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How the eukaryotic cell specifies distinct chromatin domains is a central problem in
molecular biology. The ciliate protozoan Tetrahymena thermophila features a separation of
structurally and functionally distinct germ-line and somatic chromatin into two distinct
nuclei, the micronucleus (MIC) and macronucleus (MAC) respectively. To address questions
about how distinct chromatin states are assembled in the MAC and MIC, we have initiated
studies to define protein–protein interactions for T. thermophila chromatin-related proteins.
Affinity purification followed by mass spectrometry analysis of the conserved Asf1 histone
chaperone in T. thermophila revealed that it forms a complex with an importin β, ImpB6.
Furthermore, these proteins co-localized to both the MAC and MIC in growth and
development. We suggest that newly synthesized histones H3 and H4 in T. thermophila are
transported via Asf1–ImpB6 in an evolutionarily conserved pathway to both nuclei where
they then enter nucleus-specific chromatin assembly pathways. These studies set the stage
for further use of functional proteomics to elucidate details of the characterization and
functional analysis of the unique chromatin domains in T. thermophila.

Biological significance
Asf1 is an evolutionarily conserved chaperone of H3 and H4 histones that functions in
replication dependent and independent chromatin assembly. Although Asf1 has been well
studied in humans and yeast (members of the Opisthokonta lineage of eukaryotes), questions
remain concerning its mechanism of function. To obtain additional insight into the Asf1
functionwe have initiated a proteomic analysis in the ciliate protozoan T. thermophila, amember
of the Alveolata lineage of eukaryotes. Our results suggest that an evolutionarily conserved
function of Asf1 is mediating the nuclear transport of newly synthesized histones H3 and H4.

© 2013 Published by Elsevier B.V. This is open data under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
Chromatin assembly is the process by which the nucleosome is
formed. Replication-dependent (RD) chromatin assembly is
co-ordinatedwith chromosomal replication and is an important
mechanism underlying epigenetic regulation. This includes
maintenance of patterns of gene expression via faithfully
replicating parental patterns of histone post-translational
modifications (PTMs) onto the daughter strand [1]. Replication
Independent (RI) chromatin assembly pathways occur
independent of chromosomal replication at any timewithin the
cell cycle and contribute to chromatin remodeling by a selective
insertion of histone variants such as histone H3.3 in human
cells [2]. Increasingly, connections are being found between
mutations in genes encoding RD or RI chromatin assembly
proteins, histones themselves, and a variety of human diseases
[3–9]. However a complete understanding of how chromatin
assembly proteins contribute to the establishment, remodeling,
and epigenetic maintenance of chromatin structure is lacking.

Histone chaperones are proteins that bind histones, are
involved in their assembly onto chromatin, but are not
themselves part of chromatin [2]. The conserved histone H3–
H4 chaperone Asf1 has a central role in eukaryotic chromatin
assembly. ASF1 was first isolated as a gene that when
over-expressed, de-repressed the yeast silent mating type
locus [10]. Asf1wasmechanistically connected to the chromatin
assemblywhen the in vitro replication-coupling assembly factor
activity (RCAF) was identified as Asf1 bound to histones H3 and
H4 (Asf1–H3–H4) [11]. ASF1 has been implicated in awide variety
of functions that range from transcription activation [12] and
repression [13] to maintenance of genome stability [14], DNA
replication [15], DNA repair [16], and cellular aging [17]. The
mechanism by which Asf1 functions in Saccharomyces cerevisiae
is explainable in part by its role in the promotion of acetylation
of histone H3 at lysine 56 (H3-K56ac), which is catalyzed by the
fungal-specific histone acetyltransferase (HAT) Rtt109 [18–20] in
conjunction with Asf1Sc [21]. The enzymology behind H3K56ac
in human cells is more complex with several HATs implicated
including CBP/p300 [4,22] and Gcn5Hs [23]. The knock-down of
Asf1A but not Asf1B in human cells decreases levels of H3K56ac
[4].

The Asf1 function has also been revealed by the identification
and characterizationofAsf1 protein–protein interaction partners.
In S. cerevisiae, Asf1 (Asf1Sc) co-purifies with a number of proteins
including the Rad53 checkpoint kinase [24], the HIR histone
H3–H4 RI chaperone complex [25,26], the nuclear Hat1
complex [27] as well as histones H3 and H4. In human cells,
epitope tagged Asf1aHs co-purifies with several proteins
including the disease-related Codanin protein, Importin-4,
sNASP, RbAp46/48, MCM 2–7 replicative helicase [5,28], histone
H4 and the RD H3.1 and RI H3.3 [29]. Codanin was recently
demonstrated to directly bind Asf1 and negatively regulate
importin-4 mediated transport of Asf1–H3–H4 into the nucleus
[5]. These human protein–protein interactions have led to a
model where Asf1 binds newly synthesized H3–H4 in the
cytoplasm, and transports them into the nucleus in complex
with importin-4 regulated by codanin [5,30]. The Hat1 complex,
consisting of Hat1, Hat2 (human RbAp46/48) and Hif1 (human
NASP) [27,30], has been proposed to act upstream of the H3–H4
binding by Asf1 in the cytoplasm, possibly influencing the
interaction of importin-4 with Asf1–H3–H4 [31,32].

Once in the nucleus, Asf1 transfers the H3–H4 dimer to
downstream RI and RD H3–H4 chaperones HIRA, and CAF-1.
The yeast versionofHIRA is a protein complex ofHir1, Hir2, Hir3
andHpc2 [26]. HumanHIRAhas high similarity in sequence and
function to both Hir1p and Hir2p [33]. Human orthologs of Hir3
(CABIN1) and Hpc2 (Ubinuclein) have been identified to also
bind H3.3 with HIRA [34]. HIRA is hypothesized to assemble
H3.3–H4 into chromatin in a poorly understood replication
independent manner. CAF-1 is composed of Cac1, Cac2, and
Cac3 subunits [35]. CAF-1 is thought to function in chromatin
assembly by sequentially accepting two H3–H4 dimers, one
parental and one newly synthesized, which it then assembles
as a tetramer behind the replication fork [36]. CAF-1 assembles
H3–H4 into chromatin at the replication fork in a manner
coordinated by a physical interaction with the PCNA loading
clamp [37]. Asf1 physical interaction with CAF-1 and HIRA is
well characterized in vitro. Both CAF-1 p60 and HIRA physically
interact in a mutually exclusive manner with the same region
in human and yeast Asf1, separate from its H3–H4-binding
region. Despite this model, questions remain concerning the
mechanism of action of Asf1. The importin-4 mediated Asf1a–
H3–H4 nuclear import is highly regulated in human cells. An
analogous pathway in yeast likely existswith Kap123mediating
import of Asf1–H3–H4. However the physical interaction
appears transient in that it is not easily detected, and the
absence of a Codanin related protein suggests that the
importance of this pathway may be different.

