
journal of complexity 15, 17�29 (1999)

Lower Bounds on the Depth of Monotone
Arithmetic Computations*

Don Coppersmith and Baruch Schieber

IBM��Research Division, T. J. Watson Research Center, P.O. Box 218,
Yorktown Heights, New York 10598

E-mail: copper�watson.ibm.com, sbar�watson.ibm.com

Received June 26, 1997

dedicated to zvi galil's 50th birthday

Consider an arithmetic expression of length n involving only the operations
[+, _] and non-negative constants. We prove lower bounds on the depth of any
binary computation tree over the same sets of operations and constants that com-
putes such an expression. We exhibit a family of arithmetic expressions that requires
computation trees of depth at least 1.5 log2 n&O(1), thus proving a conjecture of
S. R. Kosaraju (1986, in ``Proc. of the 18th ACM Symp. on Theory Computing,''
pp. 231�239). In contrast, Kosaraju showed how to compute such expressions with
computation trees of depth 2 log2 n+O(1). � 1999 Academic Press

1. INTRODUCTION

The problem of restructuring an arithmetic expression into an equivalent
one of reduced depth is one of the basic problems in parallel computation
[BKM73, B74, BM75, KM75, MP76, SS80, JS82, Kos86]. Despite long-
term efforts, this problem is still unsettled, even for arithmetic expressions
that seem simple to compute. To escape from some of the difficulties of the
general problem researchers have considered the restricted monotone com-
putation model. We follow this direction and prove lower bounds on the
depth of monotone arithmetic expressions.

Consider an arithmetic expression of length n involving only the opera-
tions [+, _] and nonnegative constants. (The length of an arithmetic

Article ID jcom.1998.0494, available online at http:��www.idealibrary.com on

17
0885-064X�99 �30.00

Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

* A preliminary version of this paper appeared in ``Proceedings, 33rd Symposium on
Foundations of Computer Science,'' pp. 288�295, 1992.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81139024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

expression is the minimum number of nodes in a binary computation tree
that computes it, where the minimum is taken over all such computation
trees.) We wish to evaluate such an arithmetic expression by a binary
computation tree of minimum depth over the same sets of operators and
constants. We exhibit a family of arithmetic expressions that requires
computation trees of depth at least 1.5 log2 n&O(1); the corresponding
upper bound for this family is 2 log2 n+O(1).

Brent [B74] showed that any arithmetic expression of length n could be
computed by a binary tree of depth O(log n). This is somewhat surprising,
since the computation tree suggested by the form of the original expression
might be quite skewed and have depth 3(n). Brent, Kuck, and Maruyama
[BKM73] showed that any arithmetic expression involving only the
operations [+, _] and non-negative constants could be computed by a
binary tree of depth 2.465 log n+O(1) (throughout, all logarithms are base
2). Later, Muller and Preparata [MP76] improved the constants and
showed that such an arithmetic expression could be computed by a binary
tree of depth 2.08 log n. On the other hand, Shamir and Snir [SS80]
showed a lower bound of 1.16 log n for the family of arithmetic expressions
defined by alternating 2-3 trees: trees in which nodes at odd levels multiply
two subexpressions, and nodes at even levels add three subexpressions.
(Note that these trees are not binary and hence not computation trees.)
Kosaraju [Kos86] improved Muller and Preparata's upper bound to
2 log n. He also conjectured that expressions requiring depth at least
(1+=) log n could be found among the class of arithmetic expressions
where at least one operand of each addition node is a leaf. We will refer to
such arithmetic expressions as leaf-addition expressions.

We prove Kosaraju's conjecture. Our arithmetic expressions are given by
trees in which nodes at odd levels multiply two subexpressions, and nodes
at even levels (including the top level) add a subexpression and a leaf. This
description gives a binary computation tree of depth 2 log n+O(1) for an
arithmetic expression of length n. We show that any binary computation
tree computing this arithmetic expression must have depth at least
1.5 log n&O(1).

