(r \not\in P \). Let \(r = (r_1, r_2, r_3, \ldots) \in R^* \). Suppose that \(r_n \not\in A \cap R_n \) for some \(n \geq 1 \). By [5, Theorem 2.1], there exists a maximal right ideal \(P_n \) of \(R_n \) such that \(A \cap R_n \subseteq P_n \) but \(r_n \not\in P_n \). Let

\[
P = \{(s_1, s_2, s_3, \ldots) : s_n \in P_n \}.
\]

If \(\pi_n : R^* \rightarrow R_n \) is the ring epimorphism given by projection onto the \(n \)th component, then \(\ker \pi_n \subseteq P \) and \(\pi_n(P) = P_n \), so that \(P \) is a maximal right ideal of \(R^* \). Clearly \(A \subseteq P \) and \(r \not\in P \).

Now suppose that \(r_j \in A \cap R_j \) for all \(j \geq 1 \). There exists a positive integer \(m \) and \(0 \neq k \in K \) such that \(k = r_{m+1} = r_{m+2} = r_{m+3} = \cdots \). It follows that \(r \not\in I \). Suppose that \(A \not\subseteq I \). Let \(a = (a_1, a_2, a_3, \ldots) \in A \), \(a \not\in I \). Clearly, we can suppose, without loss of generality, that there exists \(s \geq m \) such that \(k = a_{s+1} = a_{s+2} = a_{s+3} = \cdots \). Now

\[
(0, \ldots, 0, k, k, \ldots) = a(0, \ldots, 0, 1, 1, \ldots) \subseteq A ,
\]

and hence

\[
r = (r_1, \ldots, r_s, 0, 0, \ldots) + (0, \ldots, 0, k, k, \ldots) \in A ,
\]

a contradiction. Thus \(A \subseteq I \). But, in this case, \(I \) is a maximal right ideal of \(R^* \) such that \(A \subseteq I \) but \(r \not\in I \).

Now we apply [5, Theorem 2.1] to conclude that \(R^* \) is a right V-ring. \(\Box \)

Note that if \(R \) is a semiprime artinian ring, then \(R \) is a right semi-artinian right V-ring. Combining this fact with Theorem 20 and our earlier discussion we now conclude the following:

Corollary 21. Let \(K \) be a field.

(i) For any nonlimit ordinal \(\alpha \geq 0 \), there exists a \(K \)-algebra \(R \) such that \(R \) is a right semi-artinian right V-ring of socle length \(\alpha \).

(ii) For any ordinal \(\alpha \), there exists a \(K \)-algebra \(R \) and a right \(R \)-module \(M \) such that \(M \) is a semi-artinian V-module of socle length \(\alpha \). \(\Box \)
6. Categories

We conclude the paper with a comment about Grothendieck categories. Let \mathcal{C} be a locally finitely generated Grothendieck category. It is well known that if every object of \mathcal{C} is injective, then every object of \mathcal{C} is semisimple (see, for example, [10, Chapter V, Proposition 6.7]). In view of Theorem 13, it would be interesting to investigate the categories \mathcal{C} with the property that every nonzero object contains a nonzero injective subobject, and, in particular, to determine whether every nonzero object of such a category must contain a simple subobject. More specifically, does Theorem 13 extend to modules which are not quasi-projective?

Note added in proof

It has been brought to our attention that K. Ohtake in a paper entitled ‘Commutative rings of which all radicals are left exact’ (Comm. Algebra 8 (1980) 1505–1512), has proved that a commutative ring R is a semi-artinian V-ring if and only if every nonzero R-module contains a nonzero injective submodule.

Acknowledgment

This paper was written while both authors were visiting the University of Murcia in Spain. They wish to thank Professor J.L. Gomez Pardo and his colleagues for their kind hospitality and stimulating conversations. The first author wishes to thank the Spanish Ministry of Education and Science, and the second author the Royal Society of London, for their financial support.

References