
p ( )
URL: http://www.elsevier.nl/locate/entcs/volume55.html 18 pages

Monitoring Java Programs with
Java PathExplorer

Klaus Havelund1, Grigore Ro�su2

1 Kestrel Technology
2 Research Institute for Advanced Computer Science

http://ase.arc.nasa.gov/fhavelund,grosug
NASA Ames Research Center

Mo�ett Field, CA, 94035, USA

Abstract

We present recent work on the development of Java PathExplorer (JPaX), a tool

for monitoring the execution of Java programs. JPaX can be used during program

testing to gain increased information about program executions, and can potentially

furthermore be applied during operation to survey safety critical systems. The tool

facilitates automated instrumentation of a program's byte code, which will then

emit events to an observer during its execution. The observer checks the events

against user provided high level requirement speci�cations, for example temporal

logic formulae, and against lower level error detection procedures, usually concur-

rency related such as deadlock and data race algorithms. High level requirement

speci�cations together with their underlying logics are de�ned in rewriting logic us-

ing Maude, and then can either be directly checked using Maude rewriting engine,

or be �rst translated to eÆcient data structures and then checked in Java.

1 Introduction

Correctness of software is becoming an increasingly important issue in many

branches of our society. People's lives often depend on software systems even

though they tend to not be aware of it. The success of most technological ex-

periments, including space craft and rover technology within the space agen-

cies, heavily depends on the correctness of software. It is widely accepted that

future space crafts will become highly autonomous, taking decisions without

communication from ground, so the required software is becoming signi�cantly

more complex, increasing the risk of mission failures. Two common ways to

approach the delicate problem of software correctness is program synthesis,

which gives a high degree of con�dence but seems to work properly only on

very restricted domain-speci�c problems, and program veri�cation, which is

concerned with detecting as many errors as possible in existing programs.

c
2001 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81139006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/


Havelund and Ros�u

Two important aspects of program veri�cation are testing and the use of for-

mal methods. Traditional testing techniques, however, are very ad hoc and do

not allow for formal speci�cation and veri�cation of high level logical prop-

erties that a system needs to satisfy. On the other hand, traditional formal

methods such as model checking and theorem proving are usually very heavy

and rarely can be used in practice successfully without considerable manual

e�ort.

The Automated Software Engineering group at NASA Ames Research Cen-

ter has for some time investigated advanced formal methods for insuring soft-

ware correctness, in both areas of program synthesis [14,5,19] and program

veri�cation [8,9,18,7,11]. Program synthesis is not discussed here, but it is

worth noticing that code and/or data structures synthesized from logical for-

mulae, such as �nite state machines, B�uchi automata or dynamic programming

algorithms, are often used in program veri�cation. We have performed various

veri�cation case studies using formal techniques, in particular model checking,

to analyze space craft software [8]. Two model checkers have furthermore been

developed, both supporting full state space exploration of Java programs us-

ing explicit state model checking techniques [9,18]. These techniques allow for

proving temporal logic properties on programs that have a few million states,

but fail to apply on large programs.

This paper is the fourth, after [10,16,11], in a series describing our e�ort in

runtime veri�cation, which can be roughly de�ned as combining testing and

formal methods. Testing scales well, and is by far the most used technique

in practice to validate software systems. The merge of testing and temporal

logic speci�cation is an attempt to achieve the bene�ts of both approaches,

while avoiding some of the pitfalls of ad hoc testing and the complexity of

theorem proving and model checking. In this paper, we present the current

status of a new runtime veri�cation system, called Java PathExplorer (JPaX),

for monitoring Java programs by analyzing (exploring) particular execution

traces. The general idea consists of extracting state events from an executing

program, and then analyzing them via a remote observer process. The observer

performs two kinds of veri�cation, namely logic based monitoring and error

pattern analysis.

Logic based monitoring consists of checking formal requirement speci�ca-

tions on the executing program, written in high level logics by users of the

system. Logics are currently implemented in Maude [2], a high-performance

system supporting both rewriting logic and membership equational logic. One

can very naturally and easily de�ne new logics in Maude, such as for example

temporal logics, together with their operational semantics. Currently, JPaX

supports two builtin logics, future time and past time linear temporal logics.

The implementation of both these logics in Maude together with an infras-

tructure module that handles atomic propositions that will most likely be part

of any other more general logic, covers less than 130 lines. Therefore, de�ning

new logics should be very feasible for advanced users. The current version of

2



Havelund and Ros�u

Maude can do up to 3 million rewritings per second on 800Mhz processors,

and its compiled version is intended to support 15 million rewritings per sec-

ond. Hence, we have decided to use Maude as the logical monitoring engine

that performs the conformance checks of events against speci�cations at this

early stage of JPaX.

Error pattern analysis consists of analyzing one execution trace of events

using various error detection algorithms that can identify error-prone pro-

gramming practices, such as unhealthy locking disciplines that may lead to

data races and/or deadlocks. The important and appealing aspect of these al-

gorithms is that they �nd error potentials even in the case where errors do not

explicitly occur in the examined execution trace. They are usually fast and

scalable, and often catch the problems they are designed to catch, that is, the

randomness in the choice of run does not seem to imply a similar randomness

in the analysis results. Two such known algorithms focusing on concurrency

errors have been implemented in JPaX, one for deadlocks and the other for

data races, but the system is designed in such a way that users can relatively

easily attach new such algorithms.