The monotone computation model does not allow division, subtraction,
and negative constants, so that cancellation is not possible. This techni-
cality enables our lower bound proofs to go through. Some arguments can
be brought in favor of considering such a restrictive computation model.
First, this model has absolute numerical stability [Mil75]. Also, upper
bounds generalize to any semiring (i.e., a domain with two binary opera-
tions + and _, both associative and commutative, with _ distributing
over +).

Most of the known lower bounds for monotone (arithmetic) computa-
tion consider only the weight (number of monomials in a polynomial) of

18 COPPERSMITH AND SCHIEBER

a polynomial of a given degree computable by a tree of a given depth
[SS80, JS82, Sni91]. To get our 1.5 log2 n&O(1) lower bound we need to
look more closely at the specific structure of our arithmetic expression, as
well as the shapes of the subtrees appearing under each multiplication
node. This new technique may be found useful for proving other lower
bounds.

To get our lower bound, we had to prove a slightly stronger lower
bound. We actually show that given a polynomial, any polynomial with the
same set of monomials, but with arbitrary positive coefficients, also
requires depth at least 1.5 log n&O(1). It would be interesting if it turns
out that one such polynomial is indeed easier to compute than the given
one.

We prove our lower bound for leaf-addition expressions. Interestingly,
leaf-multiplication expressions (i.e., expressions given by trees where at
least one operand of each multiplication node is a leaf) are very efficient to
restructure. Kosaraju [Kos86] gave a tight bound of log n+- log n+
o(- log n) on the depth of computation trees for such arithmetic expres-
sions. The reason for the difference is that _ distributes over +, while +
does not distribute over _. Notice that this is not the case in the
monotone Boolean case with the operations 6, 7 . Since 7 distributes
over 6 and 6 distributes over 7, we can get a tight bound of log n+
- log n+o(- log n) on the depth of computation trees for both leaf-
addition and leaf-multiplication Boolean expressions.

We remark that the bounds for monotone Boolean expressions are
different. On the positive side, Preparata and Muller [PM76] and later
Preparata, Muller, and Barak [PMB77] showed that any Boolean expression
with n literals involving only the operations [6, 7] could be computed by
a binary tree of depth 1.81 log n+O(1). However, no non-trivial lower
bound on the depth is known for the Boolean monotone case.

The rest of the paper is organized as follows. In Section 2 we define the
family of leaf-addition expressions. In Section 3 we prove the lower bound
for these expressions. Finally, we list some open problems.

2. LEAF-ADDITION EXPRESSIONS

We define the family of arithmetic expressions for which we prove the
lower bound. These arithmetic expressions are given by polynomials, each
of which has a level k, for some non-negative integer k. The length of the
polynomial of level k is 2k+2&3, and it involves 2k+1&1 indeterminates.
We show that the evaluation of a polynomial of level k requires depth at
least 1.5k.

19LOWER BOUNDS

We describe a computation tree Tk of depth 2k that computes the poly-
nomial of level k. We start from an alternating 2-2 tree of depth 2k (i.e., a
complete binary tree of depth 2k, in which nodes at odd levels multiply two
subexpressions, and nodes at even levels add two subexpressions). Notice
that the root node is an addition node. Now, for each addition node we
prune its right subtree and make it a leaf. It is not difficult to see that the
resulting tree Tk has 2k+2k&1=2k+1&1 leaves (indeterminates) and
2k+1&2 computation nodes.

For the lower bound proof it is more convenient to use an alternative
recursive definition of the polynomials. First, we introduce some notations.

Notation. We associate to each indeterminate a range: a subscript
indicating a half-open interval of non-negative integers, for example, x[2, 4) .
For an interval [a, b), we always have that b&a divides a. The polyno-
mials are indexed by two numbers; the first is its level and the second is the
``starting point'' of the ranges of its indeterminates. For an index (k, a), we
always have that 2k divides a.

