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Abstract

We study bottom-up and top-down tree series transducers over a semiring A and denote the
tree series transformation classes computed by them by BOTt−ts(A) and TOPt−ts(A), respectively.
We present the inclusion diagram of the classes p-BOTn

t−ts(A), p-TOPn
t−ts(A), p-BOTn+1

t−ts(A), and
p-TOPn+1

t−ts(A) and prove its correctness, where A is a commutative izz-semiring (izz=idempotent,
zero-divisor free, and zero-sum free) and the pre9x p stands for polynomial. This inclusion
diagram implies the properness of the following four hierarchies:

p-TOPt−ts(A) ⊆ p-TOP2
t−ts(A) ⊆ p-TOP3

t−ts(A) ⊆ · · · ;
p-BOTt−ts(A) ⊆ p-BOT 2

t−ts(A) ⊆ p-BOT 3
t−ts(A) ⊆ · · · ;

p-TOPt−ts(A) ⊆ p-BOT 2
t−ts(A) ⊆ p-TOP3

t−ts(A) ⊆ p-BOT 4
t−ts(A) ⊆ · · · ;

p-BOTt−ts(A) ⊆ p-TOP2
t−ts(A) ⊆ p-BOT 3

t−ts(A) ⊆ p-TOP4
t−ts(A) ⊆ · · · ;

where the 9rst hierarchy generalizes the famous top-down tree transformation hierarchy of Engel-
friet (Math. Systems Theory 15 (1982) 92–125). As the second main result we prove that the 9rst
two hierarchies are proper even for arbitrary (i.e., not necessarily commutative) izz-semirings.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Bottom-up tree transducers and top-down tree transducers have been introduced in
[25] and [23,24], respectively. Roughly speaking, a tree transducer M is a 9nite state

� This research was supported by the Hungarian Scienti9c Foundation (OTKA) under Grant T 046686,
DAAD-PPP: “Formal Models of Syntax-Directed Semantics” and DAAD-IQN: “Rational Mobile Agents and
Systems of Agents”.

∗ Corresponding author. Tel.: +36-62-311-184; fax: +36-62-312-292.
E-mail addresses: fulop@inf.u-szeged.hu (Z. F&ul&op), gazdag@inf.u-szeged.hu (Z. Gazdag),

vogler@tcs.inf.tu-dresden.de (H. Vogler).

0304-3975/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.01.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81138929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:fulop@inf.u-szeged.hu
mailto:gazdag@inf.u-szeged.hu
mailto:vogler@tcs.inf.tu-dresden.de


388 Z. F,ul,op et al. / Theoretical Computer Science 314 (2004) 387– 429

machine which takes trees as input and produces trees as output. That is, M computes a
function (called: tree transformation) �M :T→P(T�) where T and T� are the sets of
trees over the input ranked alphabet  and the output ranked alphabet �, respectively.
Thus, tree transducers can be considered as a generalization of the usual sequential
machines. The classes of tree transformations computed by bottom-up and top-down
tree transducers are denoted by BOTtt and TOPtt , respectively.

Since their introduction, various contributions have been made to the theory of tree
transducers as, e.g., (de-)composition of classes of tree transformations [1,6,7], hierar-
chy results [1,8,12,13], and constructions of semigroups generated by tree transforma-
tion classes [14] with composition. Survey articles and books which collect (at least
parts of) the theory of tree transducers, are [5,15,17,18,21].

In this paper we consider hierarchy results. A tree transformation hierarchy is a
sequence C1⊆C2⊆ · · · such that, for every n¿1, Cn is a tree transformation class. If
Cn⊂Cn+1 for every n¿1, then the hierarchy is proper. Two obvious examples of tree
transformation hierarchies are the uniform top-down tree transformation hierarchy

TOPtt ⊆ TOP2
tt ⊆ TOP3

tt ⊆ · · ·
and the uniform bottom-up tree transformation hierarchy

BOT tt ⊆ BOT 2
tt ⊆ BOT 3

tt ⊆ · · ·

where Cn denotes the n-fold composition

n︷ ︸︸ ︷
C ◦ · · · ◦ C of the tree transformation class C.

Now we recall other tree transformation hierarchies which are relevant to this paper.
The 9rst such hierarchy result follows from Theorem 13 of [1] where the inclusions
TOPn

tt ⊆BOT n+1
tt and BOT n

tt ⊆TOPn+1
tt were proved for every n¿1. These hierarchies

are the alternating top-down tree transformation hierarchy

TOPtt ⊆ BOT 2
tt ⊆ TOP3

tt ⊆ BOT 4
tt ⊆ · · ·

and the alternating bottom-up tree transformation hierarchy

BOT tt ⊆ TOP2
tt ⊆ BOT 3

tt ⊆ TOP4
tt ⊆ · · · :

The next hierarchy result which we mention is based on Theorem 3.14 of [8]. It says
that the uniform top-down tree transformation hierarchy is proper. The last relevant
hierarchy result is Corollary 8.13 (iii) of [17] which states that the uniform bottom-up
tree transformation hierarchy is proper.

In [22], these hierarchy results were combined into an inclusion diagram (cf. Fig. 1).
An inclusion diagram of tree transformation classes is the Hasse-diagram of these
classes with respect to the inclusion ⊆ as partial order. That means, every inclusion
shown by the diagram is proper (or strict) and the unrelated classes are incomparable
with respect to the inclusion. However, the correctness of the diagram was not proved
in [22]. Since the aim of the present paper is the generalization of this diagram to tree
series transformation classes, we will prove its correctness.

Now we turn to (polynomial) tree series transducers. The investigation of tree series
transducers was started in [20], where a restricted class of top-down tree transduc-
ers, called nondeterministically simple, was generalized. The generalization from tree
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Fig. 1. The inclusion diagram of BOT n
tt , TOPn

tt , BOT n+1
tt , and TOPn+1

tt for every n¿1.

transducers to tree series transducers was carried out in a more systematic way in
[9,16], where the full classes of both bottom-up and top-down tree transducers were
generalized and the concept of tree series transducers was introduced.

Let us look at this concept in more detail. A tree series over a ranked alphabet �
and semiring A, introduced in [4], is a mapping ’ :T�→A, cf. also [2,3,19]. A tree
series ’ is polynomial if the set {s∈T� |’(s) 	= 0} is 9nite. Then, as special case, a
tree language L⊆T� can be thought of as a tree series over the boolean semiring. A
tree series transducer M computes a mapping �M :T→A〈〈T�〉〉, where A〈〈T�〉〉 denotes
the class of all tree series over � and A. As a special case, if M is polynomial,
then �M (s) is polynomial for every s∈T. The classes of tree series transformations
computed by bottom-up and by top-down tree series transducers over a semiring A are
denoted by BOTt−ts(A) and TOPt−ts(A), respectively. The corresponding classes for
the polynomial tree series transducers are denoted by p-BOTt−ts(A) and p-TOPt−ts(A),
respectively.

In this paper we generalize the inclusion diagram in Fig. 1 to a commutative
izz-semiring A and to the classes p-BOT n

t−ts(A), p-TOPn
t−ts(A), p-BOT n+1

t−ts (A), and
p-TOPn+1

t−ts (A) of polynomial tree series transformations. An izz-semiring A is an
idempotent, zero-divisor free, and zero-sum free semiring. This leads to the inclu-
sion diagram of the above classes which is obtained from the diagram of Fig. 1 by
replacing the tree transformation classes by the corresponding polynomial tree series
transformation classes (e.g. the class BOT n

tt is replaced by p-BOT n
t−ts(A)), cf. Fig. 2.

From this inclusion diagram it follows that the uniform polynomial top-down tree series
transformation hierarchy

p-TOPt−ts(A) ⊆ p-TOP2
t−ts(A) ⊆ p-TOP3

t−ts(A) ⊆ · · · ;
the uniform polynomial bottom-up tree series transformation hierarchy

p-BOT t−ts(A) ⊆ p-BOT 2
t−ts(A) ⊆ p-BOT 3

t−ts(A) ⊆ · · · ;
the alternating polynomial top-down tree series transformation hierarchy

p-TOPt−ts(A) ⊆ p-BOT 2
t−ts(A) ⊆ p-TOP3

t−ts(A) ⊆ p-BOT 4
t−ts(A) ⊆ · · · ;
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Fig. 2. The inclusion diagram of p-BOT n
t−ts(A), p-TOPn

t−ts(A), p-BOT n+1
t−ts (A), and p-TOPn+1

t−ts (A) for
every n¿1 and commutative izz-semiring A.

and the alternating polynomial bottom-up tree series transformation hierarchy

p-BOT t−ts(A) ⊆ p-TOP2
t−ts(A) ⊆ p-BOT 3

t−ts(A) ⊆ p-TOP4
t−ts(A) ⊆ · · ·

are proper. This is the 9rst main result of our paper.
As the second main result we prove that, for every (not necessarily commutative)

izz-semiring A, the uniform polynomial top-down tree series transformation hierar-
chy and the uniform polynomial bottom-up tree series transformation hierarchy are
proper.

The contents of the paper is as follows. In Section 2 we collect the necessary
basic de9nitions, notations, and propositions. In Section 3, we de9ne the concept of
a tree series transducer and those of its restricted versions which are necessary to
develop the results of the paper. In Section 4, we prove the correctness of the inclusion
diagram of tree transformation classes shown in Fig. 1. In Section 5, we prove the
two inclusions p-TOPn

t−ts(A)⊆p-BOT n+1
t−ts (A) and p-BOT n

t−ts(A)⊆p-TOPn+1
t−ts (A) from

which the alternating polynomial top-down and bottom-up tree series transformation
hierarchies follow. In Section 6, we obtain the inclusion diagram of the polynomial
tree series transformation classes p-BOT n

t−ts(A), p-TOPn
t−ts(A), p-BOT n+1

t−ts (A), and p-
TOPn+1

t−ts (A) for every commutative izz-semiring A. Also we prove here our second
main result.

2. Preliminaries

2.1. Sets, strings, and trees

The power set of a set H is denoted by P(H) and ∅ denotes the empty set. N is
the set of all nonnegative integers and, for every n∈N, we let [n] = {1; : : : ; n}.

Let %⊆F ×G be a relation. The fact that (a; b) ∈ % for some a∈F and b∈G is
also denoted by a%b. The composition of % and �⊆G×H is % ◦ �= {(a; c)∈F ×H |
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(∃b∈G) : a�b and b�c}. The concept of composition extends to classes of relations:
for two classes C1 and C2, we de9ne C1 ◦C2 = {% ◦ � | %∈C1 and �∈C2}. For n¿1,
the n-fold composition of a class C by itself is denoted by Cn.

If H is an alphabet, then H∗ denotes the set of strings over H ; the empty string
is denoted by �. For a string w∈H∗, |w| denotes its length and, for a symbol a∈H ,
|w|a denotes the number of occurrences of a in w.

Let  be a ranked alphabet. For every k¿0, we denote by (k) the set of all
symbols of  which have rank k. Moreover, let H be a set disjoint with . The set
of (8nite, labelled and ordered) trees over  indexed by H , denoted by T(H), is the
smallest subset T of (∪H ∪{(; )}∪ {; })∗, such that (i) H ⊆T and (ii) if �∈(k)

with k¿0 and s1; : : : ; sk ∈T , then �(s1; : : : ; sk)∈T . In case k = 0, we identify �( ) with
�. Moreover, T(∅) is denoted by T. It should be clear that T = ∅ if and only if
(0) = ∅. Since we are not interested in this particular case, we assume that (0) 	= ∅
for every ranked alphabet  appearing as input or output ranked alphabet of some tree
transducer in this paper.

We will need the set X = {x1; x2; : : :} of variable symbols. For every k¿0, we
de9ne Xk = {x1; : : : ; xk}, thus X0 = ∅. We use the variables to occur in trees, so we
will frequently consider the sets T(X ), T(Xk), etc. of trees where  is a ranked
alphabet.

Let Y be a 9nite subset of X and let t ∈T(Y ). The tree t is called linear in Y
(nondeleting in Y ) if, for every xi ∈Y , |t|xi61 (|t|xi¿1, respectively) holds.

We distinguish a subset T̂(Xk) of T(Xk) as follows. Let a tree t ∈T(Xk) be in
T̂(Xk) if for every 16i6k, |t|xi = 1 and, reading the leaves of t from left to right, the
variables occur in the order x1¡x2¡ · · ·¡xk . Note that elements of T̂(Xk) are linear
and nondeleting in Xk .

The tree substitution is de9ned as follows. Let t ∈T(Xk) for some ranked alphabet
 and k¿0. Moreover, let t1; : : : ; tk be also trees over (maybe other) ranked alphabets.
Then t[t1; : : : ; tk ] stands for the tree which is obtained from t by substituting, for every
16i6k, the tree ti for every occurrence of xi.

Let t ∈T(H). The linearization of t with respect to H , denoted by linH (t), is
de9ned as the unique pair (t′; w) where t′ ∈ T̂(Xk) and w = a1 : : : ak ∈H∗ such that
t = t′[a1; : : : ; ak ].

If Q is a unary ranked alphabet, i.e., the rank of every symbol in Q is 1, and Y is
a 9nite subset of X , then Q(Y ) stands for the set {q(xi) | q∈Q and xi ∈Y}.