The idea of using temporal logic in program testing is not new, and at

our knowledge, has already been pursued in the commercial Temporal Rover

tool (TR) [4], and in the MaC tool [13]. TR allows the user to specify future

time temporal formulae as comments in programs, which are then translated

into appropriate Java code before the compilation. The MaC tool is closer

in spirit to what we describe in this paper, except that its speci�cation lan-

guage is �xed and very limited compared to the Maude language and doesn't

provide support for error pattern analysis. On the other hand, tools like Vi-

sual Threads [6,17] contain hardwired error pattern analysis algorithms and

therefore are impossible to change or extend by a user.

Since the programming languages of the monitored program and the ob-

server are not required to be the same, eventually the system should allow to

monitor programs composed of subprograms written in di�erent programming

languages including also C++ and C. However, for simplicity the system de-

scribed in this paper will focus only on Java. A case study of 90,000 lines of

C++ code for a rover controller has been carried out, leading to the detection

of a deadlock with a minimal amount of e�ort. One of the main design goals

is to make the system as general and generic as possible, allowing to handle

multiple language systems and new veri�cation rules to be de�ned, even de�n-

ing new speci�cation logics using Maude. Our hope is to make JPaX a basis

for experiments rather than a �xed system.

The paper is organized as follows. Section 2 gives an overview of JPaX.

Section 3 describes the underlying logic formalisms for writing requirement

speci�cations, while Section 4 describes some of the error detection algorithms

for debugging concurrent programs. Finally, Section 5 contains conclusions

and a description of future work.

3



Havelund and Ros�u

2 Overview of JPaX

JPaX can be regarded as consisting of three main modules: an instrumen-

tation module, an observer module, and an interconnection module that ties

them together through the observed event stream (see Figure 1). The instru-

mentation module performs a script-driven automated instrumentation of the

program to be observed. The instrumented program, when run, will emit rel-

evant events to the inter-connection module, which further transmits them to

the observation module. The observer may run on a di�erent computer, in

which case the events are transmitted over a socket. Hence, the input to JPaX

consists of references to two entities: the Java program in byte code format to

be monitored (created using a standard Java compiler) and the speci�cation

script de�ning the kinds of veri�cation requested. The output is a (possibly

empty) set of warnings printed on a special screen.

Java
    Program

Bytecode

Instrumented
Bytecode

. . .

LTL

Datarace

Deadlock

Observer

Specifications

Verification

E
ve

nt
 S

tr
ea

m

Instrument

Compile

(JVM)
Execute

Instrumentation

MaudeD
is

pa
tc

he
r

Fig. 1. Overview of JPaX

More speci�cally, the speci�cation script de�nes what (if any) kind of er-

ror pattern detection algorithms should be activated, and what (if any) kind

of logic based monitoring should be performed, and in that case what the re-

quirements are. For logic based monitoring, we have been inspired by the MaC

language framework [13] and have split the speci�cation into an instrumen-

tation script and a veri�cation script. The veri�cation script identi�es the

high level requirement speci�cations that events are to be checked against.

The propositions referred to in these speci�cations are abstract boolean 
ags,

and do hence not refer directly to entities in the concrete program. The in-

strumentation script establishes this connection between the concrete boolean

program predicates and the abstract propositions. The advantage of this lay-

ered approach, as also stated in [13], is that the requirement speci�cation can

be created without considering low level issues, and can even be created before

the construction of the program. Currently, the scripts are written in Java.

Thus, high level Java language constructs can be used to de�ne the boolean

4



Havelund and Ros�u

predicates to be observed.

The Java byte code instrumentation is performed using the powerful Jtrek

Java byte code engineering tool [3] from Compaq. Jtrek makes it possible

to easily read Java class �les (byte code �les), and traverse them as abstract

syntax trees while examining their contents, and insert new code. The inserted

code can access the contents of various runtime data structures, such as for

example the call-time stack, and will, when eventually executed, emit events

carrying this extracted information to the observer.

The observer receives the events and dispatches these to a set of observer

rules, each rule performing a particular analysis that has been requested in

the veri�cation script. Generally, this modular rule based design allows a

user to easily de�ne new runtime veri�cation procedures without interfering

with legacy code. Observer rules are written in Java, but can call programs

written in other languages, such as for example Maude. Maude plays a special

role in that high level requirement speci�cations can be written in the Maude

rewriting logic. The Maude rewriting engine can then be used in two di�erent

ways: as a monitoring engine during program execution, or as a translation

engine before execution. In the former case, execution events are submitted

to the Maude program, which in turn evaluates them against the requirement

speci�cation. In the latter case, the speci�cation is translated into a data

structure optimal for program monitoring, which is then sent back to Java,

and used within the Java program to check the events during execution.

JPaX is built on a generic environment, named PathExplorer (PaX), which

only consists of the interconnection module and the observer module. The goal

is to make it possible to monitor programs in other programming languages,

such as for example C and C++, by just providing a language speci�c instru-

mentation module. Such an experiment has been performed in collaboration

with Rich Washington, a member of the Robotics group at NASA Ames, on

a 90,000 line C++ application for controlling a rover. The experiment just

activated the deadlock detection rule, and located a deadlock potential in the

application that had not been discovered through testing.

3 Logic Based Monitoring

Logic based monitoring consists of checking execution events against a user-

provided requirement speci�cation written in some logic, typically an assertion

logic with states as models, or a temporal logic with traces as models. JPaX

allows the user to de�ne such new logics in a 
exible manner using the Maude

algebraic speci�cation language. Maude [2] is a modularized speci�cation and

veri�cation system that very eÆciently implements rewriting logic. A Maude

module consists of operator declarations, and equations relating terms over

the operators and universally quanti�ed variables. Modules can be composed.