The polynomials we wish to compute are defined recursively:

P(0, a)=x[a, a+1) #xa

for all k s.t. 2k | a, P(k, a)=P(k&1, a) _P(k&1, a+2k&1)+x[a, a+2k) .

Thus, for example,

P(3, 0)=[(x0x1+x[0, 2))(x2x3+x[2, 4))+x[0, 4)]

_[(x4x5+x[4, 6))(x6x7+x[6, 8))+x[4, 8)]+x[0, 8) .

To see that this recursive definition defines the same polynomials as
the trees Tk , associate the indeterminates x[j, j+1) , for j=0, ..., 2k&1, to
the leaves of Tk at depth 2k, and the indeterminates x[j2i, (j+1) 2i) , for
i=1, ..., k and j=0, ..., 2k&i&1, to the leaves at depth 2k&2i+1. Then, it
is not difficult to check that Tk computes P (k, 0) .

We define a pseudo-degree of each such polynomial. The pseudo-degree
of a polynomial is a set of vectors of non-negative integers. The pseudo-
degree of x[a, b) is the singleton set consisting of a vector of non-negative
integers, whose ith component is 1 if a�i<b, and 0 otherwise. The pseudo-
degree of a sum of two polynomials is the union of the pseudo-degrees of
its summands. The pseudo-degree of a product of two polynomials is the
set of vectors given by V1+V2 (componentwise addition), for all vectors
V1 in the pseudo-degree of the first multiplicand and V2 in the pseudo-
degree of the second multiplicand.

20 COPPERSMITH AND SCHIEBER

The following propositions follow directly from our definition of pseudo-
degree.

Proposition 1. Each polynomial P(k, a) is pseudo-homogeneous. That is,
the pseudo-degree of each such polynomial consists of a singleton set.

Proposition 2. The ith component of the pseudo-degree of P(k, a) is 1 if
a�i<a+2k and 0 otherwise. Further, every monomial of this pseudo-degree
in the given indeterminates is represented in P(k, a) .

3. THE LOWER BOUND

We start with some definitions.

Definition 1. The weight of a computation tree with (maximum)
depth i and with a multiplication node at its root is 2i. The weight of a
computation tree with an addition node at its root is the sum of the
weights of its two subtrees (the left and the right). A computation tree
consisting of a single leaf has weight 1.

Definition 2. Let T be a computation tree with a multiplication node
at its root. The two trees rooted at the children of the root are called the
major subtrees of T, and denoted Left(T) and Right(T).

Definition 3. Define P� (k, a) to be any polynomial containing the same
monomials as P(k, a) , but with arbitrary positive (nonzero) coefficients.

Define D(k) as the minimum possible weight of a tree computing P� (k, a)

for any a. (This weight is independent of a.)

Theorem 4. If k=2j is even, then D(k)>23j&1. If k=2j+1 is odd, then
D(k)>3 } 23j&1.

It is easy to see that the depth of a tree of weight w is at least log w. Thus
we have the following corollary.

Corollary 5. There are polynomials P of length n involving the opera-
tions [+, _] and non-negative constants, such that any binary computation
tree over the same set of operations and constants computing P has depth at
least 1.5 log2 n&O(1).

Proof of Theorem 4. The proof is by induction on k. Clearly,
D(0)=1> 1

2 and D(1)=3> 3
2 .

Suppose the first violation comes at k=2j, that is, D(2j)�23j&1 but
D(2j&1)>3 } 23j&4. Consider a computation tree T for some P� #P� (k, 0) with
weight at most D#23j&1. The proof is by contradiction: we identify three

21LOWER BOUNDS

different subtrees of T each of which computes some P� (2j&1, a) and show
that the weight of one of them is at most 3

8D=3 } 23j&4, a contradiction.
We find it useful to denote two specific indeterminates

L=x[0, 2k&1) , R=x[2k&1, 2k) .