In the rest of the paper , �, and & denote ranked alphabets.
By a tree language we mean a subset L of T. The class of recognizable tree

languages is denoted by REC. A tree transformation is a function � :T→P(T�).
The classes of all tree transformations computed by bottom-up tree transducers (by
top-down tree transducers) is denoted by BOTtt (TOPtt , respectively). The linear
subclasses of BOTtt and TOPtt are denoted by l-BOTtt and l-TOPtt , respectively. The
class of homomorphism tree transformations, which is a subclass of both BOTtt and
TOPtt , is denoted by HOM tt . For more terminology and details about tree languages,
tree transducers, and the composition theory of tree transformations the reader is advised
to consult [1,6,14,15,17,18]. Note, in [17] the expressions root-to-frontier and frontier-
to-root are used for top-down and for bottom-up, respectively.
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2.2. Semirings

A semiring is an algebraic structure A= (A;⊕;�; 0; 1) with two operations sum ⊕
and product � such that (A;⊕; 0) is a commutative monoid, (A;�; 1) is a monoid, and
the following laws hold: for every a; b; c∈A, (a⊕ b)� c= (a� c)⊕ (b� c), a� (b⊕
c) = (a� b)⊕ (a� c), and a� 0 = 0� a= 0. Whenever the operations (⊕ and �) and
the neutral elements (0 and 1) are clear from the context, then we denote the semiring
(A;⊕;�; 0; 1) just by A. We give some examples of semirings which, besides, will be
used also later.
• The boolean semiring is B= ({0; 1};∨;∧; 0; 1) with disjunction and conjunction as

sum and product, respectively.
• The semiring of natural numbers is Nat= (N;+; ·; 0; 1) with the obvious sum and

product operations.
• The tropical semiring is Trop= (N∪{∞};min;+;∞; 0) with min and + as sum

and product operations, respectively, where min{a;∞}= min{∞; a}
= a and ∞+ a= a +∞=∞.
• Let � be an alphabet. The semiring of 8nite formal languages (over �) is
Langf(�) = (Pf(�∗);∪; ·; ∅; {�}) where Pf(�∗) is the set of 9nite subsets of �∗

and · is the usual concatenation of string languages.
Next we de9ne some restrictions on semirings.
• A semiring A is commutative if, for every a; b∈A, the equation a� b= b� a

holds.
• A is idempotent if for every a∈A, a⊕ a= a holds.
• A is zero-divisor free if, for every a; b∈A, a� b= 0 implies a= 0 or b= 0.
• A is zero-sum free if, for every a; b∈A, a⊕ b= 0 implies a= 0 and b= 0.
• A is complete if it is possible to de9ne the sum for every family (ai | i∈ I) of

elements of A, where I is an index set, such that the following three conditions are
satis9ed:

(i)
∑

i∈∅ ai = 0,
∑

i∈{j} ai = aj,
∑

i∈{j; k} ai = aj ⊕ ak for j 	= k.
(ii)

∑
j∈J (

∑
i∈Ij ai) =

∑
i∈I ai, if

⋃
j∈J Ij = I and Il ∩ Ik = ∅ for l 	= k.

(iii)
∑

i∈I (c� ai) = c� (
∑

i∈I ai),
∑

i∈I (ai� c) = (
∑

i∈I ai)� c for every c∈A.
In the following table we summarize the properties of the semirings B, Nat, Trop,

and Langf(�).

Commutative Idempotent Zero-divisor free Zero-sum free Complete

B Yes Yes Yes Yes Yes
Nat Yes No Yes Yes No
Trop Yes Yes Yes Yes Yes
Langf(�) No Yes Yes Yes No

We will frequently refer to semirings which are idempotent, zero-divisor free and
zero-sum free. In order to avoid too long sentences, we call such semirings izz-
semirings. For example, B, Trop, and Langf(�) are izz-semirings.
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We write the product a� b of elements a; b∈A in the form ab and, in order to omit
parentheses, we 9x that the semiring multiplication has a higher binding priority than
the semiring addition. Also, in the sequel A denotes an arbitrary semiring.

For more details and a survey on the relevance of semirings and formal power series
to formal languages and automata cf. [19].

2.3. Tree series

A tree series (over � and A) is a mapping ’ :T�→A. For every t ∈T�, the element
’(t)∈A is called the coe?cient of t and it is also denoted by (’; t). The set of all
tree series over � and A is denoted by A〈〈T�〉〉.

Let ’∈A〈〈T�〉〉 be a tree series. We call ’ boolean if, for every t ∈T�, (’; t)∈{0; 1}
holds. If there is an a∈A such that for every t ∈T�, we have (’; t) = a, then ’ is a
constant and also denoted by ã. The constants 0̃ and 1̃ are boolean. The support of
the tree series ’ is de9ned as the set supp(’) = {t ∈T� | (’; t) 	= 0}. Moreover, ’ is
polynomial if supp(’) is 9nite and it is called a singleton if supp(’) is a singleton.
Hence every singleton is polynomial.

Let a∈A and ’∈A〈〈T�〉〉. We de9ne the tree series a’∈A〈〈T�〉〉 by letting, for every
t ∈T�, ((a’); t) = a(’; t).

Now we de9ne the addition in A〈〈T�〉〉 in the following way. Let I be an index
set and (’i ∈A〈〈T�〉〉 | i∈ I) a family of tree series. This family is called locally 8nite
if for every t ∈T�, the set {i∈ I | (’i; t) 	= 0} is 9nite. Now, if A is complete or the
family of tree series is locally 9nite, then we can de9ne the sum

∑
i∈I ’i ∈A〈〈T�〉〉

by ((
∑

i∈I ’i); t) =
∑

i∈I (’i; t) for every t ∈T�. Note that, if the family of tree series
is not locally 9nite, then, by the completeness of A, the in9nite sum

∑
i∈I (’i; t) is

de9ned.
It is easy to see that, for every tree series ’ :T�→A, the equation ’=

∑
t∈T� (’; t)t

holds, because the family ((’; t)t | t ∈T�) of singletons is locally 9nite.
In fact, (A〈〈T�〉〉;⊕; 0̃) is acommutative monoid (cf. [19, p. 615]) and if A is complete,

then this monoid is also complete. If A is complete, then the properties (i)-(ii) of the
de9nition of completeness of a semiring A carry over to a family (’i ∈A〈〈T�〉〉 | i∈ I)
of tree series as follows:

(i)
∑

i∈∅ ’i = 0̃,
∑

i∈{j} ’i =’j,
∑

i∈{j; k} ’i =’j ⊕’k for j 	= k.
(ii)

∑
j∈J (

∑
i∈Ij ’i) =

∑
i∈I ’i, if

⋃
j∈J Ij = I and Il ∩ Ik = ∅ for l 	= k.

We will need the following property as well. Let A be complete or I 9nite, a∈A,
’∈A〈〈T�〉〉 and (ai | i∈ I) is a family of elements of A. Then
(iii)

∑
i∈I (a’i) = a(

∑
i∈I ’i) and

∑
i∈I (ai’) = (

∑
i∈I ai)’.

The property can be proved easily from the de9nitions.
A tree-to-tree series transformation (for short: t-ts transformation) is a mapping

� :T→A〈〈T�〉〉. � is boolean (polynomial) if for every s ∈ T, the tree series �(s) is
boolean (polynomial).

For two tree series transformations �1 :T→A〈〈T�〉〉 and �2 :T�→A〈〈T&〉〉 such that A
is complete or �1 is polynomial, we de9ne the composition �1◦̃�2 :T→A〈〈T&〉〉 of �1

and �2 as follows. For every s∈T, let �1◦̃�2(s) =
∑

t∈T�
(�1(s); t)�2(t). Note that the
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composition of two t-ts transformations �1 and �2 is only de9ned if both are over the
same semiring A. Also note that ◦̃ is not a composition of relations, which is denoted
by ◦, cf. Section 2.1.

Let C1 and C2 be two t-ts transformation classes over the same semiring A. If
A is complete or C1 consists of polynomial t-ts transformations, then the composi-
tion of C1 and C2, denoted by C1 ◦̃C2, is the class {�1 ◦̃ �2 | �i ∈Ci; 16i62} of t-ts
transformations. For n¿1, the n-fold composition of a class C by itself is denoted
by Cn.

We will need a relation which “splits” a tree series over � and A into tree pieces
and thus can be used to relate tree transformations and t-ts transformations. This
is pickA;� = {(’; t) |’∈A〈〈T�〉〉 and t ∈ supp(’)}⊆A〈〈T�〉〉×T�. Note that here (’; t)
stands for a pair and not for the coeRcient of t in ’. The class of relations pickA;�
for a ranked alphabet � is denoted by PICKA.

If C is a class of t-ts transformations of type T→A〈〈T�〉〉, then C ◦ pickA;� is a class
of tree transformations of type T×T�. Hence if C is a class of t-ts transformations
over A, then C ◦PICKA is a class of tree transformations.

2.4. Hierarchies

The main subject of this paper are hierarchies. An hierarchy is a family (Cn | n¿1),
where, for every n¿1, Cn is a tree transformation class or a t-ts transformation class
such that Cn⊆Cn+1. If Cn⊂Cn+1 for every n¿1, then the hierarchy is proper. We will
also write an hierarchy in the form C1⊆C2⊆ · · · or C1⊂C2⊂ · · ·. If the Cn are tree
transformation (t-ts transformation) classes, then we call the hierarchy a tree transfor-
mation (t-ts transformation) hierarchy. A well-known example of a tree transformation
hierarchy is the hierarchy (TOPn | n¿1), which was shown to be proper in [8].

2.5. Substitution of tree series

Now we de9ne the substitution of tree series.

De�nition 2.1. Let l¿0, ’∈A〈〈T�(Xl)〉〉, and  1; : : : ;  l ∈A〈〈T�(H)〉〉 such that A is
complete or  1; : : : ;  l are polynomial. The substitution of ( 1; : : : ;  l) into ’ is the
tree series ’← ( 1; : : : ;  l) in A〈〈T�(H)〉〉, such that for every u∈T�(H):

(’← ( 1; : : : ;  l); u) =
∑

t∈T�(Xl)

t1 ;:::;tl∈T�(H)

u=t[t1 ;:::;tl]

(’; t)( 1; t1) : : : ( l; tl):

We note that this is an extension of De9nition 2.5 of [9] and De9nition 3.1 of
[16] because in those papers A was assumed to be complete. However, if  1; : : : ;  l

are polynomial, then the completeness of A is not needed, because the sum in the
right hand side of the de9ning equation is 9nite. On the contrary, if some  i is not
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polynomial, then completeness is needed. For instance, let l= 1, u= .∈�(0), (’; u) 	= 0,
and supp( 1) is in9nite, and then the sum is in9nite.

Next we give some properties of the tree series substitution which we will use in
the forthcoming sections.

Proposition 2.2 (Engelfriet et al. [9, Proposition 2.8]). Let A be a commutative
semiring, ’∈A〈〈T�(Xl)〉〉,  1; : : : ;  l ∈A〈〈T�(H)〉〉, and a; a1; : : : ; al ∈A. If A is complete
or  1; : : : ;  l are polynomial, then

a’← (a1 1; : : : ; al l) = aa1 : : : al(’← ( 1; : : : ;  l)):

The next property is that ←-substitution distributes over the sums in the
substitution.

Proposition 2.3 (Engelfriet et al. [9, Proposition 2.9]). Let F = (’i ∈A〈〈T�(Xl)〉〉 | i∈ I)
and,
for every 16j6l, let Gj = ( jk ∈A〈〈T�(H)〉〉 | k ∈ Ij) be families of tree series, where
I; I1; : : : ; Il are index sets. If (a) A is complete or (b) F;G1; : : : ; Gl are locally 8nite
and for every 16j6l and 16k6Ij the tree series  jk is polynomial, then(∑

i∈I
’i
)
←
( ∑

k∈I1
 1k ; : : : ;

∑
k∈Il

 lk
)

=
∑

i∈I;k1∈I1 ;:::; kl∈Il
’i ← ( 1k1 ; : : : ;  lkl):

Note that in the right-hand side of the above equation the priority of ← is higher
than that of the sum. We will assume this also in the rest of the paper.

The tree series substitution ← is not associative even for polynomial and boolean
tree series, cf. [11, p. 352]. On the other hand, the following associativity-like law for
singletons was proved in [9].

Proposition 2.4 (Engelfriet et al. [9, Proposition 2.10]). Let A be commutative, a; a1; : : : ;
ak ; b1; : : : ; bl ∈A, t ∈T�(Xk), u1; : : : ; uk ∈T�(Xl) and v1; : : : ; vl ∈T�(H).
Assume that there is a partition ({ji1; : : : ; jili} | 16i6k) of the set [l] such that, for

every 16i6k, ui ∈T�({xji1 ; : : : ; xjili }). Moreover, for every 16i6k, let u′i ∈T�(Xli) be
such that ui = u′i[x1← xji1 ; : : : ; xli← xjili ]. Then

(at ← (a1u1; : : : ; akuk))← (b1v1; : : : ; blvl)

= at ← (a1u′1 ← (bj11vj11 ; : : : ; bj1l1
vj1l1

); : : : ; aku′k ← (bjk1vjk1 ; : : : ; bjklk
vjklk )):

In this paper, we need Proposition 2.4 in a more general form in which the singleton
tree series b1v1; : : : ; blvl are substituted by the polynomial ones  1; : : :  l. Next we prove
this more general statement.