It is relatively widely accepted that rewriting logic acts like a universal logic,

in the sense that other logics, or more precisely their syntax and operational

5



Havelund and Ros�u

semantics, can be implemented in rewriting logic. JPaX currently provides

linear temporal logics, both future time and past time, as builtin logics. Notice

that multiple logics can be used in parallel, so each property can be expressed

in its most suitable language. Since the Maude implementations of the current

logics are quite compact, we include them below. The Maude notation will be

introduced \on the 
y" as we give the examples.

3.1 Propositional Calculus

We begin with the following module for propositional calculus, which is heavily

used in JPaX, since most logics are based on it. It implements an eÆcient

procedure due to Hsiang [12] to decide validity of propositions:

fmod PROP-CALC is ex FORMULA .

*** Constructors ***

op _/\_ : Formula Formula -> Formula [assoc comm] .

op _++_ : Formula Formula -> Formula [assoc comm] .

vars X Y Z : Formula . var As* : AtomState* .

eq true /\ X = X .

eq false /\ X = false .

eq false ++ X = X .

eq X ++ X = false .

eq X /\ X = X .

eq X /\ (Y ++ Z) = (X /\ Y) ++ (X /\ Z) .

*** Derived operators ***

op _\/_ : Formula Formula -> Formula .

op _->_ : Formula Formula -> Formula .

op _<->_ : Formula Formula -> Formula .

op !_ : Formula -> Formula .

eq X \/ Y = (X /\ Y) ++ X ++ Y .

eq ! X = true ++ X .

eq X -> Y = true ++ X ++ (X /\ Y) .

eq X <-> Y = true ++ X ++ Y .

*** Semantics

eq (X /\ Y){As*} = X{As*} /\ Y{As*} .

eq (X ++ Y){As*} = X{As*} ++ Y{As*}

endfm

The module FORMULA, which is extended (imported), de�nes the infrastruc-

ture for all the user-de�ned logics. This will be further described in subsequent

sections. For now it suÆces to say that it includes some designated basic sorts

(or types) such as Formula for syntactic formulae; FormulaDS for formula data

structures needed when more information than the formula itself should be

kept for the next transition as in the case of past time LTL; Atom for atoms, or

state variables, which in the state denote a boolean value; AtomState for such

assignments of boolean values to atoms, and AtomState* for such assignments

together with �nal assignments, i.e., those that are followed by the end of a

trace, requiring a special evaluation as described in the sections on future time

and past time LTL (our semantics for the end of the execution trace is that of a

continuous process that doesn't change the state). The propositions that hold

in a certain program state are generated from the executing instrumented pro-

gram. Perhaps the most important operator provided by the module FORMULA

is an operation f g:FormulaDS AtomState -> FormulaDS which updates the

formula data structure when an (abstract) state change occurs during the ex-

ecution of the program. Notice that in the case of propositional calculus, this

update operation basically evaluates propositions in the new state (the last

two lines). The user is free to extend all these types and operations as in the

module above.

Operators are introduced after the op and ops (when more than one opera-

tor is introduced) symbols. Operators can be given attributes in square brack-

6



Havelund and Ros�u

ets, such as associativity and commutativity. Universally quanti�ed variables

used in equations are introduced after the var and vars symbols. Finally,

equations are introduced after the eq symbol. The speci�cation shows the


exible mix-�x notation of Maude, using underscores to stay for arguments,

which allows us to de�ne the syntax of a logic in the most natural way.

3.2 Future Time LTL

The �rst monitoring logic that we present, and which is built on propositional

logic, is a variant of Future Time LTL [15]. Future Time LTL is a logic with

execution traces as models, which makes it convenient for program monitoring.

LTL provides operators such as �X (always X), �X (eventually X), ÆX (next

X), andX[Y (X until Y ), and their composition with standard propositional

operators. Usually in formal methods literature, concerned with subjects such

as model checking and theorem proving, LTL models are in�nite traces. In

a testing context, however, traces are �nite: sooner or later, the monitored

program will be stopped and so its execution trace. Hence the operational

semantics has to re
ect this. Future time LTL can be implemented eÆciently

more easily than we initially thought on top of propositional calculus:

fmod FT-LTL is ex PROP-CALC .

*** Syntax ***

op []_ : Formula -> Formula .

op <>_ : Formula -> Formula .

op o_ : Formula -> Formula .

op _U_ : Formula Formula -> Formula .

*** Semantics ***

vars X Y : Formula . var As : AtomState .

eq ([] X){As} = ([] X) /\ X{As} .

eq (<> X){As} = (<> X) \/ X{As} .

eq (o X){As} = X .

eq (X U Y){As} = Y{As} \/ (X{As} /\ (X U Y)) .

eq ([] X){As *} = X{As *} .

eq (<> X){As *} = X{As *} .

eq (o X){As *} = X{As *} .

eq (X U Y){As *} = Y{As *} .

endfm

The four LTL operators are added to those of the propositional calculus using

the symbols: [] (always), <> (eventually), o (next), and U (until). The

operational semantics of these operators is based on a formula transformation

idea, and is de�ned by 8 rules, divided into two groups, all re�ning the op-

erator f g:FormulaDS AtomState -> FormulaDS that comes from the FORMULA

module. Note that in the future time LTL case the formulae themselves are

used as data structures (Formula is a subsort of FormulaDS). This operator

de�nes how a formula is transformed by the occurrence of a state change (a

new state), and evaluated on the propositional leaves. The intuition behind

the f g operator can be elaborated as follows. Assume a formulae X we want

to hold on an execution trace of which the �rst state is As. Then the equation

XfAsg = X', where X' is a formula resulting from applying the f g operator

to X (and As), carries the following intuition: \in order for X to hold on the

rest of the trace, given that the �rst state in the trace is As, then X' must

hold on the trace following As". The �rst set of rules describes this semantics

assuming that the state As is not the last state in the trace, while the last

four rules apply when the state As is the last in the trace. The term As *

7



Havelund and Ros�u

represents a state that is the last in the trace, and re
ects the intuition that

the �nite trace can be regarded as an in�nite trace where the last state of the

�nite trace is repeated in�nitely. The two rules for each operator implement

the following simple equivalences:

s _ t j= ' i� t j= 'fsg

s _ end j= ' i� 'fs�g = true;

where s _ t is a trace formed by a state s followed by a nonempty trace t,

and s _ end is the trace consisting of s followed by the end of trace (the last

state in the �nite trace). As an example, consider the formula [](X -> <>Y)

and a trace where the �rst state As makes X true but Y false. In this case [](X

-> <>Y)fAsg = [](X -> <>Y) ^ <>Y (modulo propositional calculus rewriting).