The single-cell ciliate protozoan Tetrahymena thermophila
offers an experimental system well-suited to unravel some of
the questions concerning Asf1 mechanism and function. The
T. thermophila model features a separation of structurally
distinct germ-line and somatic chromatin into two distinct
nuclei, the micronucleus (MIC) and macronucleus (MAC) that
are both present in a single cell (reviewed in [38]). Functionally,
the somatic polyploid MAC controls gene expression, and
the germinal diploid MIC controls stable genetic inheritance.
These two functionally and spatially distinct nuclei originate
during sexual development from the same zygotic nucleus,
but then follow distinct developmental pathways whose
chromatin organization share important similarities with
the epigenetic changes that occur to mammalian chromatin
during development. Although T. thermophila is rich in the
H3K56ac PTM [39], it does not encode recognizable homologs
of RTT109 or human CBP begging the question — what is the
identity of its H3K56ac HAT? Starting with a proteomics
work-flow, we present the affinity purification, subsequent
characterization, and functional analysis of chromatin-related
protein complexes containing the histone H3–H4 chaperone
Asf1 in T. thermophila. Asf1 is conserved in eukaryotes and has a
canonical function upstream of both RD and RI chromatin
assembly. Affinity purification of T. thermophilaAsf1 followed by
mass spectrometry analysis reveals that it forms a protein
complex with an importin β, ImpB6. Our analysis indicates that
Asf1 and ImpB6 co-localize to both theMAC andMIC in growing
cells. We suggest that newly synthesized H3 and H4 in
T. thermophila in growth and development are funneled through
Asf1–ImpB6 to both theMAC andMIC. Histones H3 and H4 then
enter nucleus-specific chromatin assembly pathways.
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2. Results

2.1. ASF1 is conserved in T. thermophila

We initiated our analysis of Asf1Tt by using BLASTX to search
the sequenced macronuclear genome [40] using the Asf1Sc

amino acid sequence (GenBank AAC37512). We found one
high-confidence match, TTHERM_00442300, hereafter called
ASF1Tt, indicating that ASF1Tt is a single-copy gene. Gene
prediction model of the Tetrahymena Genome Database (TGD,
www.ciliate.org) indicates no introns and a predicted coding
region of 756 bp encoding a protein of 251 amino acids.We used
multiple sequence alignment to compare Asf1Tt with Asf1 from
A

B

Fig. 1 – Comparative sequence analysis of Asf1Tt. A: Identity/sim
amino acids 1–155 of Asf1 of S. cerevisiae) between several model
and glutamic acid amino acids. S/T indicates that the region is ri
analysis of the highly conserved Asf1 N terminal region as descr
XP_001033143.3; S. cerevisiae, AAC37512.1; S. pombe, NP_588267.
I. multifiliis, EGR28891. “°” and “√” represent points of contact be
English et al. [44]), “+” between Asf1aHs and HIRA (Tang et al. [47]
V94R of Asf1Sc and “#” represents T148 of Asf1Sc that contacts bo
several well-characterized models. In this alignment we used
only the first 156 of the 251 amino acids of Asf1Tt which
corresponds to amino acids 1–155 of Asf1Sc, also referred to as
Asf1N [41]. Aswith other organisms, theC-terminal sequence of
Asf1Tt is not well conserved. The best match to Asf1Tt (Fig. 1A)
was that of the closely related ciliate and freshwater fish
ectoparasite Ichthyophthirius multifiliis at 83% identity. The
related ciliate Paramecium tetraurelia (data not shown) encodes
10 Asf1 proteins, a consequence of multiple whole genome
duplications [42]. The Asf1N region of Asf1Tt is 41%/43%
identical toAsf1 of budding/fission yeast, and 44%/42% identical
to Asf1aHs and Asf1bHs respectively, the two Asf1 proteins in
human cells [43]. Overlying the multiple sequence alignment
(Fig. 1B) are secondary structure predictions, as well as histone
ilarity of the highly conserved Asf1N region (corresponds to
Asf1 proteins. D/E indicates that the region is rich in aspartic
ch in serines and threonines. B: Comparative sequence
ibed in the text. Accession numbers: T. thermophila,
1; H. sapiens, EAW48193.1 (Asf1A) and AAH36521.1 (Asf1B);
tween Asf1Sc and histones H4 and H3 respectively (from
), “*” between Asf1Sp and Hip1 (Malay et al. [46]). “!” indicates
th H3 and H4 [44].

http://www.ciliate.org
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H3–H4 and CAF-1/HIR-contacting residues, as determined for
Asf1Sc and Asf1Hs [44–47]. Asf1Sc has been demonstrated to
bind histone H3 through a region comprised of β-strands (β3,
β4, and β6–9), and H4 primarily via the β9 strand ([44], Fig. 1B).
Consistent with histone-binding function, the sequence
conservation of the N-terminal region of Asf1Tt with the same
region in Asf1 from other eukaryotes is extensive (Fig. 1B,
Supplemental Fig. 1A + B), although some deviations exist. For
example, ASF1Tt encodes histidine instead of arginine at amino
acid position 149 (corresponds to 148 in Asf1Sc). This amino acid
contacts H4R95 [44], which is conserved in themajor andminor
H4 in T. thermophila (Supplemental Fig. 2A). Additionally, Asf1Sc

E116 that contacts H3K115 corresponds to Asf1Tt Q117
(Fig. 1A) which is predicted to contact T. thermophila H3R115
(Supplemental Fig. 2B). Thus most sequence deviations within
this region in Asf1Tt is compensatory reflecting sequence
differences in evolutionarily divergent eukaryotes.

A region within Asf1Tt that is not well conserved includes
β4 and β5 (Fig. 1B) implicated in Asf1 direct non-histone
protein–protein interactions (PPIs). This region in Asf1Sc and
Asf1Hs recognizes and binds a sequence called the B-domain
in proteins such as CAF-1 and HIRA in a manner that does not
preclude binding to H3–H4 [41,47]. Within this region, several
amino acids are conserved including D37 (Fig. 1B), but there is
clear divergence in the region spanning amino acids 59–66
that in humans and yeast Asf1 includes two prolines, P64 and
P66 that create a hydrophobic binding pocket. In Asf1Tt,
these prolines are replaced by hydrophilic aspartic acid
residues (Fig. 1B). We predict Asf1Tt to function as a histone
H3–H4 binding protein, but there may be differences in its
interactions with non-histone proteins compared with yeast/
metazoans.