Proposition 2.5. Let A be commutative, a; a1; : : : ; ak ∈A, t ∈T�(Xk), u1; : : : ; uk ∈T�(Xl)
and  1; : : : ;  l ∈A〈〈T�(H)〉〉 polynomial tree series. Let, for every 16i6l,  i =∑mi

1=1 bi1vi1.
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Assume that there is a partition ({ji1; : : : ; jili} | 16i6k) of the set [l] such that, for
every 16i6k, ui ∈T�({xji1 ; : : : ; xjili }). Moreover, for every 16i6k, let u′i ∈T�(Xli) be
such that ui = u′i[x1← xji1 ; : : : ; xli← xjili ]. Then

(at ← (a1u1; : : : ; akuk))← ( 1; : : : ;  l)

= at ← (a1u′1 ← ( j11 ; : : : ;  j1l1
); : : : ; aku′k ← ( jk1 ; : : : ;  jklk )):

(Note that the trees ui with 16i6k are not required to be nondeleting or linear in
{xji1 ; : : : ; xjili }, hence u′i need not be nondeleting or linear in Xli . Moreover, note that
the trees u′i are not determined uniquely because the members {ji1; : : : ; jili} of the
partition are unordered. However, the statement is true for every u′i which satis9es
ui = u′i[x1← xji1 ; : : : ; xli← xjili ].)

Proof.

(at ← (a1u1; : : : ; akuk))← ( 1; : : : ;  l)

= (at ← (a1u1; : : : ; akuk))←
( ∑

1616m1

b11v11; : : : ;
∑

1616ml

bl1vl1
)

=
∑

16116m1 ;:::;161l6ml

(at ← (a1u1; : : : ; akuk))← (b111v111 ; : : : ; bl1lvl1l)

(by Proposition 2:3)

=
∑

16116m1 ;:::;161l6ml

at ← (a1u′1 ← (bj1111vj1111 ; : : : ; bj1l1 1l
vj1l1 1l

); : : : ; aku′k

← (bjk111vjk111 ; : : : ; bjklk 1l
vjklk 1l))

(by Proposition 2:4)

= at ←
(
a1u′1 ←

( ∑
1616mj11

bj111vj111; : : : ;
∑

1616mj1l1

bj1l1 1
vj1l1 1

)
; : : : ;

aku′k ←
( ∑

1616mjk1

bjk11vjk11; : : : ;
∑

1616mjklk

bjklk 1
vjklk 1

))
(by applying Proposition 2:3 twice)

= at ← (a1u′1 ← ( j11 ; : : : ;  j1l1
); : : : ; aku′k ← ( jk1 ; : : : ;  jklk ))

Corollary 2.6. Let A be commutative, t ∈T�(Xk), u1; : : : ; uk ∈T�(Xl) and  1; : : : ;  l ∈
A〈〈T�(H)〉〉 polynomial tree series. Assume that u1; : : : ; uk are linear in Xl and for
every 16j6l, there is exactly one 16i6k such that xj occurs in ui. Moreover, let
a; a1; : : : ; ak ∈A and, for every 16i6l, let  i =

∑mi
1=1 bi1vi1. Then

(at ← (a1u1; : : : ; akuk))← ( 1; : : : ;  l)

= at ← (a1u′1 ← ( j11 ; : : : ;  j1l1
); : : : ; aku′k ← ( jk1 ; : : : ;  jklk ));

where linXl(ui) = (u′i ; xji1 : : : xjili ).
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Proof. Since ({ji1; : : : ; jili} | 16i6k) is a partition of [l] and, for every 16i6k,
the inclusions ui ∈T�({xji1 ; : : : ; xjili }) and u′i ∈T�(Xli) hold and ui = u′i[x1← xji1 ; : : : ; xli
← xjili ], the statement follows from Proposition 2.5.

3. Tree series transducers

In this section, we de9ne the concept of tree series transducer. Tree series transducers
were introduced in [9] over a complete semiring A. Now we give a more general
de9nition in which the completeness can be replaced by another independent restriction,
called polynomial restriction. In the following, let Q be a unary ranked alphabet. Recall
that , �, and & are ranked alphabets and A is a semiring.

De�nition 3.1. A tree representation (over Q, , �, and A) is a family 2 = (2k | k¿0)
of mappings

2k :(k) → (A〈〈T�(X )〉〉)Q×(Q(Xk ))∗

such that only for 9nitely many indices (q; w)∈Q× (Q(Xk))∗, 2k(�)q;w 	= 0̃. Moreover,
for every (q; w)∈Q× (Q(Xk))∗, the membership 2k(�)q;w ∈A〈〈T�(Xl)〉〉 holds, where
l= |w|.

A tree representation is
• polynomial if for every k¿0, �∈(k), q∈Q, and w∈ (Q(Xk))∗, the tree series

2k(�)q;w is polynomial,
• bottom-up if the following additional condition holds. For every �∈(k), q∈Q, and

w∈ (Q(Xk))∗, if w 	= q1(x1) : : : qk(xk) for every q1; : : : ; qk ∈Q, then 2k(�)q;w = 0̃, and
• top-down if the following additional condition holds. For every �∈(k), q∈Q,

and w∈ (Q(Xk))∗ we have supp(2k(�)q;w)⊆ T̂�(Xl), where l= |w|.

De�nition 3.2. A tree series transducer (over A) is a tuple M = (Q;; �; A; Qd; 2)
where Q is a unary ranked alphabet (of states),  and � are ranked alphabets (of
input symbols and output symbols, resp.), A is a semiring, Qd⊆Q (the set of des-
ignated states), and 2 is a tree representation over Q, , �, and A such that A is
complete or 2 is polynomial.

If 2 is polynomial, then we call M polynomial.

With every tree series transducer M , we associate a family (�M;q | q∈Q) of t-ts
transformations �M;q :T→A〈〈T�〉〉 and the t-ts transformation �M :T→A〈〈T�〉〉 com-
puted by M . These are de9ned as follows.

De�nition 3.3. Let M = (Q;; �; A; Qd; 2) be a tree series transducer.
1. For every q∈Q, the t-ts transformation �M;q :T→A〈〈T�〉〉 is de9ned by induction

on its argument as follows:
• for every .∈(0), �M;q(.) = 20(.)q; � and
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• for every k¿1, �∈(k), and s1; : : : ; sk ∈T,

�M;q(�(s1; : : : ; sk))

=
∑

w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗
2k(�)q;w ← (�M;q1 (si1 ); : : : ; �M;ql(sil))

2. The t-ts transformation computed by M is the mapping �M :T→A〈〈T�〉〉 which is
de9ned by �M (s) =

∑
q∈Qd

�M;q(s) for every s∈T.

This de9nition is clear in the case that A is complete (cf. De9nition 2.1). In the
case that A is not complete but 2 is polynomial, the de9nition is correct if the tree
series �M;q1 (si1 ); : : : ; �M; ql(sil) are polynomial. In the next proposition, we prove that the
de9nition is correct also in this latter case.

Proposition 3.4. For every tree series transducer M = (Q;; �; A; Qd; 2) such that 2 is
polynomial, state q∈Q, and input tree s∈T, the tree series �M;q(s) is a polynomial
tree series.

Proof. We prove by induction on s. Let s= �(s1; : : : ; sk). By De9nition 3.3,

�M;q(�(s1; : : : ; sk))

=
∑

w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗
2k(�)q;w ← (�M;q1 (si1 ); : : : ; �M;ql(sil)):

Now 2k(�)q;w is polynomial because M is polynomial, and �M;q1 (si1 ); : : : ; �M; ql(sil)
are also polynomial by the induction hypothesis. Hence, by Proposition 2.7 of [9],
2k(�)q;w← (�M;q1 (si1 ); : : : ; �M; ql(sil)) is polynomial. Finally the sum of 9nitely many
polynomial tree series is also polynomial.

Let us show now that this de9nition coincides with De9nition 3.5 of [9] in the
case that A is complete. There the t-ts transformation which is computed by some
tree series transducers was de9ned on the basis of a -algebra and the corresponding
homomorphism from T to this algebra. Let us recall these two concepts brieSy.

De�nition 3.5. Let A be complete and 2 a tree representation. For every k¿0 and
�∈(k), 2 induces the mapping

2k(�) : (A〈〈T�〉〉)Q×1 × · · · × (A〈〈T�〉〉)Q×1 → (A〈〈T�〉〉)Q×1

with k arguments. The mapping 2k(�) is de9ned for every P1; : : : ; Pk ∈ (A〈〈T�〉〉)Q×1

and q∈Q as

2k(�)(P1; : : : ; Pk)q =
∑

w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗
2k(�)q;w ← ((Pi1 )q1 ; : : : ; (Pil)ql):

(Note that, for k = 0, (Q(Xk))∗ = {�}.)

Next we observe that the family of mappings (2k(�) | k¿0; �∈(k)) de9nes a -
algebra and we make explicit the initial homomorphism from T to that algebra.
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Observation 3.6. The system ((A〈〈T�〉〉)Q×1; (2k(�) | k¿0; �∈(k))) is a -algebra.
Thus there is a unique homomorphism

h2 :T → (A〈〈T�〉〉)Q×1

de9ned as follows: for every �∈(k), s1; : : : ; sk ∈T,

h2(�(s1; : : : ; sk)) = 2k(�)(h2(s1); : : : ; h2(sk)):

(Note that, for �∈(0), h2(�) = 20(�)() = 20(�).)

Now we can prove that for every tree series transducer M over a complete semiring
A, �M of De9nition 3.3 is the same as �M of De9nition 3.5 of [9]. Note that in [9] �M
was de9ned by �M (s) =

∑
q∈Qd

h2(s)q. Hence, it is suRcient to show that for every
input tree s∈T and state q∈Q, h2(s)q = �M;q(s) holds.

Proposition 3.7. For every tree series transducer M = (Q;; �; A; Qd; 2) such that A
is complete, and for every q∈Q and s∈T, the equality h2(s)q = �M;q(s) holds.

Proof. Let s= �(s1; : : : ; sk) for k¿0. Then

h2(�(s1; : : : ; sk))q
= 2k(�)(h2(s1); : : : ; h2(sk))q

(by Observation 3:6)

=
∑

w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗
2k(�)q;w ← (h2(si1 )q1 ; : : : ; h2(sil)ql)

(by De9nition 3:5)

=
∑

w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗
2k(�)q;w ← (�M;q1 (si1 ); : : : ; �M;ql(sil))

(by induction hypothesis)

= �M;q(�(s1; : : : ; sk))

(by De9nition 3:3):

Now we de9ne bottom-up and top-down tree series transducers.

De�nition 3.8. A tree series transducer M = (Q;; �; A; Qd; 2) is bottom-up if 2 is a
bottom-up tree representation. In this case the designated states are called 9nal states.

De�nition 3.9. A tree series transducer M = (Q;; �; A; Qd; 2) is top-down if 2 is a
top-down tree representation. In this case the designated states are called initial states.

Next we give an example of a bottom-up and of a top-down tree series transducer
and the tree series transformation computed by them.
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Example 3.10. Let M = (Q;; �; Nat; Qd; 2), where Q =Qd = {q}, = {6(1); .(0)} and
�= {�(2)

1 ; �(2)
2 ; .(0)

1 ; .(0)
2 }. Note that, since Q =Qd = {q}, for every input tree s∈T,

�M (s) = �M;q(s).
(a) We de9ne M to be a bottom-up tree series transducer by giving the tree represen-

tation 2 in the following way:

20(.)q;� = .1 + 2.2;
21(6)q;q(x1) = �1(x1; x1) + 2�2(x1; x1):

Intuitively, the cost of writing a symbol of index 1 to the output part is 1 while
that of writing a symbol of rank 2 is 2. We demonstrate this by computing the
value of �M;q on the input tree 6(.).

�M;q(6(.)) = 21(6)q;q(x1) ← (�M;q(.))

= (�1(x1; x1) + 2�2(x1; x1))← (.1 + 2.2)

= (�1(x1; x1)← .1) + (�1(x1; x1)← 2.2) + (2�2(x1; x1)← .1)

+ (2�2(x1; x1)← 2.2)

(by Proposition 2:3)

= �1(.1; .1) + 2�1(.2; .2) + 2�2(.1; .1) + 4�2(.2; .2):

(b) Now we de9ne the tree representation 2 in the way that M becomes a top-down
tree series transducer.

20(.)q;� = .1 + 2.2;
21(6)q;q(x1)q(x1) = �1(x1; x2) + 2�2(x1; x2):

The coeRcients 1 and 2 in the de9nition of 2 have the same meaning as in the
bottom-up case. Again, we compute �M;q(6(.)).

�M;q(6(.)) = 21(6)q;q(x1)q(x1) ← (�M;q(.); �M;q(.))

= (�1(x1; x2) + 2�2(x1; x2))← (.1 + 2.2; .1 + 2.2)

= (�1(x1; x2)← (.1; .1)) + (�1(x1; x2)← (.1; 2.2))

+ · · ·+ (2�2(x1; x2)← (2.2; 2.2))

(by Proposition 2:3)

= �1(.1; .1) + 2�1(.1; .2) + 2�1(.2; .1) + 4�1(.2; .2)

+2�2(.1; .1) + 4�2(.1; .2) + 4�2(.2; .1) + 8�2(.2; .2):

In both cases (a) and (b), M is polynomial. The diTerence between the two
results is due to the diTerence between the bottom-up and the top-down ways
of computation. In fact, a bottom-up tree (series) transducer 9rst computes the
translation t′ of a subtree s′ of the input tree s and then makes copies of the
resulting t′ in the output. On the contrary, a top-down tree (series) transducer 9rst
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makes some copies s′1; : : : ; s
′
n of s′ and then translates them into output subtrees

t′1; : : : ; t
′
n.

Next we de9ne some restricted versions of bottom-up and of top-down tree se-
ries transducers. These are the same restrictions which are imposed on tree series
transducers in [9] and on transducers (except for 1) in [1,6,17]. We begin with the
bottom-up case.