This re
ects the fact that after the state change, <>Y now has to be true on

the remaining trace, in addition to the original always{formula. A proof of

correctness of this algorithm is given in [10]. Despite its overall exponential

complexity, this algorithm tends to be quite acceptable in practical situations.

We couldn't notice any signi�cant di�erence in global concrete experiments

with JPaX between this simple 8 rule algorithm and an automata-based one

developed by Dimitra Giannakopoulou, that implements in 1,400 lines of Java

code a B�uchi automata inspired algorithm adapted to �nite trace LTL (see

Subsection 3.4).

Such a �nite trace semantics for LTL used for program monitoring has,

however, some characteristics that may seem unnatural. At the end of the

execution trace, when the observed program terminates, the observer needs

to take a decision regarding the validity of the checked properties. Let us

consider again the formula [](p -> <>q). If each p was followed by at least

one q during the monitored execution, then, at some extent one could say

that the formula was satis�ed; although one should be aware that this is not

a de�nite answer because the formula could have been very well violated in

the future if the program hadn't been stopped. If p was true and it was not

followed by a q, then one could say that the formula was violated, but it

may have been very well satis�ed if the program had been left to continue

its execution. Furthermore, every p could have been followed by a q during

the execution, only to be violated for the last p, in which case we would

likely expect the program to be correct if we terminated it by force. There

are of course LTL properties that give the user absolute con�dence during

the monitoring. For example, a violation of a safety property re
ects a clear

misbehavior of the monitored program.

The lesson that we learned from experiments with LTL monitoring is

twofold. First, we learned that, unlike in model checking or theorem proving,

LTL formulae and especially their violation or satisfaction must be viewed

with extra information, such as for example statistics of how well a formula

has \performed" along the execution trace. Second, we developed a belief that

8



Havelund and Ros�u

LTL may not be the most appropriate formalism for logic based monitoring;

other more speci�c logics, such as real time LTL, interval logics, past time

LTL, or even undiscovered ones, could be of greater interest than pure LTL.

In the next subsection we describe an implementation of past time LTL in

Maude, a perhaps more natural logic for runtime monitoring.

3.3 Past Time LTL

Past time LTL is useful for especially safety properties. These properties are

very suitable for logic based monitoring because they only refer to the past,

and hence their value is always either true or false in any state along the trace,

and never to-be-determined as in future time LTL. The implementation of past

time LTL is, however, surprisingly slightly more tedious than the above imple-

mentation of future time LTL. It is also built on top of propositional calculus,

by adding the usual two past time operators, ~ for previous and S for since,

and then appropriate data structures and semantics. The implementation ap-

pears similar to the one used in [13] (according to private communication),

which also uses a version of past time logic. We here present the past time

logic module as is, and then give a step-wise explanation.

fmod PT-LTL is ex PROP-CALC .

*** Syntax ***

op ~_ : Formula -> Formula .

op _S_ : Formula Formula -> Formula .

*** Semantic Data structure ***

op ptLtl : Formula -> FormulaDS .

op atom : Atom Bool -> FormulaDS .

op prev : FormulaDS Bool -> FormulaDS .

op and : FormulaDS FormulaDS Bool -> FormulaDS .

op xor : FormulaDS FormulaDS Bool -> FormulaDS .

op since : FormulaDS FormulaDS Bool -> FormulaDS .

var A : Atom . var As : AtomState .

var B : Bool .

vars X Y : Formula .

vars D D' Dx Dx' Dy Dy' : FormulaDS .

eq [atom(A,B)] = B .

eq [prev(D,B)] = B .

eq [since(Dx,Dy,B)] = B .

eq [and(Dx,Dy,B)] = B .

eq [xor(Dx,Dy,B)] = B .

eq ptLtl(true){As} = true .

eq ptLtl(false){As} = false .

eq ptLtl(A){As} =

atom(A, (A{As} == true)) .

eq ptLtl(~ X){As} = false .

ceq ptLtl(X S Y){As} = since(Dx,Dy,[Dy])

if Dx := ptLtl(X){As} /\

Dy := ptLtl(Y){As} .

ceq ptLtl(X /\ Y){As} =

and(Dx,Dy,[Dx] and [Dy])

if Dx := ptLtl(X){As} /\

Dy := ptLtl(Y){As} .

ceq ptLtl(X ++ Y){As} =

xor(Dx,Dy,[Dx] xor [Dy])

if Dx := ptLtl(X){As} /\

Dy := ptLtl(Y){As} .