2.2. Proteomic analysis of Asf1Tt in vegetatively
growing T. thermophila

We generated a stable line expressing Asf1Tt with a C-terminal
FZZ epitope tag from the MAC. The FZZ epitope tag contains
2 protein A moieties and one 3xFLAG separated by a TEV
cleavage site (Fig. 2A, [48]), permitting a tandem affinity
purification of the fusion protein which allows analysis of
co-purifying proteins by Western blotting and/or mass
spectrometry. The FZZ construct (Supplemental Fig. 3A) was
used to transform growing T. thermophila strains using biolistic
transformation. Gene replacement of the WT ASF1Tt locus by
ASF1Tt-FZZ occurs by homologous recombination [49]. The
polyploid MAC divides amitotically without equal segregation
of alleles. ‘Phenotypic assortment’ (reviewed in [50]) of the
transformed cells generates homozygocity in the polyploid
MAC for the chromosome containing ASF1Tt-FZZ. Southern
blotting demonstrates a complete replacement of all wild
type MAC copies (Supplemental Fig. 3B). Western blotting
demonstrates expression of the epitope-tagged Asf1Tt from
whole cell extracts from both wild type and Asf1-FZZ-
expressing strains subjected to tandem affinity purification
(Fig. 2B, C). Tandem affinity purified Asf1Tt-FZZ was first
analyzed by electrophoresis through 10% SDS-PAGE, followed
by silver staining. We observed two major stained protein
bands not present in the mock purification from untagged
cells (Fig. 2D). MALDI-TOF analysis of gel slices identified the
bait protein Asf1Tt, and an additional co-purifying protein
TTHERM_00962200, which encodes an importin β (Fig. 2D).
Because staining was faint, we performed a more sensitive
gel-free LC–MS/MS based analysis on tandem affinity purified
proteins in order to identify additional proteins that co-purify
with Asf1Tt-FZZ.

To provide statistical rigor to ourAP–MSanalysis, interaction
data were filtered using SAINT (Significance Analysis of
INTeractome) which uses quantitative spectral counts to
assign a confidence value to individual protein–protein
interactions [51,52]. The SAINT method assigns a probability
value to an interaction based on data from both control and
experimental AP–MS, taking into consideration data from
biological replicates, permitting rigorousdiscriminationbetween
true and false interactions. The application of SAINT to AP–MS
data for Asf1Tt-FZZ from vegetatively growing T. thermophila
revealed numerous interaction partners with AvgP > 0.8
(Table 1). SAINT analysis also verified the presence of the
importin β TTHERM_00962200 in the Asf1Tt purification (AvgP =
1.0, Table 1) consistent with what we observed in the MALDI
experiment. We also identified TTHERM_01014770 (Nrp1;
NASP-related protein) with an AvgP = 1.0 (Table 1). Nrp1 is a
predicted 510 amino acid protein that is similar to the Xenopus
N1/N2 protein, the founding member of a histone chaperone
family that also includes NASPHs, and Hif1Sc [2]. Consistent with
this observation, we have previously demonstrated that Asf1
and Hif1 co-purify in yeast [27]. In addition, Asf1 co-purifies
with NASP in human cells [30,53]. The finding that Asf1 and
Nrp1 physically interact in T. thermophila suggests an ancient
origin and a fundamental function for this physical interaction
in eukaryotes. SAINT analysis also revealed two additional
similar Asf1Tt-FZZ co-purifying proteins, THERM_00530680
(AvgP = 1.0, Table 1), and TTHERM_00565630 (AvgP = 1.0,
Table 1). Both are large proteins (2226 and 2220 amino acids,
respectively) that we have named Aip1 and Aip2 (Asf1-
interacting proteins 1 and 2). Both Aip1 and Aip2 are similar
to each other at the amino acid level and are two members of
a four protein ortholog group (OG5_181825) in the orthology
database OrthoMCL [54], along with the T. thermophila protein
TTHERM_00444610 that we did not find to co-purify with Asf1Tt

and one Dictyostelium discoideum protein, abpF (Actin-binding
protein F). Both Aip1 and Aip2 do not contain recognizable
domains other than a single coiled coil. SAINT analysis also
revealed co-purification of both TTHERM_00307700 (AvgP = 1.0,
Table 1) that we have named Aip3, a protein of 40 kDa
predicted molecular mass that contains an N-terminal RING
domain, followed by a C-terminal tandem BRCT domain, and
TTHERM_00105110 (AvgP = 1.0, Table 1), a dnak HSP70 related
protein.

2.3. Asf1 and ImpB6 are functionally linked

The protein encoded by TTHERM_00962200 which co-purified
with Asf1Tt-FZZ (Fig. 2G; Table 1) is one of 11 previously
identified T. thermophila importin β's, ImpB6 [55]. Importin β's
are large (95–145 kDa) proteins composed of multiple HEAT
repeats that function in the nuclear import of proteins. When
bound to their cargo, importins translocate through the nuclear
pore complex via transient interactions with nucleoporins.
Once inside the nucleus, interaction with RanGTP causes
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dissociation of the import complex. A previous study using
ectopically expressed ImpB6-GFP showed localization to both
MIC andMAC, butwithmore intense signal observed in theMIC
[55]. To further investigate ImpB6–Asf1Tt physical interactions,
we generated a strain of T. thermophila carrying ImpB6-FZZ at its
wild type locus. An indirect immunofluorescence of ImpB6-FZZ
showed that in growing cells, ImpB6-FZZ localized to MAC and
MIC (Fig. 3A), but with more intense signal observed in the
MIC, consistent with previous results obtained with ectopic
expression of ImpB6 [55]. Affinity purification of ImpB6-FZZ
from growing cells (Fig. 3B) followed by LC–MS/MS identified a
set of co-purifying proteins that was analyzed using SAINT
(Table 1). The application of SAINT to AP–MS data from four
ImpB6-FZZ AP–MS experiments performed onWCE made from
vegetatively growing cells revealed two interaction partners
withAvgP > 0.8, Aip1 (AvgP = 1.0, Table 1), and the geneproduct
of TTHERM_00661690, a different BRCT-domain containing
protein than Aip3 which only co-purifies with Asf1Tt-FZZ.
Spectral counts from Aip2 and Asf1Tt were identified in one of
the four ImpB6-FZZ AP–MS leading to AvgP ~0.5 and MaxP
(which is the highest SAINT score obtained in any given
individual samples) >0.99 (Table 1). We did not observe
Nrp1 or Aip3 to co-purify with ImpB6-FZZ. Two additional
hypothetical proteins also co-purified with ImpB6-FZZ with
MaxP > 0.8 (Table 1). In order to determine if Asf1Tt, like ImpB6,
localizes to both the MAC and MIC, we performed indirect
immunofluorescence on Asf1Tt C-terminally tagged with GFP in
growing cells.Weobserved localization ofAsf1Tt-GFP toboth the
MAC andMIC, but withmore intense signal observed in theMIC
similar to ImpB6-FZZ (Fig. 3A). We postulate that in growing
cells, Asf1Tt and ImpB6 function together, along with Aip1 and
Aip2. The function of these interacting proteins is likely to



Table 1 – AP-MS Data.