De�nition 3.11. Let M = (Q;; �; A; Qd; 2) be a bottom-up tree series transducer:
1. M is boolean if for every k¿0, �∈(k), q∈Q, w = q1(x1) : : : qk(xk)∈ (Q(Xk))∗ the

tree series 2k(�)q;w is boolean.
2. M is deterministic if for every k¿0, �∈(k) and sequence w = q1(x1) : : : qk(xk)∈

(Q(Xk))∗, there is at most one q∈Q such that 2k(�)q;w 	= 0̃, and if 2k(�)q;w 	= 0̃
then 2k(�)q;w is a singleton.

3. M is total if Qd =Q and for every k¿0, �∈(k) and sequence w = q1(x1) : : : qk(xk)
∈ (Q(Xk))∗, there is at least one q∈Q such that 2k(�)q;w 	= 0̃.

4. M is a bottom-up homomorphism tree series transducer if it is total deterministic
and the set Q of states is a singleton.

5. M is linear if for every k¿0, �∈(k), q∈Q, w = q1(x1) : : : qk(xk)∈ (Q(Xk))∗ and
t ∈ supp(2k(�)q;w), the tree t is linear in Xk .

6. M is a bottom-up 8nite state relabeling tree series transducer if for every k¿0,
�∈(k), q∈Q, w = q1(x1) : : : qk(xk)∈ (Q(Xk))∗ and t ∈ supp(2k(�)q;w) the tree t has
the form 7(x1; : : : ; xk) for some 7∈�(k).

Note that all bottom-up tree series transducers over B are boolean. Moreover, de-
terministic bottom-up tree series transducers are polynomial, hence bottom-up homo-
morphism tree series transducers are polynomial. Also bottom-up 9nite state relabeling
tree series transducers are polynomial.

The class of t-ts transformations computed by bottom-up tree series transducers
over a semiring A is denoted by BOTt−ts(A). The classes of t-ts transformations which
correspond to the syntactic subclasses 1–6 of De9nition 3.11 and to the polynomial
case are denoted by x-BOTt−ts(A) where x∈{b; d; t; h; l; r; p}, resp. If more than one
syntactic restriction holds, then BOTt−ts(A) is pre9xed by the string of correspond-
ing letters, e.g. dtl-BOTt−ts(A) denotes the class of t-ts transformations induced by
deterministic, total, and linear bottom-up tree series transducers over A.

Now we introduce the corresponding restrictions for top-down tree series transducers.

De�nition 3.12. Let M = (Q;; �; A; Qd; 2) be a top-down tree series transducer:
1. M is boolean if for every k¿0, �∈(k), q∈Q, w∈ (Q(Xk))∗ the tree series

2k(�)q;w is boolean.
2. M is deterministic if the following conditions hold. Qd is a singleton. For every

k¿0, �∈(k), q∈Q, there is at most one w∈ (Q(Xk))∗ such that 2k(�)q;w 	= 0̃, and
if 2k(�)q;w 	= 0̃ then 2k(�)q;w is a singleton.

3. M is total if for every k¿0, �∈(k), q∈Q, there is at least one w∈ (Q(Xk))∗

such that 2k(�)q;w 	= 0̃, and Qd 	= ∅.
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4. M is a top-down homomorphism tree series transducer if it is total deterministic
and the set Q of states is a singleton.

5. M is linear if for every k¿0, �∈(k), q∈Q, w∈ (Q(Xk))∗ such that 2k(�)q;w 	= 0̃,
the string w is linear in Xk .

6. M is a top-down 8nite state relabeling tree series transducer if for every k¿0,
�∈(k), q∈Q, w∈ (Q(Xk))∗, if 2k(�)q;w 	= 0̃, then w = q1(x1) : : : qk(xk) and every
t ∈ supp(2k(�)q;w) has the form 7(x1; : : : ; xk) for some 7∈�(k).

Again like in the bottom-up case, all top-down tree series transducers over B are
boolean. Moreover, deterministic top-down tree series transducers are polynomial, hence
top-down homomorphism tree series transducers are polynomial. Also, top-down 9nite
state relabeling tree series transducers are polynomial.

The class of t-ts transformations computed by top-down tree series transducers over
A is denoted by TOPt−ts(A). The classes of t-ts transformations which correspond to
the syntactic subclasses 1–6 of De9nition 3.12 and to the polynomial case are de-
noted by x-TOPt−ts(A) where x∈{b; d; t; h; l; r; p}, resp. For combinations of syntactic
restrictions we use a notation similar to that of the bottom-up case.

We use two more notations concerning t-ts transformations. In [9, Proposition 3.11],
it was shown that bottom-up and top-down 9nite state relabeling t-ts transformations
coincide, that is, for every semiring A, we have r-BOTt−ts(A) = r-TOPt−ts(A). Thus,
we can denote both classes by the symbol QRELt−ts(A).

Moreover, in [9, Corollary 4.15] it was shown that bottom-up and top-down boolean
homomorphism t-ts transformations coincide, that is, for every semiring A, the equa-
tion bh-BOTt−ts(A) = bh-TOPt−ts(A) holds. Thus, we denote both classes by the same
symbol b-HOM t−ts(A).

We 9nish this section by showing a property which we will need later.

Proposition 3.13. For every boolean homomorphism tree series transducer M =
({∗}, ; �; {∗}; A; 2) and input tree s∈T, the tree series �M;∗(s) is a singleton with
coe?cient 1.

Proof. The proof is similar to that of Proposition 3.4.

4. The tree transformation hierarchies

In this section, we recall and summarize the hierarchy results concerning tree trans-
formation classes which we will generalize to t-ts transformations over a semiring A
with certain properties in the next two sections. In fact we not only summarize but we
combine these hierarchy results into one inclusion diagram.

An inclusion diagram is a Hasse diagram of the considered tree transformation classes
with respect to the partial order ⊆. Hence, all inclusions shown by an inclusion diagram
are strict and the unrelated classes in the diagram are incomparable with respect to ⊆.
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For more details and an intensive discussion of inclusion diagrams the reader is referred
to Section 2.2 of [15] (also cf. [14]).

The hierarchy results transpire from diTerent works, mainly from [1,6,8,17]. The
inclusion diagram was shown in [22]; however, he did not give a proof. Therefore,
we reconstruct the proof. For the notation TOPtt , BOTtt and the nth power of a tree
transformation class see Section 2.1.

Proposition 4.1. For every n¿1, the diagram in Fig. 1 is the inclusion diagram of
the tree transformation classes BOT n

tt , TOPn
tt , BOT n+1

tt , and TOPn+1
tt .

Proof. It is obvious that, for every n¿1, TOPn
tt ⊆TOPn+1

tt and BOT n
tt ⊆BOT n+1

tt .
Moreover, it was shown in [1, Theorem 13] that, for every n¿1, TOPn

tt ⊆BOT n+1
tt

and BOT n
tt ⊆TOPn+1

tt .
Then, in [8, Theorem 3.14], it was shown that the top-down tree transformation

hierarchy is proper, i.e., that TOPn
tt ⊂TOPn+1

tt for every n¿1. In fact, he proved
a stronger statement namely that the hierarchy of tree transformation languages for
top-down tree transducers is proper, however, we do not consider tree transformation
languages in this paper.

In order to show the properness of the bottom-up tree transformation hierarchy,
we need some preparations. Based on the results of [8], it was obtained in Corollary
8.12 of Chapter IV of [17] that for every n¿1, TOPn

tt (REC)⊂BOT n+1
tt (REC)⊂

TOPn+1
tt (REC).

On the other hand, the inclusion BOTtt(REC)⊂TOPtt(REC) also holds, which
can be seen as follows. By (4,6) of Section 6 in [6], BOTtt = l-TOPtt ◦ HOM tt ,
by [24], l-TOPtt(REC) =REC , hence BOTtt(REC) =HOM tt(REC). Moreover, by
Theorem 3.2.5 of [10], HOM tt(REC)⊂TOPtt(REC), which veri9es that
BOTtt(REC)⊂TOPtt(REC).

Hence the following stronger statement is also true:

For every n¿1; BOT n
tt(REC) ⊂ TOPn

tt(REC) ⊂ BOT n+1
tt (REC): (∗)

From the above it easily follows that the bottom-up tree transformation hierarchy
is also proper, i.e., that BOT n

tt ⊂BOT n+1
tt for every n¿1. (The proof is by contra-

diction as follows. Assume BOT n
tt =BOT n+1

tt for some n¿1, then BOT n
tt(REC) =

BOT n+1
tt (REC), which contradicts to (∗).)

Now to show that the diagram in Fig. 1 is an inclusion diagram, it is suRcient to
prove that the classes BOT n

tt and TOPn
tt are incomparable with respect to inclusion for

every n¿1. We can prove again by contradiction.
(a) Assume that TOPn

tt ⊆BOT n
tt for some n¿1. Then, certainly, TOPn

tt (REC)⊆
BOT n

tt (REC) which contradicts to (∗).
(b) Now assume that BOT n

tt ⊆TOPn
tt for some n¿1. Then we can infer as follows:

BOT n
tt ⊆ TOPn

tt

⇒ (l-TOPtt ◦HOM tt)n ⊆ TOPn
tt

(since; by (4; 6) of Section 6 in [6]; BOT tt = l-TOPtt ◦HOM tt)
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⇒ (HOM tt ◦ l-TOPtt)n ◦HOM tt ⊆ HOM tt ◦ TOPn
tt

(composition with HOM tt from the left and using the

associativity of ◦)
⇒ TOPn

tt ◦HOM tt ⊆ HOM tt ◦ TOPn
tt

(since; by (3) of Section 6 in [6]; TOPtt = HOM tt ◦ l-TOPtt)

⇒ TOPn
tt ◦HOM tt ⊆ TOPn

tt

(since; by Lemma 3:11 of Chapter IV of [17];

HOM tt ◦ TOPtt ⊆ TOPtt)

⇒ TOPn
tt ◦HOM tt ◦ l-TOPtt ⊆ TOPn

tt ◦ l-TOPtt

⇒ TOPn+1
tt ⊆ (HOM tt ◦ l-TOPtt)n ◦ l-TOPtt

(since; by (3) of Section 6 in [6]; TOPtt = HOM tt ◦ l-TOPtt)

⇒ TOPn+1
tt ⊆ (HOM tt ◦ l-BOT tt)n ◦ l-BOT tt

(since; by (3) of Section 6 in [6]; l-TOPtt ⊆ l-BOT tt)

⇒ TOPn+1
tt ⊆ HOM tt ◦ (l-BOT tt ◦HOM tt)n−1 ◦ l-BOT tt ◦ l-BOT tt

(by the associativity of ◦)
⇒ TOPn+1

tt ⊆ HOM tt ◦ BOT n−1
tt ◦ l-BOT tt ◦ l-BOT tt

(since; by (4) on p: 229 of [6]; BOT tt = l-BOT tt ◦HOM tt)

⇒ TOPn+1
tt ⊆ HOM tt ◦ BOT n−1

tt ◦ l-BOT tt

(since; by Theorem 4:5(2) of [6]; l-BOT tt = l-BOT tt ◦ l-BOT tt)

⇒ TOPn+1
tt ⊆ BOT n+1

tt

Obviously, this again contradicts to (∗).

We observe that the diagram in Fig. 1 contains four fundamental tree transformation
hierarchies. Now we list them and give names to them in order to be able to speak
about them more easily:

TOPtt ⊆ TOP2
tt ⊆ TOP3

tt ⊆ · · · is the uniform top-down tree

transformation hierarchy;

TOPtt ⊆ BOT 2
tt ⊆ TOP3

tt ⊆ · · · is the alternating top-down tree

transformation hierarchy;

BOT tt ⊆ BOT 2
tt ⊆ BOT 3

tt ⊆ · · · is the uniform bottom-up tree

transformation hierarchy;

BOT tt ⊆ TOP2
tt ⊆ BOT 3

tt ⊆ · · · is the alternating bottom-up tree

transformation hierarchy:

We saw that each of them is proper.



Z. F,ul,op et al. / Theoretical Computer Science 314 (2004) 387– 429 405

In the next sections we will generalize (or: lift up) the inclusion diagram in Fig. 1
to the level of polynomial t-ts transformations over a commutative izz-semiring A. We
call the so-obtained hierarchies the uniform polynomial top-down t-ts transformation
hierarchy over A, alternating polynomial top-down t-ts transformation hierarchy over
A, and so on. We also show that the uniform polynomial top-down t-ts transforma-
tion hierarchy and the uniform polynomial bottom-up t-ts transformation hierarchy are
proper over an (not necessarily commutative) izz-semiring A.

5. The alternating bottom-up and top-down t-ts transformation hierarchies

In this section, we generalize the alternating bottom-up and top-down tree transfor-
mation hierarchies to polynomial t-ts transformation hierarchies over a commutative
semiring A.

First we introduce a notation. Let C(A) be a class of bottom-up or top-down t-ts
transformation classes over a semiring A and n¿1 an integer. From now on the n-fold
composition C(A)n of C(A) by itself (cf. Section 2.3) will be written as Cn(A).

The generalization amounts to prove that for every commutative semiring A and
n¿1, p-TOPn

t−ts(A)⊆p-BOT n+1
t−ts (A) and p-BOT n

t−ts(A)⊆p-TOPn+1
t−ts (A). Note that

this is the generalization of the inclusions TOPn
tt ⊆BOT n+1

tt and BOT n
tt ⊆TOPn+1

tt ,
which were proved in [1, Theorem 13].

We begin with showing the 9rst inclusion.

Theorem 5.1. For every commutative semiring A and n¿1, p-TOPn
t−ts(A)⊆

p-BOT n+1
t−ts (A).