*** Semantics ***

eq atom(A,B){As} =

atom(A, (A{As} == true)) .

eq prev(D,B){As} = prev(D{As},[D]) .

ceq since(Dx,Dy,B){As} =

since(Dx',Dy',[Dy'] or B and [Dx])

if Dx' := Dx{As} /\

Dy' := Dy{As} .

ceq and(Dx,Dy,B){As} =

and(Dx',Dy',[Dx'] and [Dy'])

if Dx' := Dx{As} /\

Dy' := Dy{As} .

ceq xor(Dx,Dy,B){As} =

xor(Dx',Dy',[Dx'] xor [Dy'])

if Dx' := Dx{As} /\

Dy' := Dy{As} .

endfm

The module �rst introduces the syntax of the logic, the previous{operator

and the since{operator. The next two sections of the module introduce the

semantic data structure needed for past time LTL formulae, and its semantics.

The data structure is represented by the sort FormulaDS, introduced in the

FORMULA module, and is needed to represent a formula during execution. This

9



Havelund and Ros�u

is in contrast to future time LTL, where a formula represented itself, and a

transformation caused by a state transition was performed by transforming the

formula into a new formula that had to hold on the rest of the trace. In past

time LTL this technique does not apply. Instead, for each formula a special

tree-like data structure is introduced, which keeps track of the boolean value

of all subformulae of the formula in the previous state. These values are used

to correctly evaluate the value of the entire formula in the next state. The

operation ptLtl initializes/creates the data structure representing a formula.

The constructors of the type FormulaDS correspond to the di�erent kinds of

past time LTL operators: atom (for atomic propositions), and, xor, prev, and

since. Hence, for example, the formula ~ A (previous A) for some atomic

proposition A is represented by prev(atom(A,true),false) in the example case

that A is true in the current state, but was false in the previous state. Hence

the second boolean argument represents the current value of the formula, and

is returned by the [ ] operation. The ptLtl operation that creates the initial

data structures from formulae is de�ned through equations that also de�ne

the operation f g:FormulaDS AtomState -> FormulaDS on the initial atomic

state. Hence, this de�nes how the data structure of a formula is initialized.

Note that this operation now is applied to the data structure of a formula. The

equations for the three binary operators (since, and and xor) are de�ned using

conditional equations (ceq). Conditions are provided after the if keyword and

introduce new variables used in the equations.

3.4 EÆcient Observer Generation

Logic-based monitoring can add overhead to the normal execution of pro-

grams. Because of the high complexity of validity in many logics, it is very

easy to design and implement ineÆcient algorithms. We deliberately decided

that, at this early stage of JPaX, it is more important to concentrate our ef-

forts on �nding and experimenting with more expressive and natural logics for

monitoring, rather than implementing very eÆcient algorithms for particular

logics which may soon turn out not to be the most appropriate ones. How-

ever, since LTL seems to be a good candidate logic, we started to investigate

eÆcient runtime formula veri�cation algorithms for both future time and past

time LTL. More precisely, we are looking for algorithms that generate eÆcient

observers from formulae, i.e., (Java) code or data structures that \encode" the

formulae and can be executed or modi�ed synchronously with the observed

program, returning an appropriate message when the formula is violated.

After experimenting with runtime veri�cation algorithms for LTL [10,16,11],

each with its advantages and drawbacks, we realized that in order for one to

properly compare these, one needs to �rst understand and establish criteria for

\good" runtime veri�cation algorithms. Consider a �xed logic. The following

is a list of priorities that currently in
uence the choice of runtime algorithms

in JPaX :

10



Havelund and Ros�u

Forwards Design. Algorithms that visit the execution traces backwards in-

volve storing the trace and cannot throw exceptions or guide the program

when a formula is violated.

Runtime EÆciency. An algorithm that is exponential in the size of the

trace is unusable, while an algorithm that is exponential in the size of for-

mula is usable but better be avoided.

Initialization. The time required to generate code or data structures from

formulae cannot be ignored, but it is considered less important than the

previous criteria.

A trivial rewriting algorithm for future time LTL that blindly implements

the semantics is immediate (see also [10]), but it is exponential in the size of

the trace, so it is impractical. The simple and elegant procedure shown in

Subsection 3.2 and proved correct in [10] is worst-case exponential only in the

size of the formula but linear in the size of the trace. We found it quite good

in practice so far and the fact that it can be implemented in only a few lines

of Maude code makes it a very good choice at this incipient stage of JPaX.

Dynamic programming algorithms generated from future time LTL formulae

[16] run in time O(nm), where n is the size of the trace and m is the size of the

formula. Unfortunately, these algorithms visit the execution trace backwards

so they fail to satisfy the �rst criterion. Fortunately, the same idea applies

to past time LTL and, by dualization, yields forwards algorithms of the same

complexity. Therefore, past time LTL is a very nicely computable logic for

monitoring. Besides that, the naturalness with which one expresses safety

requirements in it makes us believe that it is a better choice than future time

LTL.

However, we next very brie
y present some concepts that lead to a future

time �nite-trace LTL formula-checking algorithm that is the best one of which

we are aware satisfying the criteria above. It visits the execution trace forwards

and its worst-case runtime complexity is O(nk), where n is the length of the

trace and k is the number of variables of the formula. The complete details

together with optimality proofs will appear elsewhere soon.

We �rst introduce some data structures that will be needed to encode

a formula. Intuitively, a binary transition tree is a binary tree where the

nodes are atomic propositions, while the leaves are states or truth values. For

simplicity in writing, we make use of a C/Java-like operator ? : having

the typical intuition: a?t1 : t2 means \if a then t1 else t2". For example, if

P = fa; b; cg is a set of \atomic propositions" and S = f1; 2; 3g is a set of

\states", then a?(b?1 : 2) : 1 and a?(c?2 : false) : (c?true : (b?3 : 1)) are all

well-formed hP ?Si-binary transition trees. We next give a compact formal

de�nition which can be skipped by the impatient reader. Let Bool be the

set ftrue; falseg and let us consider two sorts Prop and State that stay for

propositions and states, respectively.