Bait Prey Gene ID Spectral count AvgP MaxP

Sample Control

Asf1_veg Asf1 TTHERM_00442300 232|135|120 0|0|0|0|0|0|0|0|0|0|0|0|0 – –
Asf1_veg Aip1 TTHERM_00530680 208|305|119 0|0|0|0|0|0|0|0|0|0|0|4|0 1 1
Asf1_veg Aip2 TTHERM_00565630 96|28|48 0|0|0|0|0|0|0|0|0|0|0|0|0 1 1
Asf1_veg Aip3 TTHERM_00307700 30|4|19 0|0|0|0|0|0|0|0|0|0|0|0|0 1 1
Asf1_veg DnaK TTHERM_00105110 107|37|21 0|4|0|0|3|0|7|3|0|0|0|5|3 1 1
Asf1_veg ImpB6 TTHERM_00962200 170|129|27 0|0|0|0|0|0|0|0|0|0|0|0|0 1 1
Asf1_veg Nrp1 TTHERM_01014770 232|44|3 1|0|0|0|0|0|0|0|0|0|0|0|0 1 1
Asf1_6hour_conj Asf1 TTHERM_00442300 11|10|46 0|0|0 – –
Asf1_6hour_conj Aip1 TTHERM_00530680 41|168|36 0|0|0 1 1
Asf1_6hour_conj Aip2 TTHERM_00565630 15|91|7 0|0|0 1 1
Asf1_6hour_conj Aip3 TTHERM_00307700 25|34|0 0|0|0 1 1
Asf1_6hour_conj DnaK TTHERM_00105110 8|12|9 6|0|0 0.51 0.59
Asf1_6hour_conj ImpB6 TTHERM_00962200 20|25|22 0|0|0 1 1
Asf1_6hour_conj Nrp1 TTHERM_01014770 5|0|4 0|0|0 1 1
ImportinB6_veg ImpB6 TTHERM_00962200 27|74|80|41 0|0|0|0|0|0|0|0|0|0|0|0|0 – –
ImportinB6_veg Aip1 TTHERM_00530680 22|13|47|245 0|0|0|0|0|0|0|0|0|0|0|0|0 1 1
ImportinB6_veg Aip2 TTHERM_00565630 0|0|0|87 0|0|0|0|0|0|0|0|0|0|0|0|0 0.5 1
ImportinB6_veg Asf1 TTHERM_00442300 0|0|0|4 0|0|0|0|0|0|0|0|0|0|0|0|0 0.49 0.99
ImportinB6_veg Brct1 TTHERM_00661690 4|2|11|0 0|0|0|0|0|0|0|0|0|0|0|0|0 0.99 1
ImportinB6_veg Hypothetical 1 TTHERM_00497970 12|0|0|0 0|0|0|0|0|0|0|0|0|0|0|0|0 0.5 1
ImportinB6_veg Hypothetical 2 TTHERM_00148850 0|0|0|3 0|0|0|0|0|0|0|0|0|0|0|0|0 0.46 0.92

AvgP calculated independently for ASF1 and ImpB6 due to larger variability prey spectral counts.
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regulate the import of newly synthesized histones H3 and H4
into both the MIC and MAC where they subsequently enter
replication dependent and independent pathways. In order to
determine if another Asf1Tt-FZZ co-purifying protein also
localizes to both the MAC and MIC, we analyzed a cell line
expressing Aip3-GFP (Fig. 3C) that co-purifies with Asf1Tt-FZZ
but not ImpB6-FZZ (Table 1). Our immunofluorescence analysis
of this cell line indicates that AIP3-FZZ localizes primarily to the
MIC (Fig. 3D). Thus at least one interaction partner of Asf1Tt is
nucleus-specific.

2.4. Role of ASF1Tt in development

To investigate whether Asf1Tt functions in T. thermophila
development, we examined Asf1Tt-FZZ expression by Western
blotting of whole cell extracts made from growing, or
conjugating cells. We observed expression of Asf1Tt-FZZ
throughout conjugation (Fig. 4A), consistent with its role
during nuclear development. Note the expression pattern
of the conjugation-specific Pdd1 protein (TTHERM_00125280)
shown as a control, which dramatically increases during
conjugation [56] (Fig. 4A). T. thermophila conjugation includes
several nuclear developmental stages that can be monitored
by indirect immunofluorescence [57]. Meiosis occurs between
2 and 4 h after mixing cells of different mating types. Meiotic
prophase is characterized by the micronucleus forming an
elongated crescent shape, almost twice the length of the cell.
Ultimately, meiosis of the diploid MIC produces four haploid
products, only one of which is retained, which then divides
once mitotically and reciprocally exchanges with that of the
attached conjugation partner (pronuclear exchange). These
two haploid gametic nuclei in each cell fuse to produce an
identical diploid zygotic nucleus in each of the conjugating
cells. Between 4 and 6 h post-mixing, these zygotic nuclei
divide mitotically twice, producing four genetically identical
nuclei per cell. At this point separate developmental
programs commence that ultimately result in two mature
MIC and MAC per cell by 18 h post-mixing [57]. We
conjugated two strains of different mating types both
expressing Asf1Tt-GFP in order to determine its localization
during conjugation. Consistent with the observation in
growing cells (Fig. 4B), we observed both MIC and MAC
staining in samples harvested from starved cells, and during
the beginning and crescent stage of meiosis (Fig. 4B–D). At
both stages, Asf1-GFP staining appears more intense in the
MIC than MAC. Post-meiosis, Asf1-GFP staining is observed
at roughly the same levels in all four pre-zygotic nuclei
around the time of pronuclear exchange (Fig. 4E). When MAC
and MIC begin to look different from each other due to
separate developmental programs, we again observed a
stronger presence of Asf1-GFP in the MIC than in the MAC
(Fig. 4F). In order to determine if Asf1 has novel functions in
nuclear development, we affinity purified Asf1-FZZ from whole
cell extracts made from 6 h post-mixing cells (Fig. 4G), a time
period where most mating cells should have finished nuclear
post-zygotic divisions. SAINT analysis of the interacting protein
data set indicated no obvious quantitative difference in these
post-zygotic samples, despite reduced spectral counts for Asf1Tt

interaction partners as compared to the growing cells,
suggesting that Asf1Tt interactions may be stable through
nuclear division (Table 1) and Asf1Tt probably functions
throughout development as well as growth.
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2.5. Asf1Tt binds H3 and H4 in vitro