Repeatedly, separate the tree if it has an addition at its root, so that we
have expressed P� as a sum of polynomials, each of which is computed as
a single node or as a tree with a multiplication at its root. The sum of the
weights of these trees is at most D.

These trees fall into five classes:

1. NLR is the class of those trees that contain both indeterminates L
and R as leaves.

2. NL is the class of those trees that contain L but not R as a leaf.

3. NR is the class of those trees that contain R but not L as a leaf.

4. One tree of weight one consisting of the leaf x[0, 2k) .

5. NX is the class of those trees that do not contain any of L, R, or
x[0, 2k) as leaves.

Denote by W(N) the sum of the weights of the trees in class N. We have

D=23j&1�W(NLR)+W(NL)+W(NR)+W(NX)+1

D=23j&1>W(NLR)+W(NL)+W(NR)+W(NX).

In the following lemmas we prove some properties of the tree T. Without
loss of generality we assume that T does not contain multiplications by
zero.

Lemma 6. Any polynomial computed in the tree T is a pseudo-
homogeneous polynomial (under our definition of pseudo-degree).

Proof. Since cancellation is not allowed (and T does not contain multi-
plications by zero), an inhomogeneous polynomial multiplied by or added
to another polynomial will yield an inhomogeneous polynomial. But the
final P� is pseudo-homogeneous. K

Since all the computed polynomials are pseudo-homogeneous, we refer
to their pseudo-degree as a vector (rather than a singleton set consisting of
a vector).

Definition 7. The pseudo-degree of a subtree of T is the pseudo-degree
of the (pseudo-homogeneous) polynomial that this subtree computes.

22 COPPERSMITH AND SCHIEBER

Lemma 8. Let P and Q be two polynomials whose pseudo-degrees have a
common positive component. Then, P and Q may not be multiplied in T.

Proof. The pseudo-degree of the resulting polynomial would have a
component that is at least 2. Since (multiplicative) cancellation is not
allowed the value of this component cannot be lowered in subsequent com-
putation. However, the pseudo-degree of P� has components at most 1. K

We conclude that the pseudo-degrees of all computed polynomials are
zero-one vectors.

Lemma 9. There is a computation tree of minimal weight that does not
use constants.

Proof. If zero is added, the zero and the addition node can be deleted.
If a positive constant is added to a nonconstant polynomial, we produce an
inhomogeneous intermediate result. If zero is multiplied, the whole subtree
can be deleted. If a positive constant is multiplied, the constant and the
multiplication node can be deleted, and only the constants in P� will be
affected (but will remain positive). In any case we still compute some P� (k, 0)

without increasing the weight. K

Henceforth we assume that our tree has no constants.

Lemma 10. For each tree S in NLR the root is a multiplication with one
factor having the same pseudo-degree as L (i.e., a vector whose ith component
is 1 for 0�i<2k&1 and 0 otherwise), and the other factor having the same
degree as R.

Proof. Without loss of generality assume that the leaf L appears in
Left(S) (and possibly in Right(S) as well). This implies that the pseudo-
degree of Left(S) is at least the pseudo-degree of L. (The partial order rela-
tion is the componentwise order.) Since the pseudo-degrees of the two
major subtrees cannot have a common positive component, the pseudo-
degree of Right(S) is at most the pseudo-degree of R. At least one major
subtree contains R, and its pseudo-degree is at least the pseudo-degree of
R. If the same major subtree Left(S) contains both L and R, then the
pseudo-degree of Left(S) is at least the pseudo-degree(L)+pseudo-
degree(R)=pseudo-degree(P�), so that the pseudo-degree of Right(S)=0,
and Right(S) computes a constant; by minimality, this does not happen. So
L appears only in Left(S), and R appears only in Right(S). This implies
that the pseudo-degrees of the two major subtrees must be exactly pseudo-
degree(L) and pseudo-degree(R), respectively. K