Proof. We prove by induction on n. We only prove the induction step because its
proof includes the proof of the induction base n= 1.

p-TOPn
t−ts(A)

= p-TOPn−1
t−ts(A) ◦̃p-TOPt−ts(A)

⊆ p-TOPn−1
t−ts(A) ◦̃ b-HOM t−ts(A) ◦̃ lp-TOPt−ts(A)

(by Lemma 5:9 of [9])

⊆ p-BOT n
t−ts(A) ◦̃ b-HOM t−ts(A) ◦̃ lp-TOPt−ts(A)

(by I:H)

⊆ p-BOT n
t−ts(A) ◦̃ lp-TOPt−ts(A)

(by Corollary 5:5(2) of [9]; note that the lemma holds for an arbitrary
commutative semiring A which is not necessarily !-continuous as was
required in [9])
⊆ p-BOT n

t−ts(A) ◦̃ lp-BOT t−ts(A)

(by Theorem 5:14(2) of [16]; with the above note)
⊆ p-BOT n+1

t−ts(A):
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In fact, Theorem 5.14 (2) of [16] only states that l-TOPt−ts(A)⊆ l-BOTt−ts(A); how-
ever, it is not hard to check that the property polynomial is preserved under the con-
struction shown in that theorem.

We note that Theorem 5.1 also holds for tree series transducers which are not poly-
nomial, assuming that the semiring A is complete.

Next we generalize the inclusion BOT n
tt ⊆TOPn+1

tt to bottom-up and top-down t-ts
transformation classes over a commutative semiring A. We need a rather long prepara-
tion due to the following facts. We need and therefore prove that, for every commu-
tative semiring A, the inclusion b-HOM t−ts(A) ◦̃p-TOPt−ts(A)⊆p-TOPt−ts(A) holds.
In fact we already obtained a similar composition result in [9, Lemma 5.17] where
we proved that for every commutative semiring A, the inclusion bdt-TOPt−ts(A) ◦̃
d-TOPt−ts(A)⊆d-TOPt−ts(A) holds. The composition result we need now is, on the
one hand, more special because in the 9rst component we restrict to a boolean homo-
morphism, which is a special boolean, total and deterministic top-down tree series
transducer. On the other hand it is more general because in the second component
of the composition we allow to appear a polynomial top-down tree series transducer
rather than a deterministic one. Nevertheless, we follow the line of the proof of Lemma
5.17 [9].

First we de9ne the composition of a boolean homomorphism tree series transducer
and a polynomial top-down tree series transducer. In order to do so, we need the
following auxiliary concept.

De�nition 5.2. Let Q1 and Q2 be unary ranked alphabets (e.g. state sets of top-down
tree series transducers), k¿0, w∈ (Q1(Xk))∗ with |w|= l and let u∈ (Q2(Xl))∗. Then
u〈w〉 is the word in (Q(Xk))∗, where Q =Q2×Q1, which is obtained from u by re-
placing, for every q∈Q2 and xi ∈Xl, the expression q(xi) by 〈q; p〉(xj) where p(xj) is
the ith letter in w. (In more detail, if w =p1(xi1 ) : : : pl(xil), where p1; : : : ; pl ∈Q1 and
xi1 ; : : : ; xil ∈Xk , and u= q1(xj1 ) : : : qm(xjm), where q1; : : : ; qm ∈Q2 and xj1 ; : : : ; xjm ∈Xl,
then u〈w〉= 〈q1; pj1〉(xij1 ) : : : 〈qm; pjm〉(xijm ). In case k = 0, (Q1(Xk))∗ = {�} hence w = u
= u〈w〉= �. If Q1 is a singleton, i.e. Q1 = {∗}, then we identify u〈w〉 with q1(xij1 ) : : :
qm(xijm ).)

For instance, if w =p1(x2)p2(x1)p3(x2)p4(x1) and u= q1(x3)q2(x1)q3(x1)q4(x4), then

u〈w〉 = 〈q1; p3〉(x2)〈q2; p1〉(x2)〈q3; p1〉(x2)〈q4; p4〉(x1):

As another example, if Q1 = {∗} and w = ∗ (x2) ∗ (x1) ∗ (x2) ∗ (x1), then u〈w〉= q1(x2)
q2(x2)q3(x2)q4(x1).

De�nition 5.3. Let M1 = ({∗}; ; �; A; ∗; 21) be a boolean top-down homomorphism
tree series transducer and M2 = (Q;�; &; A; Qd; 22) a polynomial top-down tree series
transducer. The composition of M1 and M2 is the top-down tree series transducer
M = (Q;; &; A; Qd; 2) de9ned as follows.

Let mx = max{l | there are k¿0, �∈(k), t ∈ T̂�(Xl) such that t ∈ supp((21)k(�)∗; w)
where w∈ ({∗}(Xk))∗}. We extend 22 to 2′

2 by letting 2′
2 = ((2′

2)0; (22)k | k¿1), where
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(2′
2)0 : (�(0) ∪Xmx)→A〈〈T&∪Q(Xmx)〉〉Q×{�}. The mapping (2′

2)0 is de9ned such that, for
every .∈�(0), (2′

2)0(.)=(22)0(.) and, for every xi ∈Xmx and q∈Q, (2′
2)0(xi)q; � = q(xi).

In this extension the elements of Xmx and of Q(Xmx) are considered as 0-ary
symbols, therefore 2′

2 is a top-down tree representation over Q, �∪Xmx, &∪Q(Xmx),
and A. Let M ′

2 = (Q;�∪Xmx; &∪Q(Xmx); A; Qd; 2′
2). Note that M ′

2 is polynomial.
Now we can construct M as follows. The mapping 2 is de9ned in the following

way:

For every �∈(k) with k¿0,
for every w∈ ({∗}(Xk))∗ with l= |w|,

if (21)k(�)∗; w = t for a t ∈ T̂�(Xl),
then { for every q∈Q,

if �M ′
2 ;q(t) = a1 t̂1 ⊕ · · · ⊕ ar t̂r for some a1; : : : ; ar ∈A− {0}

and t̂1; : : : ; t̂r ∈T&(Q(Xl)), (by Proposition 3.4, �M ′
2 ;q(t) is polynomial)

then de9ne, for every 16j6r,
2k(�)q; vj =

∑
16i6r;vi = vj aiti,

where, for every 16:6r, linQ(Xl)(t̂:) = (t:; u:), t: ∈ T̂&(Xm:),
u: ∈ (Q(Xl))∗, |u:|=m: and v: = u:〈w〉 }.

Moreover, for every �∈(k) with k¿0, q∈Q and v∈ (Q(Xk))∗ not de9ned by the
above conditions, let 2k(�)q; v = 0̃.

Proposition 5.4. The composition of a boolean top-down homomorphism tree series
transducer M1 = ({∗}; ; �; A; ∗; 21) and polynomial top-down tree series transducer
M2 = (Q;�; &; A; Qd; 22) is polynomial.

Proof. Let M = (Q;; &; A; Qd; 2) be the composition of M1 and M2. By De9nition 5.3,
for every �∈(k) with k¿0, q∈Q and v∈ (Q(Xk))∗, 2k(�)q; v is 0̃ or polynomial.

Now the most diRcult part of the preparation follows. We prove that the compo-
sition of a boolean homomorphism tree series transducer M1 and a polynomial top-
down tree series transducer M2 induces the composition of the t-ts transformations �M1

and �M2 .

Lemma 5.5 (cf. Englefriet et al. [9, Lemma 5.17]). Let A be commutative. Let
M1 = ({∗}; ; �; A; ∗; 21) be a boolean top-down homomorphism tree series transducer,
M2 = (Q;�, &; A; Qd; 22) a polynomial top-down tree series transducer, and M = (Q;;
&; A; Qd; 2) the composition of M1 and M2. Then �M = �M1 ◦̃ �M2 .

Proof.

�M (s)

=
∑

q∈Qd

�M;q(s)

=+ ∑
q∈Qd

�M1 ;∗ ◦̃ �M2 ;q(s)
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=
∑

q∈Qd

( ∑
t∈T�

(�M1 ;∗(s); t)�M2 ;q(t)
)

=
∑
t∈T�

(�M1 ;∗(s); t)
( ∑

q∈Qd

�M2 ;q(t)
)

=
∑
t∈T�

(�M1 ;∗(s); t)�M2 (t)

= �M1 ;∗ ◦̃ �M2 (s)

= �M1 ◦̃ �M2 (s):

Hence, it is suRcient to show that the equation at + holds, i.e., for every s∈T

and q∈Q the equation �M;q(s) = �M1 ;∗ ◦̃ �M2 ; q(s) holds. We prove this by induction on
s. Let s= �(s1; : : : ; sk):

�M;q(s)

=
∑

v=q1(xe1 ):::qm(xem )
2k(�)q;v ← (�M;q1 (se1 ); : : : ; �M;qm(sem))

=
∑

v=q1(xe1 ):::qm(xem )
2k (�)q;v 
=0̃

2k(�)q;v ← (�M;q1 (se1 ); : : : ; �M;qm(sem))

=
∑

v=qj;1(xi:j ;1
):::qj;mj (xi:j ;mj

)

v∈{u1〈w〉;:::;ur〈w〉}

2k(�)q;v ← (�M;qj;1 (si:j ;1 ); : : : ; �M;qj;mj
(si:j ;mj

))

(where w = ∗(xi1 ) : : : ∗ (xil) ∈ ({∗}Xk)∗ such that (21)k(�)∗;w = t for

a t ∈ T̂�(Xl); �M ′
2 ;p(t) = a1 t̂1 ⊕ · · · ⊕ ar t̂r for some a1; : : : ; ar ∈ A− {0}

and t̂1; : : : ; t̂r ∈ T&(Q(Xl)); for every 1 6 j 6 r; linQ(Xl)(t̂j) = (tj; uj);

tj ∈ T̂&(Xmj); uj ∈ (Q(Xl))∗ with uj = qj;1(x:j;1) : : : qj;mj (x:j;mj))

=
∑

v=qj;1(xi:j ;1
):::qj;mj (xi:j ;mj

)

v∈{u1〈w〉;:::;ur〈w〉}

( ∑
16j6r
v=uj〈w〉

ajtj
)
← (�M;qj;1 (si:j ;1 ); : : : ; �M;qj;mj

(si:j ;mj
))

=
∑

v=qj;1(xi:j ;1
):::qj;mj (xi:j ;mj

)

v∈{u1〈w〉;:::;ur〈w〉}

( ∑
16j6r
v=uj〈w〉

ajtj ← (�M;qj;1 (si:j ;1 ); : : : ; �M;qj;mj
(si:j ;mj

))
)

(by Proposition 2:3)

=
∑

16j6r
uj〈w〉=qj;1(xi:j ;1

):::qj;mj (xi:j ;mj
)

ajtj ← (�M;qj;1 (si:j ;1 ); : : : ; �M;qj;mj
(si:j ;mj

))
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I:H:
=

∑
16j6r

uj〈w〉=qj;1(xi:j ;1
):::qj;mj (xi:j ;mj

)

ajtj← (�M1 ;∗ ◦̃ �M2 ;qj;1 (si:j ;1 ); : : : ; �M1 ;∗ ◦̃ �M2 ;qj;mj
(si:j ;mj

))

†
=
�M2 ;q((21)k(�)∗;w ← (�M1 ;∗(si1 ); : : : ; �M1 ;∗(sil)))

= �M2 ;q(�M1 ;∗(�(s1; : : : ; sk)))

= �M1 ;∗ ◦̃ �M2 ;q(�(s1; : : : ; sk)):

Next we prove the equation †. Actually, we prove a more general statement which
justi9es †. In fact, �M1 ;∗(si1 ); : : : ; �M1 ;∗(sil) are singletons with coeRcient 1 (cf. Propo-
sition 3.13). Also note that, since M1 is a boolean homomorphism, the tree series
(21)k(�)∗; w is also a singleton with coeRcient 1. Since the general statement is inde-
pendent of the above computation, we can freely reuse the notations which have been
used up to now.
Statement: For every l¿0, t ∈T�(Xl); s1; : : : ; sl ∈T� and q∈Q, the equation

�M2 ;q(t[s1; : : : ; sl]) =
r∑

j=1
ajtj ← (�M2 ;qj;1 (s:j;1); : : : ; �M2 ;qj;mj

(s:j;mj))

holds, where �M ′
2 ; q(t) = a1 t̂1 ⊕ · · · ⊕ ar t̂r for some a1; : : : ; ar ∈A − {0} and t̂1; : : : ; t̂r ∈

T&(Q (Xl)), and, for every 16j6r, linQ(Xl)(t̂j) = (tj; qj;1(x:j;1) : : : qj;mj (x:j;mj)),
tj ∈ T̂&(Xmj).