In order to test our prediction that Asf1Tt binds H3–H4 in vitro we
expressed and purified recombinant full-length 6xHIS-Asf1Tt.
Our results using pull down experiments demonstrate that
6xHIS-Asf1Tt can selectively bind histones H3 and H4 from
mixtures containing histones H1, H2A, H2B, H3, and H4 purified
from either chicken erythrocytes (Fig. 5A) or the T. thermophila
macronucleus (Fig. 5B). 6xHIS-Asf1NTt (amino acids 1–156 of
Asf1Tt) displayed a similar ability to selectively bind histones H3
and H4 from these mixtures (Supplemental Fig. 4) suggesting
that, consistentwith our comparative sequence analysis (Fig. 1B),
the major histone-binding region of Asf1Tt resides within the
evolutionarily conserved region. Thus Asf1Tt binds histones H3
and H4, in agreement with its canonical function as a histone
chaperone.
2.6. ASF1Tt does not compensate for the defect in H3-K56ac
of ΔAsf1 yeast

Asf1Sc and the fungal-specific HAT Rtt109 collaborate to
acetylate histone H3 at K56 [18–20]. We asked whether Asf1Tt

could functionally complement budding yeast deleted for
Asf1. We used a CEN-based plasmid system to express epitope
tagged full length ASF1Tt or ASF1Sc in Δasf1 budding yeast cells
that exhibit a slow growth phenotype. Compared to ASF1Sc,
expression of ASF1Tt did not complement the slow growth
phenotype of the Δasf1 mutant (Fig. 6A). The slow growth of
Δasf1 strains in yeast is due to lack of H3K56ac [21]. H3K56ac is
an abundant modification in Tetrahymena MAC [39]. Although
Asf1Tt was expressed at the same level as ASF1Sc as judged by
Western blotting, it did not rescue the H3K56 acetylation
defect in the budding yeast (Fig. 6B). Similarly, when expressed
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as a recombinant protein, Asf1Tt did not synergize with
recombinant Rtt109 in vitro, as did Asf1Sc (Fig. 6C). In human
cells Gcn5Hs has been reported to acetylate H3K56 [23]. We did
not observe H3K56ac in vitro using recombinant T. thermophila
Gcn5/p55 either alone, or in combination with Asf1Sc or Asf1Tt

(Fig. 6C). To address whether Asf1 is required in vivo for
H3K56ac in T. thermophila we attempted to generate a somatic
knockout by integrating a neomycin resistance cassette in place
of the ASF1Tt coding region at its MAC locus (Supplemental Fig.
5A). If a gene is non-essential for growth in T. thermophila, it
should be possible to replace all MAC copies by using an
increasing concentration of the selective drug paromomycin
in phenotypic assortment. We were not able to replace all
MAC copies using phenotypic assortment, indicating that
the ASF1 gene is required for growth of T. thermophila
(Supplemental Fig. 5B). ‘Knock-down’ cells partially assorted
for the knockout construct did not show reduced levels of
H3K56ac (Supplemental Fig. 5C).

2.7. Gene network analysis of ASF1Tt and IMPB6

We used publicly available gene expression data [58] to
compare gene expression profiles of ASF1Tt with those of
the genes encoding its co-purifying proteins. Hierarchical
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clustering was used to compare the patterns by similarities in
their gene expression profiles (Fig. 7A). This analysis revealed
that within this group, ASF1 and IMPB6 cluster together due to
their very similar gene expression profiles, consistent with
their apparent functional linkage. Similarities in T. thermophila
gene expression profiles have been used to construct gene
networks which allow predictions about gene functioning in
particular pathways, or as part of the same protein complex
[58,59] (http://tfgd.ihb.ac.cn/). Since ASF1Tt and IMPB6 have
similar patterns of gene expression (Fig. 7A), co-purify (Fig. 2G,
Table 1), and have very similar localization patterns in growing
cells (Fig. 3A), we used the publicly available microarray data to
construct such a gene network and extracted the subnetwork for
the genes encoding Asf1Tt, IMPB6,NRP1, and their first neighbors
(Fig. 7B) to identify genes thatmay function in the samepathway
(Fig. 7C). We included NRP1 in this analysis since its encoded
protein's physical interaction with Asf1Tt is evolutionarily
conserved among most eukaryotes. The subnetwork includes
230 genes and 3694 links between them (Supplemental data 1–3).
ASF1, IMPB6, NRP1 and their first neighbors form a connected
component (Fig. 7B). We identified 130 genes in the subnetwork
specifically linked toASF1Tt, 61 to IMPB6, and 62 toNRP1 (Fig. 7C).
Interestingly, ASF1 and IMPB6 share 40 neighboring genes
including themselves, (Supplemental Fig. 6), a set of genes
including one that encodes MicNup98A/TTHERM_01080600
and MicNup98B/TTHERM_00530720 whose function is to
block the entry of MAC proteins into the MIC [60], as well
as putative CAF-1 subunit CAC2 (TTHERM_00219420), and
putative members of FACTTt, POB3 (TTHERM_00049080) and
CET1/SPT16 (TTHERM_00283330) (Supplemental Table 3). In
addition, HIR1Tt (TTHERM_00046490), another putative histone
chaperone, is linked to ASF1Tt (Supplementary Table 3). ASF1Tt

and NRP1 have 11 nodes in common while NRP1 and IMPB6
overlap by three (Fig. 7C). TTHERM_00048980 which encodes
putative leading strand DNA polymerase subunit DPB2Tt is
linked toASF1Tt, IMPB6 andNRP1 (Fig. 7C, Supplemental Table 3),
consistent with a role for these three functions in coordinating
proper flow of replication dependent histones H3 and H4.
3. Discussion