Now, we identify two subtrees of T that compute P� (k&1, 0) . The first one
is given by the cofactor of R in P� (i.e., the factors that multiply R in all the
monomials of P� that contain R). Note that by definition this cofactor is

23LOWER BOUNDS

some P� (k&1, 0) . The monomials of the cofactor are contained in NR and the
left major subtrees of NLR . Note that the depth of a left major subtree is
one less than the depth of its originating tree. Thus we have

1
2W(NLR)+W(NR)�D(k&1)>3 } 23j&4= 3

8D. (1)

(The latter inequality comes from the induction hypothesis.) Similarly, the
cofactor of L in P� is some P� (k&1, 2k&1) , which is equivalent to P� (k&1, 0) .
Thus we also have

1
2W(NLR)+W(NL)�D(k&1)>3 } 23j&4= 3

8D. (2)

Combining with the estimate on D(k), we get

W(NX)<D(k)&(W(NLR)+W(NL)+W(NR))< 1
4D. (3)

Partition the set of trees in the class NX into two subsets, NX=AX �BX .
Each tree in NX belongs wholly to AX or wholly to BX . Beyond this, the
partition is arbitrary. Similarly, partition NL , NR , NLR .

For a monomial M with pseudo-degree(M)�pseudo-degree(L), let
LFact(M) be the factor of M for which pseudo-degree(Lfact(M))=pseudo-
degree(L). Similarly, for a monomial M with pseudo-degree(M)�
pseudo-degree(R), let Rfact(M) be the factor of M for which pseudo-
degree(Rfact(M))=pseudo-degree(R).

To identify the third subtree that computes P� (k&1, 0) we need the following
lemmas.

Lemma 11. For each tree in NLR or NL (resp. NR) that computes the
polynomial �i :iMi , we can construct a tree with strictly smaller depth that
computes the polynomial �i :i LFact(Mi) (resp. �i :i RFact(Mi)).

Proof. We prove only for �i :i LFact(Mi); the proof for �i :i

RFact(Mi) is analogous. Consider a tree S in NLR _ NL , and assume
without loss of generality that the major subtree containing L is Left(S).
Clearly, the pseudo-degree of Left(S) is at least pseudo-degree(L), and the
pseudo-degree of Right(S) is no more than pseudo-degree(R). Then, for
each Mi , Lfact(Mi) is a factor of a monomial in the polynomial computed
by Left(S). Eliminate from Left(S) indeterminates whose pseudo-degree is
not part of pseudo-degree(L) to achieve the desired polynomial.

For an arbitrary partition of NLR , NL , NR , and NX , let

WA= 1
2W(ALR)+ 1

2W(AL)+W(AR)+W(AX)

WB= 1
2W(BLR)+W(BL)+ 1

2W(BR)+W(BX).

24 COPPERSMITH AND SCHIEBER

Lemma 12. We can construct a tree that computes some P� (k&1, 0) whose
weight is at most max[WA , WB].

Proof. Consider those monomials M such that pseudo-degree(M)=
pseudo-degree(R) and M is a factor of some monomial in P� . The sum
of those monomials is some P� (k&1, 2k&1) . Either all such monomials M
occur as factors of monomials in the polynomials computed by the trees in
B#BLR �BL �BR �BX , or one such monomial M fails to appear there.

Suppose that all the monomials M appear as factors in B. We bound the
weight of a tree that computes the sum of these monomials. This tree is
given by adding all the trees in B after eliminating from them all indeter-
minates whose pseudo-degree is less than or equal to pseudo-degree(L). By
Lemma 11 the depth of any tree in BLR _ BR after eliminating from it all
these indeterminates is strictly less than the depth of its originating tree.
Thus the contribution of the trees in BLR _ BR to the weight of the tree
that computes the sum is at most 1

2 (W(BLR)+W(BR)). The contribution of
the trees in BL _ BX is at most W(BL)+W(BX). It follows that the weight
of the tree that computes the sum of the monomials M is at most WB .