We prove by induction on the structure of t. If t = xj, then �M ′
2 ; q(t) = q(xj) and thus

both sides of the equation are equal to �M2 ;q(sj). Now let t = 7(v1; : : : ; vn) with n¿0.
Then

�M2 ;q(t[s1; : : : ; sl])

= �M2 ;q(7(v1[s1; : : : ; sl]; : : : ; vn[s1; : : : ; sl]))

=
∑

w=p1(xi1 ):::pd(xid )∈(Q(Xn))∗
(22)n(7)q;w ← (: : : ; �M2 ;pj (vij [s1; : : : ; sl]); : : :)

(for the sake of brevity; we consider only the jth element; 1 6 j 6 d)

I:H:
=

∑
w=p1(xi1 ):::pd(xid )∈(Q(Xn))∗

(22)n(7)q;w ←
(

: : : ;
(j)∑

ajuj ← (�M2 ;rj;1 (scj;1 ); : : : ; �M2 ;rj;mj
(scj;mj

)); : : :

)
;

where �M ′
2 ;pj (vij) =

(j)∑
ajûj; linQ(Xl)(ûj) = (uj; rj;1(xcj;1 ) : : : rj;mj (xcj;mj

));

note that uj ∈ T̂&(Xmj) and
(j)∑ 〈tree series〉j denotes a 9nite sum of

tree series of which the number depends on j and which we do not

detail in order to avoid unreadable indexes
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=
∑

w=p1(xi1 ):::pd(xid )∈(Q(Xn))∗

(1)∑ · · · (d)∑
(22)n(7)q;w ← (: : : ; ajuj ← (�M2 ;rj;1 (scj;1 ); : : : ; �M2 ;rj;mj

(scj;mj
)); : : :);

(by Proposition2:3)

=
∑

w=p1(xi1 ):::pd(xid )∈(Q(Xn))∗

(1)∑ · · · (d)∑
((22)n(7)q;w ← (: : : ; ajuj[x1 ← xzj−1+1; : : : ; xmj ← xzj ]; : : :))

← (�M2 ;r1;1 (sc1;1 ); : : : ; �M2 ;rd;md
(scd;md

))

(by Corollary 2:6; where zj = m1 + · · ·+ mj; 1 6 j 6 d;

note that by Proposition 3:4; �M2 ;r1;1 (sc1;1 ); : : : ; �M2 ;rd;md
(scd;md

)

are polynomials)

=
∑

w=p1(xi1 ):::pd(xid )∈(Q(Xn))∗

(1)∑ · · · (d)∑
(
(
∑

bu)← (: : : ; ajuj[x1 ← xzj−1+1; : : : ; xmj ← xzj ]; : : :)
)

← (�M2 ;r1;1 (sc1;1 ); : : : ; �M2 ;rd;md
(scd;md

))

where
∑

bu abbreviates the detailed explanation of (22)n(7)q;w

=
∑

w=p1(xi1 ):::pd(xid )∈(Q(Xn))∗

(1)∑ · · · (d)∑
∑

(bu← (: : : ; ajuj[x1 ← xzj−1+1; : : : ; xmj ← xzj ]; : : :))

← (�M2 ;r1;1 (sc1;1 ); : : : ; �M2 ;rd;md
(scd;md

))

(by Proposition 2:3 and the commutativity and associativity of

the sum of tree series)

=
∑

w=p1(xi1 ):::pd(xid )∈(Q(Xn))∗

(1)∑ · · · (d)∑
∑

(ba1 : : : adu[: : : ; uj[x1 ← xzj−1+1; : : : ; xmj ← xzj ]; : : :])

← (�M2 ;r1;1 (sc1;1 ); : : : ; �M2 ;rd;md
(scd;md

))

(by Proposition 2:2)

=
∑

w=p1(xi1 ):::pd(xid )∈(Q(Xn))∗

(1)∑ · · · (d)∑ ∑
ât ← (�M2 ;r1;1 (sc1;1 ); : : : ; �M2 ;rd;md

(scd;md
))

where â = ba1 : : : ad and t = u[: : : ; uj[x1 ← xzj−1+1; : : : ; xmj ← xzj ]; : : :]:

This is equal to the right-hand side of Statement because

�M ′
2 ;q(t)

= �M ′
2 ;q(7(v1; : : : ; vn))
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=
∑

w=p1(xi1 ):::pd(xid )∈(Q(Xn))∗
(22)n(7)q;w ← (: : : ; �M ′

2 ;pj (vij); : : :)

=
∑

w=p1(xi1 ):::pd(xid )∈(Q(Xn))∗

(1)∑ · · · (d)∑ ∑
ba1 : : : adu[: : : ; ûj ; : : :]

=
∑

w=p1(xi1 ):::pd(xid )∈(Q(Xn))∗

(1)∑ · · · (d)∑
∑

ba1 : : : adu[: : : ; uj[x1 ← rj;1(xcj;1 ); : : : ; xmj ← rj;mj (xcj;mj
)]; : : :]

and

linQ(Xl)(u[: : : ; ûj ; : : :])

= (u[: : : ; uj[x1 ← xzj−1+1; : : : ; xmj ← xzj ]; : : :]; r1;1(xc1;1 ) : : : rd;md(xcd;md
)):

Corollary 5.6. For every commutative semiring A, b-HOM t−ts(A) ◦̃p-TOPt−ts(A)
⊆p-TOPt−ts(A).

Proof. It immediately follows from Proposition 5.4 and Lemma 5.5.

Now we can generalize the inclusion BOT n
tt ⊆TOPn+1

tt in the following way.

Theorem 5.7. For every commutative semiring A and n¿1, p-BOT n
t−ts(A)⊆

p-TOPn+1
t−ts (A).

Proof. Again we prove by induction on n and only prove the induction step because
its proof includes the proof of the induction base n= 1.

p-BOT n
t−ts(A)

= p-BOT t−ts(A) ◦̃p-BOT n−1
t−ts(A)

⊆ p-BOT t−ts(A) ◦̃p-TOPn
t−ts(A)

(by I:H)

⊆ QRELt−ts(A) ◦̃ b-HOM t−ts(A) ◦̃p-TOPn
t−ts(A)

(by Lemma 5:6(1) of [9])

⊆ QRELt−ts(A) ◦̃p-TOPn
t−ts(A)

(by Corollary 5:6)

⊆ p-TOPt−ts(A) ◦̃p-TOPn
t−ts(A)

(by Proposition 3:11 of [9]; in fact this property

is true for every semiring)

= p-TOPn+1
t−ts(A):
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Theorem 5.8. For every commutative izz-semiring A, the following inclusions hold:

p-TOPt−ts(A) ⊆ p-BOT 2
t−ts(A) ⊆ p-TOP3

t−ts(A) ⊆ p-BOT 4
t−ts(A) ⊂ · · ·

and

p-BOT t−ts(A) ⊆ p-TOP2
t−ts(A) ⊆ p-BOT 3

t−ts(A) ⊆ p-TOP4
t−ts(A) ⊂ · · · :

Proof. The statement follows from Theorems 5.1 and 5.7.

These inclusions form the alternating polynomial top-down and bottom-up tree series
transformation hierarchies.

6. Lifting up the inclusion diagram of tree transformation classes

In this section, we lift up the whole inclusion diagram of tree transformation classes
in Fig. 1 to the level of polynomial t-ts transformations. In fact, we show that, for
every commutative izz-semiring A and n¿1, the diagram in Fig. 2 is the inclusion
diagram of the t-ts transformation classes p-BOT n

tt(A), p-TOPn
tt (A), p-BOT n+1

tt (A)
and p-TOPn+1

tt (A).
We have shown in Section 5 that for every commutative semiring A and n¿1,

p-TOPn
t−ts(A)⊆p-BOT n+1

t−ts (A) and p-BOT n
t−ts(A)⊆p-TOPn+1

t−ts (A). Moreover, for ev-
ery semiring A and n¿1, p-TOPn

t−ts(A)⊆p-TOPn+1
t−ts (A) and p-BOT n

t−ts(A)⊆
p-BOT n+1

t−ts (A).
Therefore, in order to show that the diagram in Fig. 2 is an inclusion diagram, it is

suRcient to prove that, for every izz-semiring A and n¿1, the classes p-BOT n
t−ts(A)

and p-TOPn
t−ts(A) are incomparable with respect to inclusion. We will prove the in-

comparability by lifting up the incomparability between BOT n
tt and TOPn

tt shown in
Proposition 4.1 to polynomial t-ts transformation classes over an izz-semiring A. For
this purpose, we prove a lift lemma (Lemma 6.19) which can be used to lift up the
incomparability relation between tree transformation classes to the incomparability re-
lation between polynomial t-ts transformation classes over an izz-semiring A.

From the fact that the diagram in Fig. 2 is an inclusion diagram for a commutative
izz-semiring A it follows that the four fundamental hierarchies, i.e., the uniform poly-
nomial top-down t-ts transformation hierarchy, the alternating polynomial top-down t-ts
transformation hierarchy, etc. are proper for every commutative izz-semiring A.

We also show that, out of the four, the uniform polynomial top-down t-ts transforma-
tion hierarchy and the uniform polynomial bottom-up t-ts transformation hierarchy are
also proper for every izz-semiring A. (Hence, the commutativity of A is not needed.)
We will do this in the way that we make a second lift lemma and a third lift lemma.
The second one is Lemma 6.22 which can lift up a strict inclusion between tree trans-
formation classes to the same strict inclusion between polynomial t-ts transformation
classes over B. The third lift lemma is Lemma 6.23 which can lift up a strict inclu-
sion between t-ts transformation classes over B to the same strict inclusion between
polynomial t-ts transformation classes over an izz-semiring A.
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Now we start to elaborate the lift lemmas, which needs a rather long preparation.

Lemma 6.1. If A is idempotent and M = (Q;; �; A; Qd; 2) is a boolean and poly-
nomial tree series transducer, then for every s∈T, the tree series �M (s) is
boolean.

Proof. By induction on the structure of s we show that, for every u∈T�, (�M (s); u)∈
{0; 1}. Let s= �(s1; : : : ; sk), then

(�M (s); u)

=
( ∑

q∈Qd

�M;q(�(s1; : : : ; sk)); u
)

(by De9nition 3:3(2))

=
( ∑

q∈Qd

∑
w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗

2k(�)q;w ← (�M;q1 (si1 ); : : : ; �M;ql(sil)); u
)

(by De9nition 3:3(1))

=
∑

q∈Qd

∑
w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗

(2k(�)q;w ← (�M;q1 (si1 ); : : : ; �M;ql(sil)); u)

(by the de9nition of the sum of tree series)

=
∑

q∈Qd

∑
w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗∑

t∈T�(Xl);

t1 ;:::;tl∈T�;

u=t[t1 ;:::;tl]

(2k(�)q;w; t)(�M;q1 (si1 ); t1) : : : (�M;ql(sil); tl)

(by De9nition 2:1):

Now M is boolean, hence (2l(�)q;w; t)∈{0; 1}. By induction hypothesis, (�M;q1 (si1 ); t1)
∈{0; 1}; : : : ; (�M;ql(sil); tl)∈{0; 1}, hence (2l(�)q;w; t)(�M;q1 (si1 ); t1) : : : (�M;ql(sil); tl)
∈{0; 1}. Since M is polynomial, only 9nitely many members of the form (2l(�)q;w; t)
(�M;q1 (si1 ); t1) : : : (�M;ql(sil); tl) are 1, cf. Proposition 3.4. Thus, since A is idempotent,
the result of the last sum in our computation is 0 or 1.

In the proof of the lift lemmas we will need to “booleanize” tree series, t-ts trans-
formations and tree series transducers over a semiring A. The booleanization of a tree
series ’ over A means to change the non zero coeRcients of ’ to 1 and it is based
on the extension of a signum function sgn over A to tree series over A. Then, the
booleanization of t-ts transformations is de9ned in terms of the booleanization of tree
series.

Now we formally give the de9nition of the signum function sgn over a semiring A
and generalize it to tree series and t-ts transformation over A.
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De�nition 6.2. 1. For a semiring A, the mapping sgnA :A→A is de9ned such that, for
every a∈A,

sgnA(a) =

{
0 if a = 0;

1 otherwise:

2. For every ranked alphabet �, we extend sgnA to a mapping of type A〈〈T�〉〉→
A 〈〈T�〉〉 by letting, for every ’∈A〈〈T�〉〉 and t∈T�, (sgnA(’); t)=sgnA((’; t)). Cer-
tainly sgnA(’) is a boolean tree series. We call sgnA(’) the signum frame of ’.

3. Finally, we extend sgnA to t-ts transformations. For a t-ts transformation � :T→
A〈〈T�〉〉, we de9ne the signum frame of � by sgnA(�) :T→A〈〈T�〉〉 by letting, for
every s∈T, sgnA(�)(s) = sgnA(�(s)). We call sgnA(�) the signum frame of a t-ts
transformation �.

In what follows we write sgn for sgnA provided A is clear from the context. More-
over, we omit the outside parenthesis in expressions of the form sgn((’; t)) and write
just sgn(’; t).

Proposition 6.3. If A is idempotent and zero-sum free, then for every a; b∈A,
sgn(a⊕ b) = sgn(a)⊕ sgn(b) holds.

Proof. The proof can be performed easily by a simple case analysis.

In the following, we prove several properties of the sgn function over tree series
and t-ts transformations. The 9rst one is that sgn distributes over 9nite sums of tree
series over an idempotent and zero-sum free semiring.

Proposition 6.4. If A is idempotent and zero-sum free, then, for every family
(’i | i∈ [n]) over A〈〈T�〉〉, the equality sgn(

∑
i∈[n] ’i) =

∑
i∈[n] sgn(’i) holds.

Proof. For every t ∈T�,( ∑
i∈[n]

sgn(’i); t
)

=
∑
i∈[n]

(sgn(’i); t)

(by the de9nition of sum of tree series)

=
∑
i∈[n]

sgn(’i; t)

(by De9nition 6:2)

= sgn
( ∑

i∈[n]
(’i; t)

)
(by Proposition 6:3)

= sgn
( ∑

i∈[n]
’i; t

)
(by the de9nition of sum of tree series)
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= (sgn
( ∑

i∈[n]
’i
)
; t)

(by De9nition 6:2):

Proposition 6.5. If A is zero-divisor free, then for every a; b∈A, sgn(ab) =
sgn(a) sgn(b) holds.

Proof. Again, it can be performed by a simple case analysis.

The next property is that sgn distributes over 9nite compositions of polynomial t-ts
transformations provided the underlying semiring is an izz-semiring.