De�nition 3.1 Given sets P : Prop and S : State, respectively, then a hP ?Si-

11



Havelund and Ros�u

binary transition tree (or simply hP ?Si-BTT or even BTT) is a term of

sort BTT of the order-sorted free algebra T�(P; S [ Bool) over a signature �

consisting of the sorts Prop, State and BTT with State a subsort of BTT, and

the operation 1 ( ? : ) :Prop � BTT � BTT ! BTT. If S is empty then

hP ?;i-BTT's are called P -binary decision trees (or simply P -BDT's or

BDT's; see [1]).

If size of a BTT becomes an important issue, than one can change this

de�nition to take advantage of repetitions of subtrees, thus obtaining directed

acyclic graphs instead of trees, like in the case of binary decision diagrams (see

for example [1]). However, the size of BTT's doesn't seem to be important

yet, in the sense that it doesn't a�ect any of the three criteria above.

De�nition 3.2 A BTT �nite state machine (or simply BTT FSM) con-

sists of sets P and S, together with a total function next that maps each

element in S into a hP ?Si-BTT. A BTT �nite trace FSM is a BTT FSM

together with a total function end that maps each element in S into a P -BDT.

The function end decides whether a state is accepting or not when a trace

ends there. The notion of accepted \execution" trace should be next de�ned

but space doesn't allow us to go into more formal aspects. We only show how

the LTL formula �(a ! �b) can be encoded as a BTT �nite trace FSM: in

this case P = fa; bg, S = f1; 2g, next(1) = a?(b?1 : 2) : 1, end(1) = a?(b?true :

false) : true, and next(2) = b?1 : 2, end(2) = b?true : false. The intuition for

this data structure is as follows. If the monitored program, say P, is in a state

which is not the end of the observed trace, then: if the observer is in state 1

then evaluate the atomic proposition a in the current state of P and if this is

true then evaluate b and if this is false then change the state of the observer

to 2; if the observer is in state 2 then evaluate only b and if this is true then

change the observer state to 1. If one decides to stop the monitoring of P,

then the end BDT's are evaluated similarly. Notice that false is returned when

an a occurred in the execution trace which was not followed by a b. The reader

may have already noticed that we payed special attention to the evaluation of

atomic propositions: they are evaluated only when needed. This is because

the evaluation process can be often long; for example, an atomic proposition

can test whether an array is sorted.

We have designed and implemented in Maude (in less than 200 lines of

code) a relatively easy and elegant procedure that generates an optimal BTT

�nite trace FSM from any LTL formula. Despite its worst-case exponential

complexity, it is quite fast on typical formulae and it never needed more than

30 seconds (on a 400MHz laptop) to generate an optimal data structure; it

needed more than 1 second only on hand-crafted arti�cial formulae. This

initialization time is spent only once, at the beginning of the monitoring. The

following are a few examples of optimal BTT �nite trace �nite state machines

1
Written in mix-�x notation.

12



Havelund and Ros�u

generated by our current implementation:

Formula State next end

� � a 1 1 a?true : false

�(�a _�:a) 1 1 true

�(a! �b) 1 a?(b?1 : 2) : 1 a?(b?true : false) : true

2 b?1 : 2 b?true : false

a U (b U c) 1 c?true : (a?1 : (b?2 : false)) c?true : false

2 c?true : (b?2 : false) c?true : false

Notice that liveness properties do not really make sense in �nite trace LTL

without statistical analysis. In particular, the formula � � a is violated if

and only if a is false in the last observed state of the monitored program.

The formula �(�a _�:a) is always true in �nite trace LTL and our optimal

generator proved that.

4 Error Pattern Analysis

Logic based analysis of execution traces can reveal domain speci�c high level

errors, but it implies human intervention in designing the application require-

ments or/and their underlying logics. However, many errors are lower level

and are usually due to bad programming practice or lack of attention, and for-

tunately, an interesting portion of them can be revealed automatically. Even

if some of these error patterns could be speci�ed using adequate requirements

formalisms and then enforced using the same logic-based approach as above,

we think that this procedure is too heavy for this kind of errors, and that

it is actually more appropriate to allow the users attach designated eÆcient

algorithms to JPaX. We have implemented the algorithms described below in

both Maude and Java, but the current JPaX uses the Java implementations.

Error pattern runtime analysis algorithms explore an execution trace and

detect error potentials. The important and appealing aspect of these algo-

rithms is that they �nd error potentials even in the case where errors do not

explicitly occur in the examined execution trace. They are usually fast and

scalable, and often catch the problems they are designed to catch, that is,

the randomness in the choice of run does not seem to imply a similar ran-

domness in the analysis results. The trade o� is that they have less coverage

than heavyweight formal methods and often suggest problems which, after

a careful semantical analysis, turn out not to be errors. Two examples of

such algorithms focusing on concurrency errors have been implemented in

JPaX: the Eraser [17] data race analysis algorithm and a deadlock analysis

algorithm based on analyzing lock cycles. Both these algorithms have been

13



Havelund and Ros�u

previously implemented by Compaq in the Visual Threads tool [6] to work for

C and C++. Inspired by the Visual Threads tool, we also previously imple-

mented the data race algorithm and a variant of the deadlock algorithm in

Java PathFinder [7], modifying the Java Virtual Machine described in [18].

Our contribution in error pattern analysis for JPaX is to make these algorithms

work for Java using byte code instrumentation, to integrate them with logic

based monitoring, and to allow advanced users to program new error pattern

analysis rules in a 
exible manner. The rest of this section shortly describes

the data race and deadlock detection algorithms.