If a monomial M fails to appear in B then its cofactor, which is some
P� (k&1, 0) , is computed by adding all the trees in A after eliminating from
them all indeterminates whose pseudo-degree is less than or equal to
pseudo-degree(R). Similar to the first case, the weight of this tree is at
most WA . K

We would like to minimize the value of max[WA , WB]. For this we
consider the weights of possible partitions of each of the tree classes. Let
N be one of [NX , NL , NR , NLR] and consider the partition N=A�B.
Clearly, W(N)=W(A)+W(B). Recall that the weight of each tree in N is
a power of two. The restriction that each tree in N must belong wholly
either to A or to B implies a restriction on the possible values of W(A). In
the following lemmas we bound the gaps between achievable values of
W(A).

Lemma 13. Let w be a non-negative integer whose binary representation
is a subset of the binary representation of W(N) (that is, wherever the binary
representation of w has a 1, the binary representation of W(N) also has a 1).
Then there is a partition N=A�B with W(A)=w, W(B)=W(N)&w.

Proof. A set of trees whose total weight is the largest power of two not
exceeding W(N) can be achieved by successively adding the largest trees in
N until the cumulative weight is that power of two; because larger pieces
are added before smaller pieces, this power of two cannot be overshot.
Allocate these trees to either A or B, according to the corresponding bit in
the binary representation of w. Repeat this process until A and B reach the
desired weight. K

25LOWER BOUNDS

Definition 14. Consider the achievable values of W(A). Let Quantum
(W(N)) be the largest gap between achievable values.

Lemma 15. If 2 j&1�W(N)<2 j then Quantum(W(N))�2 j&W(N).

Proof. Compute i, 0�i� j&1, such that 2 j&2i�W(N)<2 j&2i&1.
The binary representation of W(N) has ones in positions corresponding to
2i, 2i+1, ..., 2 j&1 (and zero in the position corresponding to 2i&1). By
Lemma 13, for each h, 0�h<2 j&i, the values h2i and h2 i+(W(N)&
(2 j&2i)) are achievable. The gaps between these weights are W(N)&
(2 j&2i) and 2 j&W(N). By choice of i the latter gap is the larger of the
two, and serves as a bound on Quantum(W(N)). K

Lemma 16. For any b2�b1 , if w�b1 , w+W(N)�b2 , and Quantum
(W(N))�b1&b2 , then there is a partition N=A�B such that b2�
w+W(A)�b1 .

Proof. If b2&w�0, then b2�w�b1 , and setting A=< implies the
result. Suppose that b2>w. If A=N then w+W(A)�b2 , so there is a
choice of A of minimal weight such that w+W(A)�b2 . Since b2&w>0
and Quantum(W(N))�b1&b2 , w+W(A)�b2+b1&b2=b1 . K

Using the above lemmas we give a partition that minimizes
max[WA , WB]. Assume, without loss of generality, that W(NL)�W(NR).
We consider two cases.

Case 1. Suppose W(NLR)+W(NL)� 3
4D. Then, since W(NLR)+

W(NL)<D, and D is a power of two, we know that the binary representa-
tion of 3

4 D is a subset of the representation of W(NL)+W(NLR). By
Lemma 13, we can choose ALR and AL so that W(ALR)+W(AL)= 3

4 D. We
set AR and AX to be the empty set, and thus W(AR)=W(AX)=0. We get
that WA= 3

8D and WB<D& 3
4D= 1

4D. Thus max[WA , WB]= 3
8D, a

contradiction.

Case 2. Suppose W(NL)+W(NLR)< 3
4D, so that 1

2W(NL)+ 1
2 W(NLR)

< 3
8D. To make the presentation clearer, we add ``dummy'' nodes to NX to

achieve the equality:

W(NLR)+W(NL)+W(NR)+W(NX)+1=D.