Lemma 6.6. Assume the A is an izz-semiring. For every n¿2 and polynomial t-ts
transformations �i :Ti→A〈〈Ti+1〉〉 with 16i6n,

sgn(�1 ◦̃ · · · ◦̃ �n) = sgn(�1) ◦̃ · · · ◦̃ sgn(�n):

Proof. We prove by induction on n.
(i) Let n= 2, �1 :T→A〈〈T�〉〉 and �2 :T�→A〈〈T&〉〉. We show that, for every s∈T

and u∈T&, (sgn(�1 ◦̃ �2)(s); u) = (sgn(�1) ◦̃ sgn(�2)(s); u).

(sgn(�1 ◦̃ �2)(s); u)

= (sgn(�1 ◦̃ �2(s)); u)

(by De9nition 6:2(3))

= sgn(�1 ◦̃ �2(s); u)

(by De9nition 6:2(2))

= sgn
( ∑

t∈T�

(�1(s); t)�2(t); u
)

(by the de9nition of the composition of t-ts transformations)

= sgn
( ∑

t∈T�

((�1(s); t)�2(t); u)
)

(by the de9nition of sum of tree series)

= sgn
( ∑

t∈T�

(�1(s); t)(�2(t); u)
)

(by the de9nition of the product of an element of A

and a tree series over A)

=
∑
t∈T�

sgn((�1(s); t)(�2(t); u))

(Proposition 6:3 is extended to 9nitely many members

note that �1 and �2 are polynomial)

=
∑
t∈T�

sgn(�1(s); t)sgn(�2(t); u)

(by Proposition 6:5)
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=
∑
t∈T�

(sgn(�1(s)); t)(sgn(�2(t)); u)

=
∑
t∈T�

(sgn(�1)(s); t)(sgn(�2)(t); u)

(by De9nition 6:2)

=
∑
t∈T�

((sgn(�1)(s); t)sgn(�2)(t); u)

(by the de9nition of the product of an element of A

and a tree series over A)

=
( ∑

t∈T�

(sgn(�1)(s); t)sgn(�2)(t); u
)

(by the de9nition of sum of tree series)

= (sgn(�1) ◦̃ sgn(�2)(s); u)

(by the de9nition of the composition of t-ts transformations)

(ii) The induction step from n to n + 1 looks as follows.

sgn(�1 ◦̃ · · · ◦̃ �n+1)

= sgn(�1 ◦̃ · · · ◦̃ �n) ◦̃ sgn(�n+1):

(by case (i))

= sgn(�1) ◦̃ · · · ◦̃ sgn(�n+1)

(by induction hypothesis):

Now we extend the signum function to tree series transducers over a semiring A as
follows.

De�nition 6.7. Let M = (Q;; �; A; Qd; 2) be a tree series transducer. The signum frame
of M is the tree series transducer sgn(M) = (Q;; �; A; Qd; 1), where, for every k¿0,
�∈(k), q∈Q;w∈ (Q(Xk))∗, the equality 1k(�)q;w = sgn(2k(�)q;w) holds.

The “operation” sgn over tree series transducers has the following properties. The
tree series transducer sgn(M) is boolean. Moreover, if M is bottom-up, (top-down,
polynomial) then sgn(M) is also bottom-up, (top-down, polynomial).

Now we prove that the t-ts transformation induced by the signum frame of a poly-
nomial tree series transducer M over an izz-semiring is the signum frame of �M , i.e.,
of the t-ts transformation induced by M .

Lemma 6.8. Let A be an izz-semiring. Then, for every polynomial tree series trans-
ducer M = (Q;; �; A; Qd; 2), the equality sgn(�M ) = �sgn(M) holds.

Proof. Let sgn(M) = (Q;; �; A; Qd; 1). By Lemma 6.1, the tree series �sgn(M) is
boolean, hence, it is enough to show that, for every s∈T and u∈T�, (�sgn(M)(s); u) =
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1⇔ (sgn(�M )(s); u) = 1.

(�sgn(M)(s); u) = 1

⇔
( ∑

q∈Qd

�sgn(M);q(s); u
)

= 1

(by De9nition 3:3(2))

⇔ ∑
q∈Qd

(�sgn(M);q(s); u) = 1

(by the de9nition of sum of tree series)

⇔† ∑
q∈Qd

(sgn(�M;q)(s); u) = 1

(since; for every q ∈ Q; �sgn(M);q = sgn(�M;q); see below)

⇔ ∑
q∈Qd

(sgn(�M;q(s)); u) = 1

(by De9nition 6:2)

⇔
( ∑

q∈Qd

sgn(�M;q(s)); u
)

= 1

(by the de9nition of sum of tree series)

⇔
(
sgn
( ∑

q∈Qd

�M;q(s)
)
; u
)

= 1

(by Proposition 6:4)

⇔ (sgn(�M (s)); u) = 1

⇔ (sgn(�M )(s); u) = 1

(by De9nition 6:2):

Now we prove the equivalence marked by †, i.e., that for every q∈Q, �sgn(M); q =
sgn(�M;q) by induction on s. For this, let s= �(s1; : : : ; sl)∈T and u∈T�. Then

(�sgn(M);q(�(s1; : : : ; sl)); u) = 1

⇔
( ∑

w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗
1k(�)q;w ← (�sgn(M);q1 (si1 ); : : : ; �sgn(M);ql(sil)); u

)
= 1

(by De9nition 3:3(1))

⇔ ∑
w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗

(1k(�)q;w ← (�sgn(M);q1 (si1 ); : : : ; �sgn(M);ql(sil)); u) = 1

(by the de9nition of sum of tree series)

⇔ ∑
w=q1(xi1 ):::ql(xil )∈ (Q(Xk ))∗

∑
t∈T�(Xl)
t1 ;:::;tl∈T�;
u=t[t1 ;:::;tl]

(1k(�)q;w; t)(�sgn(M);q1 (si1 ); t1) : : : (�sgn(M);ql(sil); tl)=1

(by De9nition 2:1)
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⇔ ∑
w=q1(xi1 ):::ql(xil )∈ (Q(Xk ))∗

∑
t∈T�(Xl)
t1 ;:::;tl∈T�;
u=t[t1 ;:::;tl]

(1k(�)q;w; t)(sgn(�M;q1)(si1); t1) : : : (sgn(�M;ql)(sil); tl)=1

(by induction hypothesis)

⇔ ∑
w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗

∑
t∈T�(Xl)
t1 ;:::;tl∈T�;
u=t[t1 ;:::;tl]

(1k(�)q;w; t)(sgn(�M;q1 (si1)); t1) : : : (sgn(�M;ql(sil)); tl=1

(by De9nition 6:2)

⇔ ∃w = q1(xi1 ) : : : ql(xil) ∈ (Q(Xk))∗; t ∈ T�(Xl); t1; : : : ; tl ∈ T�

with t[t1; : : : ; tl] = u; such that

(1k(�)q;w; t)(sgn(�M;q1 (si1 )); t1) : : : (sgn(�M;ql(sil)); tl) = 1

(since 1k(�)q;w; sgn(�M;q1 (si1 )); : : : ; sgn(�M;ql(sil)) are boolean; M is

polynomial and A is idempotent)

⇔ ∃w = q1(xi1 ) : : : ql(xil) ∈ (Q(Xk))∗; t ∈ T�(Xl); t1; : : : ; tl ∈ T� with

t[t1; : : : ; tl] = u; such that

(1k(�)q;w; t) = 1; (sgn(�M;q1 (si1 )); t1) = 1; : : : ; (sgn(�M;ql(sil)); tl) = 1

(since 1k(�)q;w; sgn(�M;q1 (si1 )); : : : ; sgn(�M;ql(sil)) are boolean)

⇔ ∃w = q1(xi1 ) : : : ql(xil) ∈ (Q(Xk))∗; t ∈ T�(Xl); t1; : : : ; tl ∈ T� with

t[t1; : : : ; tl] = u; such that

(2k(�)q;w; t) 	= 0; (�M;q1 (si1 ); t1) 	= 0; : : : ; (�M;ql(sil); tl) 	= 0

(by De9nitions 6:2 and 6:7)

⇔ ∃w = q1(xi1 ) : : : ql(xil) ∈ (Q(Xk))∗; t ∈ T�(Xl); t1; : : : ; tl ∈ T� with

t[t1; : : : ; tl] = u; such that

(2k(�)q;w; t)(�M;q1 (si1 ); t1) : : : (�M;ql(sil); tl) 	= 0

(since A is zero-divisor free)

⇔ ∑
w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗

∑
t∈T�(Xl)
t1 ;:::;tl∈T�;
u=t[t1 ;:::;tl]

(2k(�)q;w; t)(�M;q1 (si1); t1); : : : ; (�M;ql(sil); tl)) 	=0

(since A is zero-sum free and M is polynomial)

⇔ ∑
w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗

(2k(�)q;w ← (�M;q1 (si1 ); : : : ; �M;ql(sil)); u) 	= 0

(by De9nition 2:1)

⇔
( ∑

w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗
2k(�)q;w ← (�M;q1 (si1 ); : : : ; �M;ql(sil)); u

)
	= 0

(by the de9nition of sum of tree series)
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⇔ (�M;q(�(s1; : : : ; sl)); u) 	= 0

(by De9nition 3:3(1))

⇔ (sgn(�M;q)(�(s1; : : : ; sl)); u) = 1

(by De9nition 6:2):

Now we prove the next lemma which will be one of the keys to prove our main
results. It states that if a boolean t-ts transformation � appears as the composition of n
(not necessarily boolean) t-ts transformations induced by polynomial bottom-up or top-
down tree series transducers over an izz-semiring A, then there are further n boolean
and polynomial tree series transducers over A such that the composition of the t-ts
transformations induced by them is �.

Lemma 6.9. Let A be an izz-semiring, � is a boolean t-ts transformation over A such
that �= �N1 ◦̃ · · · ◦̃ �Nn , where every Ni is either a bottom-up or a top-down polynomial
tree series transducer over A. Then there are boolean and polynomial bottom-up
or top-down tree series transducers M1; : : : ; Mn over A such that �= �M1 ◦̃ · · · ◦̃ �Mn .
Moreover, Ni and Mi have the same type, i.e., Ni is top-down if and only if Mi is
top-down.

Proof. We show that �= �sgn(N1) ◦̃ · · · ◦̃ �sgn(Nn).

� = sgn(�)

(since � is boolean)

= sgn(�N1 ◦̃ · · · ◦̃ �Nn)

= sgn(�N1 ) ◦̃ · · · ◦̃ sgn(�Nn)

(by Lemma 6:6; note that; by Proposition 3:4; �N1 ; : : : ; �Nn are polynomial)

= �sgn(N1) ◦̃ · · · ◦̃ �sgn(Nn)

(by Lemma 6:8):

Now sgn(N1); : : : ; sgn(Nn) are boolean and polynomial bottom-up or top-down tree
series transducers, the properties bottom-up and top-down are also preserved under
sgn. This proves our lemma.

Now a next part of the preparation follows. In this part, we consider tree series and
t-ts transformations over B as tree series and t-ts transformations over a semiring A by
identifying the two elements 0 and 1 of B with the additive and the multiplicative unit
elements 0A and 1A of A, respectively. This can be described by an embedding function
emA from B to A. First we de9ne the function em, then we show some properties which
we will need.

De�nition 6.10. Let (A;⊕;�; 0A; 1A) be a semiring. 1. The natural embedding of B
into A is the mapping emA : {0; 1} → A de9ned by emA(0) = 0A and emA(1) = 1A.
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2. For every ranked alphabet �, emA extends to a mapping of type B〈〈T�〉〉 → A〈〈T�〉〉
by letting, for every ’∈B〈〈T�〉〉 and t ∈T�, (emA(’); t) = emA((’; t)). We call emA(’)
the natural extension of ’ over A.

3. The natural extension of a t-ts transformation � : T → B〈〈T�〉〉 over a semiring A
is the t-ts transformation emA(�) :T → A〈〈T�〉〉 which satis9es the following condition:
for every s∈T, emA(�)(s) = emA(�(s)).

Note that, for every ’∈B〈〈T�〉〉 and semiring A, the tree series emA(’) is boolean
and supp(’) = supp(emA(’)) holds.

In what follows we abbreviate emA to em whenever A is clear from the context.
Moreover, we omit the outside parentheses in expressions of the form em((’; t)) and
write just em(’; t).

Proposition 6.11. Let em be the natural embedding into (A;⊕;�; 0A; 1A) and let b1; b2

∈{0; 1}. Then em(b1 ∧ b2) = em(b1)em(b2) and if A is idempotent, then em(b1 ∨ b2) =
em(b1)⊕ em(b2).

Proof. It can be performed by a simple case analysis.

The 9rst property we show is that em distributes over 9nite compositions of
polynomial t-ts transformations provided the underlying semiring is idempotent.

Lemma 6.12. If A is idempotent, then, for every n¿2 and polynomial t-ts
transformations �i :Ti→B〈〈Ti+1〉〉, 16i6n,

em(�1 ◦̃ · · · ◦̃ �n) = em(�1) ◦̃ · · · ◦̃ em(�n):

Proof. We prove by induction on n.
(i) Let n= 2, �1 :T→B〈〈T�〉〉 and �2 :T�→B〈〈T&〉〉. We prove that, for every s∈T

and u∈T&, the equality (em(�1 ◦̃ �2)(s); u) = (em(�1) ◦̃ em(�2)(s); u) holds.