4.1 Data Race Analysis

We brie
y describe here how easily data races can occur in concurrent pro-

gramming and how Eraser [17] has been implemented in JPaX to work on Java

programs. A data race occurs when two or more concurrent threads access a

shared variable, at least one access is a write, and the threads use no explicit

mechanism to prevent the accesses from being simultaneous. The Eraser algo-

rithm detects data races by studying a single execution trace of the monitored

program, trying to conclude whether there exist valid runs where data races

are possible. We illustrate the data race analysis with the following example.

1. class Value{

2. private int x = 1;

3.

4. public synchronized void add(Value v){x = x + v.get();}

5.

6. public int get(){return x;}

7. }

8.

9. class Task extends Thread{

10. Value v1; Value v2;

11.

12. public Task(Value v1,Value v2){

13. this.v1 = v1; this.v2 = v2;

14. this.start();

15. }

16.

17. public void run(){v1.add(v2);}

18. }

19.

20. class Main{

21. public static void main(String[] args){

22. Value v1 = new Value(); Value v2 = new Value();

23. new Task(v1,v2); new Task(v2,v1);

24. }

25. }

The class Value contains an integer variable x, a synchronized method

add that updates x by adding the content of another Value variable, and an

unsynchronized method get that simply returns the value of x. Task is a

thread class: its instances are started with the method start which executes

the user de�ned method run. Two such tasks are started in Main, on two

instances of the Value class, v1 and v2. When running JPaX with the Eraser

option switched on, a data race potential is found, reporting that the variable

x in class Value is accessed unprotected by the two threads in lines 4 and 6,

14



Havelund and Ros�u

respectively. The generated warning message gives a scenario under which a

data race might appear, summarizing the following. One Task thread can call

the add method on the object v1 with the parameter Value object v2, whose

content is thus read via the unsynchronized get method. The other thread can

simultaneously do the same thing, i.e., call the add method on v2. Therefore,

the content of v2 might be accessed simultaneously by the two threads. Two

data race warnings are actually emitted, since the the other task can perform

the same behavior with v1 and v2 interchanged.

Roughly, the algorithm works and is implemented in JPaX as follows. The

instrumented byte code of the monitored program emits to the observer appro-

priate events when variables are read or updated, and when locks are acquired

or released as a result of executing Java's synchronized statements or from

calling/returning from synchronized methods. The observer maintains two

data structures: a thread map that keeps track of all the locks owned by each

thread, and a variable map that associates with each (shared) variable the

intersection of the set of locks that has been commonly owned by all accessing

threads in the past. If this set ever becomes empty then a data race potential

exists. More precisely, when a variable is accessed for the �rst time, the locks

owned by the accessing thread at that moment are stored in the variable's

variable set. Subsequent accesses by other threads causes the set to be re�ned

to its intersection with the locks owned by those threads. An extra state ma-

chine is also maintained for each variable to keep track of how many threads

have accessed the variable and how (read/write). This is used to reduce the

number of false warnings, such as situations in which variables are initialized

by a single thread without locks (which is safe) or several threads only read a

variable after it has been initialized (which is also safe).

Deadlock Detection

Deadlock potentials are hard to �nd in general, but there are classical deadlock

situations which occur when multiple threads take locks in di�erent order. For

example, a deadlock will arise if a thread acquires a lock and then, without

releasing it, acquires another lock, while another thread �rst acquires the

second lock and then the �rst one. One can simply create such a situation in

the previous Java example if one wrongly tries to repair the data race by also

de�ning the get method in line 6 as synchronized:

6. public synchronized int get(){return x;}

It is clear now that the data race algorithm will indeed not return a warning

anymore because the variable x can no longer be accessed simultaneously from

two threads. However, there is a deadlock potential now and JPaX detects

it. More exactly, when running JPaX on the modi�ed program, a lock order

problem is found and an appropriate warning message is issued summarizing

the fact that two object instances of the Value class are taken in a di�erent

order by the two Task threads. It also indicates the line numbers where the

threads may potentially deadlock: line 4 where the get method called from

15



Havelund and Ros�u

add may lock the second object. Notice that this deadlock doesn't need to

appear in the examined trace in order for this warning to be issued. In fact,

deadlock potentials might be reported in general even if those deadlocks will

never appear in any execution of the program. Any execution of the modi�ed

program above will cause a warning to be issued.

The runtime deadlock analysis algorithm is also implemented in the ob-

server and it needs only a subset of the events generated for the data race

algorithm, namely those related to lock acquires and releases of locks that re-

sult from executing Java's synchronized statements or from calling/returning

from synchronized methods. Two data structures are maintained in the ob-

server: as in the data race algorithm a thread map keeps track of the locks

owned by each thread, while a second data structure, a lock graph, updates

a graph that accumulates as nodes all the locks taken by any thread during

an execution, the edges recording locking orders. In other words, an edge is

introduced from a lock to another each time when a thread that already owns

the �rst lock acquires the other. If during the execution of the program this

graph becomes cyclic, then there is a deadlock potential related to lock order-

ing in the program. This simple algorithm can reveal more complex deadlock

potentials between more than two threads, as illustrated for example by the

classical dining philosopher's example.

5 Conclusions

We have presented JPaX, a runtime veri�cation tool under development at

NASA Ames Research Center. JPaX provides an integrated environment

for instrumenting Java byte code to emit events during execution to an ob-

server, which performs two kinds of analysis: logic based monitoring, checking

events against high level requirements speci�cations, and error pattern anal-

ysis, searching for low level programming errors. It has been shown how the

two kinds of veri�cation can be combined by viewing them as rules within an

extensible set of rules. It has in particular been demonstrated how the Maude

rewriting logic can be used to de�ne new logics for runtime veri�cation in

a very 
exible manner, and how the Maude inference engine can be used to

perform the monitoring itself. In the case where eÆciency is required, we have

shown that optimal data structures can be generated from future time and

past time LTL. Finally, two known error pattern detection algorithms, one for

data races and one for deadlocks, have been implemented to work on Java.