Clearly, this can be done without loss of generality. From our assumption
that W(NR)�W(NL), we get W(NR)< 1

2D, hence

1
2W(NLR)+ 1

2W(NL)+W(NX)� 1
2 (D&W(NR)&1)� 1

4D.

26 COPPERSMITH AND SCHIEBER

Furthermore, since W(NX)< 1
4D (see Inequality (3)), by Lemma 15,

Quantum(W(NX))�(1�8) D. Thus, by Lemma 16, setting w= 1
2W(NLR)+

1
2W(NL), N=NX , b1= 3

8D, and b2= 1
4 D, we can select AX so that

1
4D� 1

2W(NLR)+ 1
2W(NL)+W(AX)� 3

8 D.

Setting ALR=NLR , AL=NL , AR=<, and correspondingly BLR=BL=<,
BR=NR , we get 1

4 D�WA� 3
8D. Since AR=BL=<, we have

WA+WB=(1�2)(W(NLR)+W(NL)+W(NR)+2W(NX))

< 1
2 (D+W(NX))< 5

8 D.

Since WA� 1
4D, WB< 3

8 D. Thus, max[WA , WB]� 3
8D, a contradiction.

This establishes the induction when k=2j is even.
Now, consider the case when k=2j+1 is odd. Set U#23j&1. By the

assumption D(2j+1)�3 } 23j&1=3U. On the other hand, by inductive
hypothesis we have D(2j)>23j&1=U. Again, the proof is by contradiction.
We consider the same three different subtrees of T that compute some
P� (k&1, 0) as in the even case and show that the weight of one of them is at
most U=23j&1, a contradiction.

From the first two subtrees of T we get the following inequalities which
correspond to Inequalities (1), (2),

1
2W(NLR)+W(NR)�D(k&1)>U, (4)

1
2 W(NLR)+W(NL)�D(k&1)>U. (5)

As in the even case the weight of the third tree is at most max[WA , WB];
we show how to minimize this value. Assume, without loss of generality,
that W(NL)�W(NR). Again, we consider two cases.

Case 1. Suppose 2U�W(NLR)+W(NL)<3U. By Lemma 13, we can
choose ALR and AL so that W(ALR)+W(AL)=2U. We set AR=AX=<.
Then, as before, WA=U, WB�3U&2U=U, and max[WA , WB]=U, a
contradiction.

Case 2. Suppose W(NLR)+W(NL)<2U. Let d1=2U&(W(NLR)+
W(NL)). As before, add ``dummy'' nodes to NX to achieve the equality:

W(NLR)+W(NL)+W(NR)+W(NX)+1=3U.

By Inequalities (4), (5), we get W(NX)<U. Let d2=U&W(NX), and thus
W(NR)=d1+d2&1. We consider two subcases.

27LOWER BOUNDS

Case 2.1. Suppose d2�d1 . Then, set ALR=NLR , AL=NL , and AR=
AX=<, correspondingly set BLR=BL=<, BR=NR , and BX=NX . We
get

WA= 1
2W(NLR)+ 1

2W(NL)<U,

WB= 1
2 W(NR)+W(NX)=U+ 1

2 (d1&1&d2)<U,

a contradiction.

Case 2.2. Suppose d2<d1 . By Lemma 15, Quantum(W(NX))�d2 .
Observe that 1

2 W(NLR)+ 1
2W(NL)<U+ 1

2 d2 , and

1
2W(NLR)+ 1

2W(NL)+W(NX)> 1
2W(NR)+W(NX)

=U+ 1
2 (d1&1&d2)�U>U& 1

2d2 .

Then, by Lemma 16, we can select AX so that

U& 1
2d2� 1

2W(NLR)+ 1
2W(NL)+W(AX)�U+ 1

2d2 .

Set ALR=NLR , AL=NL , and AR=<, correspondingly BLR=BL=<,
BR=NR . We get U& 1

2d2�WA�U+ 1
2 d2 , and

WA+WB= 1
2 (W(NLR)+W(NL)+W(NR)+2W(NX))

<(3�2) U+ 1
2W(NX)=2U& 1

2d2 .