Asf1 is highly conserved throughout eukaryotes, found even
in highly diverged eukaryotes such as Guillardia theta and
Giardia lamblia [41,61] and likely was encoded in the last
common ancestor of eukaryotes [62]. Most molecular analysis
of Asf1 has been performed using human or yeast models but
information on the role of Asf1 in eukaryotes outside the
Opisthokonta remains limited. To address this we have
initiated proteomic analysis of T. thermophila Asf1. The
statistical analysis of our AP–MS data set of Asf1Tt-interacting
proteins showed that it co-purifies with a set of proteins in
vegetative growth and development that includes an importin
β, ImpB6, in addition to Nrp1, a protein similar to human
NASP. These Asf1 interaction partners are also found in budding
yeast and human cells. In addition, multiple connections exist
between the genes encoding these proteins in our network
analysis of gene expression data. Thus as well as being a
conservedH3–H4bindingprotein, its protein–protein interactions
with Importin β and NASP are also conserved through different
branches of eukaryotes from T. thermophila (Alveolata) to fungi
to animals (both Opisthokonta). Analogous to what has been
proposed for humans and yeast [30,63], we suggest that Asf1–
ImpB6 function together to transport newly synthesized H3–H4
into both the MIC and MAC (Fig. 8). Interestingly, when we
assessed ImpB6 protein–protein interactions, we found Aip1
and a BRCT domain protein as major interacting proteins as
assessed by SAINT analysis, as well as Aip2, and Asf1Tt

suggesting that the major function of ImpB6, one of eleven
importin β's encoded by T. thermophila [55], is the regulation of
transport of histones H3 andH4 into theMAC andMIC via Asf1Tt

and possibly Aip1 and Aip2. ImpB6 may form multiple
sub-complexes which, despite an efficient purification of
ImpB6, may lead to purifying many of its interaction partners
at a concentration close or below our limit of detection. In
humans, NASP is believed to function upstream of Asf1 in
the cytoplasm, binding Hat1–RbAp46 which acetylates newly

http://tfgd.ihb.ac.cn/


Asf1Sc +                   +                   +                   +
Asf1Tt +                  +                    +                    +

α-H3K18ac

α-H3K56ac

H3

WT
+ plasmid

asf1/gcn5
+ ASF1Sc

gcn5
+ plasmid

asf1
+ plasmid

asf1/gcn5
+ plasmid

asf1/gcn5
+ ASF1NSc

asf1/gcn5
+ASF1Tt

asf1/gcn5
+ ASF1NTt

α-MYC

α-H3

α-H3K9ac

α-H3K56ac

Asf1Sc

Asf1Tt

WT +    asf1 gcn5 +
- - Asf1Sc Asf1Tt

H3

H3

H4

Asf1Tt

Asf1Sc

Gcn5
Rtt109

Rtt109 Gcn5TtGcn5Sc

A B

C

Δ Δ

Fig. 6 – Asf1Tt does not synergize with the fungal HAT Rtt109. A: Dilutions of indicated S. cerevisiae strains were spotted on —
LEU media and grown 2–3 days. B: WCE of indicated strains were separated by electrophoresis through 15% SDS-PAGE and
blotted with the indicated antibodies. C: Individual histone acetyltransferase assays were performed using the indicated
recombinant proteins and separated by electrophoresis through 15% SDS-PAGE which were immunoblotted using antibodies
indicated or stained with Coomassie blue.

320 J O U R N A L O F P R O T E O M I C S 9 4 ( 2 0 1 3 ) 3 1 1 – 3 2 6
translated histoneH4 at K5 andK12 before passing it to Asf1 [30].
Asf1 also interacts with the NASP-family member Hif1 in yeast
[27,64]. Further work will be required to determine whether,
similar to human cells, Nrp1 transfers histones to Asf1Tt in the
cytoplasm (Fig. 8) or accepts them from Asf1 in the MAC and/or
MIC. Proteomic analysis of H3.1 and H3.3 interacting proteins
(Fillingham et al., unpublished observations) should help to
resolve this question.

Since the MAC and MIC exhibit different chromatin
structures and timing of DNA replication, it will be of
interest to determine the identity of nucleus-specific
elements to chromatin assembly pathways. Our network
analysis which showed no connectivity between ASF1Tt and
AIP1, AIP2 and AIP3 is consistent with functional roles
outside of Asf1–ImpB6–Nrp1 control of nuclear transport of
histones H3 and H4. Additional evidence for roles outside of
nuclear transport for Asf1Tt includes the fact that Aip3
localizes exclusively to the MIC (Fig. 3D). In addition, its
expression pattern differs from that of ASF1Tt and IMPB6
(Fig. 7A). The Aip3 protein consists of an N-terminal RING
domain, followed by a C-terminal tandem BRCT domain.
Our bioinformatic analysis of AIP3 tandem BRCT domain
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indicates similarity to that of Rtt107 and Mdc1 of yeast/
human cells, both of which have been shown to bind the
phosphorylated serine residue of the γH2AX modification
[65,66]. The γH2A modification in T. thermophila is MIC-specific
[67] as is Aip3 (Fig. 3D). The RING domain is found in proteins
that function in protein ubiquitination pathways. Further work
is required to determine whether Asf1Tt-mediated chromatin
assembly/disassembly is connected to γH2AX and/or protein
Nrp1
H3 H4 H3 H4

Asf1

Nrp1

Asf1 ImpB6/AIP1/AIP2

Fig. 8 – Model for Asf1 function in the MAC and
ubiquitination. The Aip1 and Aip2 that co-purify with both
Asf1Tt-FZZ and ImpB6-FZZ are additional candidates for nuclear
specific roles. Although no significant sequence similarity
exists between Aip1, Aip2 and human Codanin, it is tempting
to predict that similar to human cells there exists a regulation
at the level of nuclear import. Towards this end it will be
informative to examine phenotypes of epitope tagged and
knock-outs of AIP1 and AIP2.
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In humans and yeast Asf1 has been demonstrated to
function upstream of RI and RD chromatin assembly via
mutually exclusive direct physical interactions with either of
twoWD40 repeat proteins, Cac2p and HirA (Hir1p and Hir2p in
S. cerevisiae) of the CAF and HIR histone chaperone complexes.
The direct physical interaction is mediated by the β4–β5
region of Asf1 and a short, conserved sequence called the B
domain in Cac2/HIRA (Hir1 in Sc). Our comparative sequence
analysis indicates possible differences in this region in Asf1Tt,
and our analysis of Asf1 interacting proteins in growing
cells revealed no peptides from putative T. thermophila HIR
or CAF-1 subunits. However, since our network analysis of
T. thermophila expression data shows clustering of Asf1 and
IMPB6 with genes encoding putative HIRA and CAF-1 subunits
(Fig. 7C, Supplemental Table 3), we predict that Asf1Tt does
function upstream of chromatin assembly in the MAC and
MIC. Interestingly HiraTt (TTHERM_00046490) but none of the
predicted Caf-1Tt subunits contains the canonical B domain
(data not shown). Further work will be required to determine
the nature of the physical interactions/histone transfer of
Asf1Tt with HiraTt or Caf-1Tt.