The project as described above mainly focuses on applying the tool during

testing of a software application. Hence, with this perspective the goal is to

smoothly combine testing and formal methods, while avoiding some of the

pitfalls from ad hoc testing and the complexity of full-blown theorem proving

and model checking. However, an at least equally interesting application of

runtime veri�cation is to apply it during operation, and in
uence the program

behavior when requirements are violated. Our future research will focus on

16



Havelund and Ros�u

this aspect. In general, integration in the overall NASA Ames automated

software engineering e�ort is highlighted, and here two crucial issues are: how

can testing be made more formal, and how can missions be made safer in the

face or errors occurring during 
ight that survived tests.

Of other future work can be mentioned that we will experiment with new

logics in Maude more appropriate to monitoring than LTL, such as interval and

real time logics and UML notations. The latter allows to check original designs

(via state charts and/or sequence diagrams) against "real" execution traces.

Future work on error pattern analysis will try to develop new algorithms for de-

tecting concurrency errors other than data races and deadlocks, and of course

to try to improve existing algorithms. We will also study completely new func-

tionalities of the system, such as guided execution via code instrumentation

to explore more of the possible interleavings of a non-deterministic concur-

rent program during testing. Dynamic program visualization is also a future

subject, where we regard a visualization package as just another rule in the

observer. A more user friendly interface, both graphical and functional, will

be provided, and �nally the tool will be evaluated against NASA safety critical

applications.

References

[1] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,

Cambridge, Massachusetts, 1999.

[2] M. Clavel, F. J. Dur�an, S. Eker, P. Lincoln, N. Mart��-Oliet, J. Meseguer, and

J. F. Quesada. The Maude system. In Proceedings of the 10th International

Conference on Rewriting Techniques and Applications (RTA-99), volume 1631

of LNCS, pages 240{243, Trento, Italy, July 1999. Springer-Verlag. System

description.

[3] S. Cohen. Jtrek. Compaq,

http://www.compaq.com/java/download/jtrek.

[4] D. Drusinsky. The Temporal Rover and the ATG Rover. In SPIN Model

Checking and Software Veri�cation, volume 1885 of LNCS, pages 323{330.

Springer, 2000.

[5] B. Fischer, T. Pressburger, G. Rosu, and J. Schumann. The AutoBayes

Program Synthesis System - System Description. In Symposium

on the Integration of Symbolic Computation and Mechanized Reasoning

(CALCULEMUS 2001), Siena, Italy, June 2001.

[6] J. Harrow. Runtime Checking of Multithreaded Applications with Visual

Threads. In SPIN Model Checking and Software Veri�cation, volume 1885 of

LNCS, pages 331{342. Springer, 2000.

17



Havelund and Ros�u

[7] K. Havelund. Using Runtime Analysis to Guide Model Checking of Java

Programs. In SPIN Model Checking and Software Veri�cation, volume 1885

of LNCS, pages 245{264. Springer, 2000.

[8] K. Havelund, M. Lowry, and J. Penix. Formal Analysis of a Space Craft

Controller using SPIN. In Proceedings of the 4th SPIN workshop, Paris, France,

November 1998. To appear in IEEE Transactions of Software Engineering.

[9] K. Havelund and T. Pressburger. Model Checking Java Programs using Java

PathFinder. International Journal on Software Tools for Technology Transfer,

2(4):366{381, April 2000. Special issue of STTT containing selected submissions

to the 4th SPIN workshop, Paris, France, 1998.

[10] K. Havelund and G. Ro�su. Testing Linear Temporal Logic Formulae on Finite

Execution Traces. RIACS Technical report, http://ase.arc.nasa.gov/pax,

November 2000.

[11] K. Havelund and G. Ro�su. Java PathExplorer { A Runtime Veri�cation Tool.

In Proceedings of the 6th International Symposium on Arti�cial Intelligence,

Robotics and Automation in Space (i-SAIRAS'01), Montreal, Canada, June

2001.

[12] J. Hsiang. Refutational Theorem Proving using Term Rewriting Systems. PhD

thesis, University of Illinois at Champaign-Urbana, 1981.

[13] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime

Assurance Based on Formal Speci�cations. In Proceedings of the International

Conference on Parallel and Distributed Processing Techniques and Applications,

1999.

[14] M. Lowry, A. Philpot, T. Pressburger, I. Underwood, R. Waldinger, and

M. Stickel. Amphion: Automatic Programming for the NAIF Toolkit. In NASA

Science Information Systems Newsletter, volume 31, February 1994.

[15] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE

Symposium on Foundations of Computer Science, pages 46{77, 1977.

[16] G. Ro�su and K. Havelund. Synthesizing Dynamic Programming Algorithms

from Linear Temporal Logic Formulae. RIACS Technical report,

http://ase.arc.nasa.gov/pax, January 2001.

[17] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A

Dynamic Data Race Detector for Multithreaded Programs. ACM Transactions

on Computer Systems, 15(4):391{411, November 1997.

[18] W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs.

In Proceedings of ASE'2000: The 15th IEEE International Conference on

Automated Software Engineering. IEEE CS Press, September 2000.

[19] J. Whittle and J. Schumann. Generating Statechart Designs From Scenarios.

In International Conference on Software Engineering (ICSE 2000), Limerick,

Ireland, June 2000.

18


