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The decomposition method is applied to algebraic equations containing exponen- 
tial terms. The n term approximation 4, is rapidly damped as n increases, yielding 
an oscillating convergence of superior accuracy ( ~0.01 % by n = 5 and -~0.0001 % 
by n=9 for k=2). $3 1985 Academx Press, Inc. 

The decomposition method [l] of the first author has been shown to 
provide accurate approximation solutions to a very large class of differen- 
tial equations (linear, nonlinear, deterministic, stochastic, or systems of 
coupled equations) and to be potentially useful for partial differential 
equations as well. Since the methods are operator methods, they can deal 
also with algebraic and trigonometric operators. 

Consider as an example the equation x = k + e Px, k > 0. The sotution is 

n-l 
x=k+ 2 (-l),+lf--e . ~- nk 

n=l n! 

If we write x = C,“=O x, and Nx = C,“=O A,, where the A,, represents the 
Adomian polynomials [2], we have 

x,=k 

x1 = A, = emxo 

x,=A,=e-“O(-x,) 

x3=A,=e-Xo(-x,+fxf) 
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x4=A3=edxo(-x3+x,x2-ix:) 

x5=A4=e~xo(-x4+~x~+x,x3-~x~x2+~x~) 

X~=As=e-xo(-x,+x,x,+x,x,-~x,x~ 

-4x:x3 + 4x:x2 - i&x;) 

x7 =A, = eexo( -x6 + &xi +x2x4+x,x5 -ix: -x1x2x3 

-~x~X~+~xX:X~+~X;X3-~x~X*+&jx~) 

x8 = A, = eexo( -x7 + x3x4 + x2x5 + x, xg - ix:x3 - ix, x: 

-x1x2x4 - ix:x5 + 4x1x; + $xfxzx3 + &xX:x, 

- j$x;x; - &x:x3 +&)x:x, -&xl) 

etc. Each term is successively calculated: 

x,=k 

x, = epk 

x2= -e-2k 

x =1,-3k 
3 2 

x4=(-f)e-4k 

125 -5k x5=24e 

x6= -$ee6k 

etc. We notice the signs alternate for the x,-positive for x1, x3, x5,..., and 
minus for x2, x4, x6 ).... Thus for x, we have a coefficient ( - 1)” + I. The 
corresponding exponential is emnk. The numerical coefficient (other than 
(-l)“+‘) for eenk is given as 

n=l 1 or lo/1 

n=2 1 or 2’/1 .2 

n=3 312 or 3.3/2.3=32/3! 

n=4 813 or 8*2.4/2*3~4=4~/4! 

n=5 125124 or 125.5/24.5=54/5! 

n=6 1296/120 or 1296.61120.6 = 77761720 = 65/6! 

Thus we can write x, = ( - 1)” + ‘(n”- ‘In!) e-“k and consequently, we 
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have an algorithm making unnecessary the computation of more A, 
polynomials. 

A graphical verification is easily obtained by plotting e-X versus X, rais- 
ing the values by k (let us choose k = 2) and looking for the intersection of 
the resulting curve with the line y=x. For k = 2, we find the solution 
x = 2.120028239. 

The decomposition method solution is 

x=k+ f (-l)“+l(n”~-‘/n!)e-“k 
n=l 

x,=k=2 

x,=e-L 1.3533528 x 10 I 

x2= -e 4. 

The corresponding values of the exponential are 

e ’ = 1.3533528 x 10. ’ 

e 4 = 1.8315639x 10 ’ 

e 6 = 2.4787522 x 10 3 

e 8 = 3.3546263 x 10 4 

eC’O=4.539993 x lo-’ 

e ~‘2=6.1442124x 1O-6 

The results for the x, are 

n X, 

0 2.0 
1 1.3533528 x 10-l 
2 - 1.8315639 x lO-2 
3 3.7181283 x lO-3 
4 - 8.9456701 x 10 -4 
5 2.3645797 x lO-4 
6 -6.6357493 x lO-5 

The n term approximation qSn = x0 + x1 + . . . + x,. Values of $, are given 
in the following table: 
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% error !Pn 
n 4, = C(& - x)/xl 100 

1 2.00... - 5.6 
2 2.13533528 + 0.722 
3 2.117019641 -0.142 
4 2.1207378 + 0.0330 
5 2.1198432 - 0.00873 
6 2.1200797 + 0.00243 
7 2.1200133 - 0.000705 

The accuracy is remarkable. A seven-term approximation has an error of 
0.0007 %. The small amplitude oscillating (and rapidly damped) con- 
vergence is interesting to note and a subject of further study. If we plot Y,, 
versus Y”, we see oscillations of decreasing amplitude. The envelope of 
the oscillations decreases asymptotically to zero. The calculated value 
of Y, = 0.00021091328; vl, = -0.0001392257%. Thus with a nine-term 
approximation the error is less than (l/10000)%. The oscillating con- 
vergence means the solution is between & and &, . Thus, & < x -C CJ$ or 

2.1200327 < x < 2.1200269 

The true solution is x = 2.120028239. 
Finally it is interesting to consider the following: We determined x as 

n-1 
-nk x=k+ ‘f (-l)“+‘!+ . 

?I=1 

Substituting this into the original equation, we must have 

e-[k+~~=,(~l)“+‘(n”~‘/n!)r-“kl = .F, (-l)“+’ (n”--I/n!) ePnk 

or 

which says 

e~ke~Ce-k-p-=k+...l=e-k-ee2k 
+ . . . 
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Multiply by e” 

or 

an approximate check. 

ADOMIAN AND RACH 

e -x= 1 --x+..., 
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