As expected from the high degree of sequence conservation,
Asf1Tt binds histones H3 and H4 in vitro. However Asf1Tt cannot
functionally complement Asf1Sc in vivo or in vitro in its role in
Rtt109-based H3K56ac. This lack of synergy between Asf1Tt and
Rtt109 suggests there are differences inAsf1 orthologues among
eukaryotes [4,68]. It has been suggested that when Asf1Sc binds
H3 and H4 it makes H3K56 more accessible to Rtt109 [45]. Our
results suggest that there may be subtle but significant
differences in the way different Asf1 proteins bind the H3–H4
dimer. Structural studies of Asf1Tt will help resolve this
question. This and the fact that our Asf1 knock-down did not
alter levels of H3K56ac indicate that in T. thermophila Asf1 is
not required forH3K56ac, although conclusive proofmust await
the analysis of a germ-line Asf1 knockout.

T. thermophila has abundant H3K56ac [39] but does not
appear to encode recognizable versions of the fungal or
mammalian H3K56-specific HATs RTT109 or CBP/p300. Gcn5Tt

does not possess H3K56ac activity. The evolutionary divergence
of fungal Rtt109 as well as the importance of the H3K56ac
pathway to fungal viability present a possible target for the
design of novel anti-fungal pharmaceuticals [69]. It will be
informative to determine if there exists a novel H3K56-specific
HAT in T. thermophila which is relatively closely related to
several medically relevant Apicomplexa which includes the
Plasmodium species that cause malaria [70].
4. Materials and methods

4.1. Cell strains

T. thermophila strains CU428 [Mpr/Mpr (VII, mp-s)] and B2086
[Mpr+/Mpr+ (II, mp-s)] of inbreeding line B were obtained
from the Tetrahymena Stock Center, Cornell University,
Ithaca N.Y. (http://tetrahymena.vet.cornell.edu/). Cells were
cultured axenically in 1× SPP at 30 °C as previously described
[71]. The strains of S. cerevisiae used in this study are shown
in Table S1.
4.2. Protein expression

Full-length Rtt109, Asf1Sc, Asf1Tt, Gcn5Sc and Gcn5Tt were
cloned into pET14b or pET28a. Recombinant proteins were
expressed and purified as in [27].

4.3. Sequence alignments

Multiple sequence alignments of Asf1 amino acid sequence from
variousmodel organismswereperformedusingClustalW (http://
bioweb.pasteur.fr/seqanal/interfaces/clustalw.html#profile) and
then shaded by importing the ALN file into the Boxshade server
(http://www.ch.embnet.org/software/BOX_form.html).

4.4. Oligonucleotides

See Table S2 for a list of the oligonucleotides used during
the course of this study.

4.5. Affinity purification

Frozen cell pellets from ~500 ml of growing T. thermophila
harvested at 3 × 105 cells/ml were used. The pellets were
thawed and re-suspended in 10 mM Tris–HCl (pH 7.5), 1 mM
MgCl2, 300 mM NaCl and 0.2% NP40 plus yeast protease
inhibitors (Sigma). 500 units of Benzonase nuclease (Sigma
E8263) were added and extracts were incubated for 30 min at
4 °C. WCEs were clarified by centrifugation at 16,000 ×g with
solublematerial incubated for 4 h in the presence of 200 μl IgG
Sepharose (Amersham). The IgG-Sepharose was washed
once with 10 ml IPP300 (10 mM Tris–HCl pH 8.0, 300 mM
NaCl, 0.1% NP40) and three times with 10 ml TEV100 buffer
(10 mM Tris–HCl pH 8.0, 100 mM NaCl, 0.1% NP40, 1 mM
EDTA) before being treated overnight with TEV protease as
described [72]. The soluble extract was then added to 30 μl of
packed M2-agarose (Sigma) and incubated at 4 °C for 2 h. The
M2-agarose was subsequently washed four times with 750 μl
of IP100 buffer (10 mMTris–HCl pH 8.0, 100 mMNaCl). Elution
was performed with either 3xFLAG peptide (100 μg/ml) or
0.5 M NH4OH.

4.6. Tryptic digestion and mass spectrometry analysis

TAP purified proteins eluted in 0.5 M NH4OH were taken to
dryness in a speed-vac without heat. The proteins were
digested with trypsin in a solution as previously described
([73]; alternate protocol 1). The resulting peptides were
manually bomb loaded onto a capillary column (75 μm id),
packed in-house with 10 cm Reprosil-Pur 120 C18-AQ, 3uM
(Dr-Maisch GmbH; Germany), pre-equilibrated with 2%
acetonitrile (ACN), 0.1% formic acid. The column was placed
in-line with an LTQ mass spectrometer equipped with an
Agilent 1100 capillary HPLC delivering 200 nl/min using a split
flow arrangement. Buffer A was 2% ACN and 0.1% formic acid;
buffer B was 98% ACN and 0.1% formic acid. The HPLC gradient
program delivered an ACN gradient over 120 min (1–5% buffer B
over 4 min, 5–40% buffer B over 100 min, 40–60% buffer B over
5 min, 60–100% buffer B over 5 min, hold buffer B at 100% 3 min
and 100–0% B in 2 min). The parameters for data dependent
acquisition on themass spectrometer were: 1 centroidMS (mass

http://tetrahymena.vet.cornell.edu/
http://bioweb.pasteur.fr/seqanal/interfaces/clustalw.html#profile
http://bioweb.pasteur.fr/seqanal/interfaces/clustalw.html#profile
http://www.ch.embnet.org/software/BOX_form.html
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range 400–2000) followedbyMS/MSon the 5most abundant ions.
General parameters were: activation type = CID, isolation
width = 3, normalized collision energy = 32, activationQ = 0.25,
activation time = 30 ms, wideband activation. For data
dependent acquisition, minimum threshold was 1000, the
repeat count = 1, repeat duration = 30 s, exclusion size
list = 500, exclusion duration = 30 s, exclusion mass width
(by mass) = low 1.2, high 1.5. The resulting RAW files were
saved on a local interaction proteomics LIMS, ProHits [74]
and mgf files were generated using the ProteoWizard
converter implemented within ProHits (–filter ‘peakPicking
true2’–filter ‘msLevel2’). The mzXML files were searched
with Mascot version 2.3 against the RefSeq T. thermophila
protein database (V45 containing 24,770 sequences; released
on January 24th 2011), allowing for one missed cleavage site
and methionine oxidation as a variable modification. The
fragment mass tolerance was 0.6 Da (monoisotopic mass)
and the mass window for the precursor was +/−3 Da average
mass. An ion score cutoff of 35 was selected and a protein hit
required at least two “bold red peptides” to be considered.
To identify significant interaction partners from the
affinity purification data, the data were subjected to
SAINTexpress analysis [51,52] using SAINTexpress (v3.03), a
new implementation of the model-based scoring algorithm
with improved computational efficiency and enhanced stability
in parameter estimation (Teo et al., submitted). The average
SAINT scores were calculated for the best two experimental
samples for each bait analyzed (compress baits to 2). When >4
negative controls were available, the 4maximal spectral counts
for each prey were used for modeling (compress controls to 4).