This implies that WB�U. If WA�U, then we already obtain a contra-
diction. Suppose U<WA�U+ 1

2d2 . Let A be the set of trees in Left(ALR),
Left(AL), and AX , and let B be the set of trees in Right(BR) and BX . Since
the binary representation of W(A)=WA contains the binary representation
of U as a subset, then by Lemma 13 we can select a subset of the trees in
A achieving the weight U exactly. Remove the remaining trees from A and
add them to the set of trees in B. Now, compute the new values of WA and
WB . Clearly, the new value of WA is U. To bound the new value of WB , we
have to estimate the effect of the trees added to B. The effect of these trees
will be at most doubled, since in the worst case a tree from AL is moved
to BL . The total weight of the removed trees in A is at most 1

2 d2 , thus the
new total value of A and B is at most 1

2d2 more than their old total value,
which is 2U& 1

2d2 . Thus, the new total value is at most 2U, and the new
value of WB is at most U; a contradiction. K

28 COPPERSMITH AND SCHIEBER

4. OPEN PROBLEMS

It seems that the correct lower bound for the binary leaf-addition expres-
sion should be 2 log n&O(1). This would close the gap with Kosaraju's
upper bound. Also, no non-trivial lower bounds for the Boolean monotone
case are known.

ACKNOWLEDGMENTS

We thank Alok Aggarwal for introducing us to the problem and for many fruitful
discussions. We are also grateful to Uri Feige and Allan Borodin for their help.

REFERENCES

[B74] R. Brent, The parallel evaluation of general arithmetic expressions, J. Assoc.
Comput. Mach. 21 (1974), 201�206.

[BKM73] R. Brent, D. Kuck, and K. Maruyama, Parallel evaluation of arithmetic
expressions without division, IEEE Trans. Comput. 22 (1973), 532�534.

[BM75] A. Borodin and I. Munro, ``The Computational Complexity of Algebraic and
Numeric Problems,'' Amer. Elsevier, New York, 1975.

[JS82] M. Jerrum and M. Snir, Some exact complexity results for straight-line computa-
tions over semirings, J. Assoc. Comput. Mach. 29 (1982), 874�897.

[Kos86] S. R. Kosaraju, Parallel evaluation of division free arithmetic expressions,
in ``Proc. of the 18th ACM Symp. on Theory of Computing, May 1986,''
pp. 231�239.

[KM75] D. Kuck and K. Maruyama, Time bounds on the parallel evaluation of arithmetic
expressions, SIAM J. Comput. 4 (1975), 147�162.

[Mil75] W. Miller, Computer search for numerical instability, J. Assoc. Comput. Mach. 22
(1975), 512�521.

[MP76] D. E. Muller and F. P. Preparata, Restructuring of arithmetic expressions for
parallel evaluation, J. Assoc. Comput. Mach. 23 (1976), 534�543.

[PM76] F. P. Preparata and D. E. Muller, Efficient parallel evaluation of Boolean
expressions, IEEE Trans. Comput. 25 (1976), 548�549.

[PMB77] F. P. Preparata, D. E. Muller, and A. B. Barak, Reduction of depth of Boolean
networks with a fan-in constraint, IEEE Trans. Comput. 26 (1977), 474�479.

[SS80] E. Shamir and M. Snir, On the depth complexity of formulas, Math. Systems
Theory 13 (1980), 301�322.

[Sni91] M. Snir, Size depth trade-offs for monotone arithmetic circuits, Theoret. Comput.
Sci. 22 (1991), 85�93.

29LOWER BOUNDS

	1. INTRODUCTION
	2. LEAF-ADDITION EXPRESSIONS
	3. THE LOWER BOUND
	4. OPEN PROBLEMS
	ACKNOWLEDGMENTS
	REFERENCES