4.7. Histone binding assay

In vitro histone binding was done using chicken erythrocyte
histones (Millipore) or T. thermophila macronuclear total acid
soluble histones extracted from starved T. thermophila as
described previously [75]. Both full-length and 1–155 versions
of recombinant 6xHIS-Asf1Tt were incubated with a histone
mixture in buffer (50 mM Tris–HCl (pH 7.5), 500 mMNaCl, 5 mM
MgCl2, 1 mM dithiothreitol, 0.5 mM phenylmethylsulfonyl
fluoride and 1 mM benzamidine). Approximately 50 μg of either
chicken erythrocyte or T. thermophila MAC histone mixture were
added along with 100 μg of recombinant Asf1 to a total of 750 μl.
Themixturewas rotated at 30 °C for 30 min. Fiftymicroliterswas
obtained for input and 20 μl of packed nickel beadswas added to
the remaining mixture followed by a 15 min rotation at 4 °C to
recover the HIS-tagged enzymes and any associated histone.
Next, the beads were washed four times with the assay buffer.
The samplewas eluted by boiling the beads in SDS loading buffer
supplementedwith 0.1 M EDTA. The eluatewas electrophoresed
through 15% SDS-PAGE and stained with Coomassie blue, or
transferred to nitrocellulose for Western blots as needed.

4.8. HAT assays

HAT assays were performed as described [27] using as substrate
chicken core histones (Millipore). HAT assays were incubated for
45 min at 30 °C in a 30 μl volume containing 5 μg core histones
total substrate, 50 mM Tris–HCl (pH 8.0), 50 mM NaCl, 5 mM
MgCl2, 1 mM dithiothreitol, 3.3 nCi [14C]acetyl-CoA (60 mCi/
mmol), and 1 mMphenylmethylsulfonyl fluoride. Fivemicroliter
aliquots of recombinant proteins (adjusted to 0.5 μg/μl) were
added to each reaction. Reactions were stopped by the addition
of 30 μl 2× sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) loading dye and boiled. Aliquots
(20% of total volume) were electrophoresed in parallel
through several 15% SDS-PAGE gels. One gel was fixed and
stained with Coomassie blue, saturated with Enlightning
(Perkin Elmer), dried under vacuum, and either exposed to
film or imaged using a Typhoon phosphorimager. Other gels
were treated with gel code blue (Fisher Scientific) or transferred
to nitrocellulose for Western blot analysis.

4.9. Generation of WCE and Western blotting

S. cerevisiae whole-cell extracts (WCE) were generated using
trichloroacetic acid and glass beads as described [27]. WCEs
were separated by electrophoresis through 15% SDS-PAGE,
transferred to nitrocellulose, and blotted with the indicated
antibodies. Antibodies and dilutions used were anti-H3 (1:2000;
Abcam), anti-H3-K9ac (1:10,000; Abcam), anti-H3-K56ac (1:5000;
Upstate), anti-H3-K18ac (1:15,000; Lake Placid Biologicals), and
anti-Pdd1 (1:3000 Abcam).

4.10. DNA manipulations

Whole-cell DNA was isolated from T. thermophila strains as
described [76]. Molecular biology techniques were carried out
using standardprotocols or by following a supplier's instructions.
The double-stranded DNA probes for Northern and Southern
analysis were labeled by random priming with [α-32P]dATP
(Amersham). DNA-modifying enzymes were obtained from
NewEnglandBiolabs. Southernblotswere imagedandquantified
with a Canberra Packard Instant Imager.

4.11. Macronuclear gene replacement

Epitope tagging vectors for Asf1Tt, ImpB6 and NASPTt were
constructed by amplifying two separate ~1 kb fragments up
and downstream of its stop codon using WT T. thermophila
genomic DNA as template using primers as outlined in Table
S2. Upstream and downstream PCR products were digested
either with KpnI and SacI or NotI and SacII before being cloned
into the appropriate sites within the tagging vector provided
by Dr. Kathleen Collins (University of California, Berkeley, CA).
The resulting plasmid was digested with KpnI and SacII prior
to transformation. One micrometer gold particles (60 mg/ml;
Bio-Rad) were coated with 5 μg of the digested plasmid and
introduced into the Tetrahymena macronucleus using biolistic
transformation with a PDS-1000/He Biolistic particle delivery
system (Bio-Rad). Transformants were identified by growth to
saturation in a paromomycin concentration of 60 μg/ml.
Transformants were grown in increasing concentrations of
paromomycin to a final concentration of 1 mg/ml.

4.12. Indirect immunofluorescence

The cells were harvested and fixed for indirect immuno-
fluorescence [77] using the method of Wenkert and Allis [78].
Incubation of fixed cells dried on coverslips with primary
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mouse M2 (Sigma) or anti-GFP (Roche) antisera was at a 1:200
dilution at 4 °C overnight. Secondary antibody was fluoresced
in isothiocyanate-conjugated goat anti-mouse (Pierce) for 1 h
at room temperature. Nuclear counterstaining was with
4,6-diamidino-2-phenylindole dihydrochloride for confocal
microscopy using an Olympus BX51 fluorescence microscope.

4.13. Gene expression analysis

Microarray expression data set with accession number
GSE11300 was downloaded from Gene Expression Omnibus
(GEO). This data set includes a total of 50 NimbleGene
microarrays spanning the entire life cycle of T. thermophila.
Background subtraction, quantile normalization and
summarization via median polish were performed using
the RMA algorithm as implemented in the package affy
(affy_1.32.1) [79] for R. Replicates were averaged and the
resulting expression values, on the log2 scale, were used to
construct a gene expression network with the unsupervised
method Context Likelihood of Relatedness (CLR) [80]. The
Matlab implementation of the algorithm CLRv1.2.2 was
used. The network was cut at a Z-score threshold of 4.54
(FDR = 0.1), leaving 25,672 genes and 234,561 links between
them. The orthology database OrthoMCL [54] (release 5)
containing ortholog groups of protein sequences of 150
genomes was downloaded. Ortholog groups and protein
domains were used as additional annotation to the nodes in
the network to help identify genes of interest based on their
similarity to genes inother species or their domain architecture.

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.jprot.2013.09.018.
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