(em(�1 ◦̃ �2)(s); u)

= (em(�1 ◦̃ �2(s)); u)

(by De9nition 6:10(3))

= em(�1 ◦̃ �2(s); u)

(by De9nition 6:10(2))

= em
( ∑

t∈T�

(�1(s); t) (�2(t); u)
)

(by standard arguments)

=
∑
t∈T�

em((�1(s); t) (�2(t); u))

(Proposition 6:11 is extended to a 9nite sum; note that �1 and �2

are polynomial)
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=
∑
t∈T�

em(�1(s); t) em(�2(t); u)

(by Proposition 6:11)

=
∑
t∈T�

(em(�1(s)); t) (em(�2(t)); u)

=
∑
t∈T�

(em(�1)(s); t) (em(�2)(t); u)

(by De9nition 6:10)

= (em(�1) ◦̃ em(�2)(s); u)

(by standard arguments):

(ii) Induction step from n to n + 1. It is left to the reader.

Next we show that em distributes over 9nite sums of tree series over an idempotent
semiring.

Proposition 6.13. Let (’i | i∈ [n]) be a family over B〈〈T�〉〉 and em the natural em-
bedding into an idempotent semiring A. Then em(

∑
i∈[n] ’i) =

∑
i∈[n] em(’i).

Proof. For every t ∈T�,

( ∑
i∈[n]

em(’i); t
)

=
∑
i∈[n]

(em(’i); t)

(by the de9nition of sum of tree series)

=
∑
i∈[n]

em(’i; t)

(by De9nition 6:10)

= em
( ∑

i∈[n]
(’i; t)

)
(by Proposition 6:11)

= em
( ∑

i∈[n]
’i; t

)
=
(
em
( ∑

i∈[n]
’i
)
; t
)

(by De9nition 6:10):

Next we show that em distributes over substitution of polynomial tree series over
an idempotent semiring.

Proposition 6.14. Let ’∈B〈〈T�(Xl)〉〉 and  1; : : : ;  l ∈B〈〈T�〉〉 be polynomial tree
series and em the natural embedding into an idempotent semiring A. Then

em(’← ( 1; : : : ;  l)) = em(’)← (em( 1); : : : ; em( l)):
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Proof. For every u∈T�,

em(’← ( 1; : : : ;  l); u)

= em


∑

t∈T�(Xl)

t1 ;:::;tl∈T�

u=t[t1 ;:::;tl]

(’; t)( 1; t1) : : : ( l; tl)


(by De9nition 2:1)

= em


∑

t∈supp(’)

∀16i6l:ti∈supp( i)

u=t[t1 ;:::;tl]

(’; t)( 1; t1) : : : ( l; tl)


=
∑

t∈supp(’)

∀16i6l:ti∈supp( i)

u=t[t1 ;:::;tl]

em((’; t)( 1; t1) : : : ( l; tl))

(Proposition 6:11 is generalized to 9nitely many members;

note that ’;  1; : : : ;  l are polynomial)

=
∑

t∈supp(’)

∀16i6l:ti∈supp( i)

u=t[t1 ;:::;tl]

em(’; t)em( 1; t1) : : : em( l; tl)

(by Proposition 6:11)

=
∑

t∈supp(em(’))

∀16i6l:ti∈supp(em( i))

u=t[t1 ;:::;tl]

em(’; t)em( 1; t1) : : : em( l; tl)

(because supp(’) = supp(em(’)) and supp( i) = supp(em( i))

=
∑

t∈supp(em(’))

∀16i6l:ti∈supp(em( i))

u=t[t1 ;:::;tl]

(em(’); t)(em( 1); t1) : : : (em( l); tl)

(by De9nition 6:10)

=
∑

t∈T�(Xl)

t1 ;:::;tl∈T�

u=t[t1 ;:::;tl]

(em(’); t)(em( 1); t1) : : : (em( l); tl)

= (em(’)← (em( 1); : : : ; em( l)); u):

Now we extend the concept of embedding to tree series transducers over B.
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De�nition 6.15. The tree series transducers M = (Q;; �;B; Qd; 2) and N =
(Q;; �; A; Qd; 1) are associated by embedding if 1 is de9ned in the following way.
For every k¿0; �∈(k); q∈Q;w∈ (Q(Xk))∗, let 1k(�)q;w = em(2k(�)q;w), where em is
the natural embedding into A.

Note that if M = (Q;; �;B; Qd; 2) and N = (Q;; �; A; Qd; 1) are associated by em-
bedding, then N is boolean. Moreover, M is bottom-up, (top-down, polynomial) if and
only if N is bottom-up, (top-down, polynomial).

Now we prove that the embedding of a tree series transducer M over B into an
idempotent semiring computes the embedding of the t-ts transformation �M .

Lemma 6.16. Let A be an idempotent semiring and let the tree series transducers
M = (Q;; �;B; Qd; 2) and N = (Q;; �; A; Qd; 1) be polynomial such that M and N
are associated by embedding. Then, �N = em(�M ).

Proof. Let s∈T. Then

�N (s) =
∑

q∈Qd

�N;q(s) (by De9nition 3:3)

=† ∑
q∈Qd

em(�M;q(s))

= em
( ∑

q∈Qd

�M;q(s)
)

(by Proposition 6:13)

= em(�M (s))

= em(�M )(s) (by standard arguments)

Now we prove the equation marked by †, i.e., that for every s∈T and q∈Q,
�N; q(s) = em(�M;q(s)) holds. To this end, let s= �(s1; : : : ; sk). Then

�N;q(�(s1; : : : ; sk))

=
∑

w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗
1k(�)q;w ← (�N;q1 (si1 ); : : : ; �N;ql(sil))

(by De9nition 3:3)

=
∑

w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗
em(2k(�)q;w)← (em(�M;q1 (si1 )); : : : ; em(�M;ql(sil)))

(by I:H: and the fact that M and N are associated by embedding)

=
∑

w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗
em(2k(�)q;w ← (�M;q1 (si1 ); : : : ; �M;ql(sil)))

(by Proposition 6:14; note that M is polynomial)

= em
( ∑

w=q1(xi1 ):::ql(xil )∈(Q(Xk ))∗
2k(�)q;w ← (�M;q1 (si1 ); : : : ; �M;ql(sil))

)
(by Proposition 6:13; note that 2k(�)q;w 	= 0̃ only for 9nitely many w

cf : De9nition 3:1)

= em(�M;q(�(s1; : : : ; sk))):
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Now we prepare to state our 9rst lift lemma.

Lemma 6.17. For every n¿2 and polynomial t-ts transformations �i :Ti→
B〈〈Ti+1〉〉, 16i6n,

(�1 ◦̃ · · · ◦̃ �n) ◦ pickB;n+1 = (�1 ◦ pickB;2 ) ◦ · · · ◦ (�n ◦ pickB;n+1):

Proof. We prove by induction on n:
(i) Let n= 2, �1 :T→B〈〈T�〉〉 and �2 :T�→B〈〈T&〉〉. Then

(s; t) ∈ (�1 ◦̃ �2) ◦ pickB;&
⇔ (∃s′ ∈ T�) : (�1(s); s′) = 1 and (�2(s′); t) = 1

⇔ (∃s′ ∈ T�) : (s; s′) ∈ �1 ◦ pickB;� and (s′; t) ∈ �2 ◦ pickB;&
⇔ (s; t) ∈ (�1 ◦ pickB;�) ◦ (�2 ◦ pickB;&)

(ii) The proof of the induction step is left to the reader.

Corollary 6.18. Let m¿1, Ci be either p-TOPt−ts or p-BOTt−ts for every 16i6m.
Then

(C1(B) ◦̃ · · · ◦̃Cm(B)) ◦ PICKB
= (C1(B) ◦ PICKB) ◦ · · · ◦ (Cm(B) ◦ PICKB):

Proof. The proof immediately follows from Lemma 6.17.

Now we state and prove our 9rst lift lemma, which lifts up an inequality from the
level of tree transformations to the level of tree series transformations. In the statement
of the lemma, by the type of a tree (series) transducer M we mean that M is either a
bottom-up or a top-down tree (series) transducer.

Lemma 6.19 (Lift lemma 1). Let A be an izz-semiring, let m; n¿1, Ci and Dj are
BOTtt or TOPtt and Ci and Dj are p-BOTt−ts or p-TOPt−ts such that Ci has the
same type as Ci and Dj has the same type as Dj for 16i6m and 16j6n.
If

C1 ◦ · · · ◦ Cm − D1 ◦ · · · ◦ Dn 	= ∅;

then also

C1(A) ◦̃ · · · ◦̃Cm(A)− D1(A) ◦̃ · · · ◦̃Dn(A) 	= ∅:

Proof. In fact, we prove that if

C1(A) ◦̃ · · · ◦̃Cm(A) ⊆ D1(A) ◦̃ · · · ◦̃Dn(A)
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then also

C1 ◦ · · · ◦ Cm ⊆ D1 ◦ · · · ◦ Dn:

We prove our statement in two main steps. In the 9rst main step, we show that the
inclusion

C1(B) ◦̃ · · · ◦̃Cm(B) ⊆ D1(B) ◦̃ · · · ◦̃Dn(B)

holds. To this end let us take polynomial bottom-up or top-down tree series transduc-
ers M1; : : : ; Mm over B and consider �= �M1 ◦̃ · · · ◦̃ �Mm . By Lemmas 6.12 and 6.16,
em(�) = �N1 ◦̃ · · · ◦̃ �Nm , where N1; : : : ; Nm are the polynomial bottom-up or top-down
tree series transducers over A which are associated with M1; : : : ; Mm by embedding,
respectively. Thus, em(�)∈C1(A) ◦̃ · · · ◦̃Cm(A) and thus, by our assumption, em(�)∈
D1(A) ◦̃ · · · ◦̃Dn(A). Now note that em(�) is boolean. Then, by Lemma 6.9, there
are boolean and polynomial bottom-up or top-down tree series transducers N 1; : : : ; Nn

over A such that em(�) = �N 1
◦̃ · · · ◦̃ �Nn

. Now let M 1; : : : ; Mn be bottom-up or top-down
tree series transducers over B such that M 1; : : : ; Mn are associated with N 1; : : : ; Nn by
embedding, respectively. Then, again by Lemma 6.16, �Ni

= em(�Mi
) for every 16i6n.

Thus em(�) = em(�M 1
) ◦̃ · · · ◦̃ em(�Mn

) and, by Lemma 6.12, em(�) = em(�M 1
◦̃ · · · ◦̃

�Mn
). From this �= �M 1

◦̃ · · · ◦̃ �Mn
follows, which implies that �∈D1(B) ◦̃ · · · ◦̃

Dn(B). This 9nishes the proof of the 9rst step.
In the second step we prove that C1 ◦ · · · ◦ Cm⊆D1 ◦ · · · ◦ Dn as follows:

C1 ◦ · · · ◦ Cm

= (C1(B) ◦ PICKB) ◦ · · · ◦ (Cm(B) ◦ PICKB)

(by Corollaries 4:7 and 4:14 of [9])

= (C1(B) ◦̃ · · · ◦̃Cm(B)) ◦ PICKB
(by Corollary 6:18)

⊆ (D1(B) ◦̃ · · · ◦̃Dn(B)) ◦ PICKB
(by the inclusion shown in the 9rst step)

= (D1(B) ◦ PICKB) ◦ · · · ◦ (Dn(B) ◦ PICKB)

(by Corollary 6:18)

= D1 ◦ · · · ◦ Dm

(by Corollaries 4:7 and 4:14 of [9]):

To prove that the diagram on Fig. 2 is an inclusion diagram, it remained to prove
the following incomparability result.

Theorem 6.20. For every izz-semiring A and n¿1, the classes p-BOTn
t−ts(A) and

p-TOPn
t−ts(A) are incomparable with respect to inclusion.
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Proof. First we prove that p-BOTn
t−ts(A) − p-TOPn

t−ts(A) 	= ∅. By Proposition 4.1,
BOTn

tt − TOPn
tt 	= ∅. Then by Lemma 6.19, p-BOTn

t−ts(A) − p-TOPn
t−ts(A) 	= ∅. In a

similar way we can prove that p-TOPn
t−ts(A)− p-BOTn

t−ts(A) 	= ∅.

Now we can lift up the inclusion diagram of tree transformation classes in Fig. 1 to
the polynomial t-ts transformation level in the following way.

Theorem 6.21. For every n¿1 and commutative izz-semiring A, the diagram in Fig. 2
is the inclusion diagram of p-BOTn

tt (A), p-TOPn
tt(A), p-BOTn+1

tt (A) and p-TOPn+1
tt (A).

Proof. For every semiring A and n¿1, p-TOPn
t−ts(A)⊆p-TOPn+1

t−ts(A) and p-BOTn
t−ts(A)

⊆p-BOTn+1
t−ts(A). By Theorems 5.1 and 5.7, for every commutative semiring A and

n¿1, p-TOPn
t−ts(A)⊆p-BOTn+1

t−ts(A) and p-BOTn
t−ts(A)⊆p-TOPn+1

t−ts(A). Thus our theo-
rem follows from Theorem 6.20.

Now we prove our second lift lemma which says that if a proper inclusion holds
between two compositions of tree transformation classes, then the same strict inclusion
holds between the corresponding compositions of polynomial t-ts transformation classes
over B.

Lemma 6.22 (Lift lemma 2). Let m; n¿1, Ci and Dj are BOTtt or TOPtt and Ci and
Dj are p-BOTt−ts or p-TOPt−ts such that Ci has the same type as Ci and Dj has the
same type as Dj for 16i6m and 16j6n.
If

C1 ◦ · · · ◦ Cm ⊂ D1 ◦ · · · ◦ Dn;

then

C1(B) ◦̃ · · · ◦̃Cm(B) ⊂ D1(B) ◦̃ · · · ◦̃Dn(B):

Proof. First we observe the following fact. If C(B) is a class of t-ts transforma-
tions over B, then there is a bijection between C(B) and the tree transformation class
C(B) ◦ PICKB. In fact, the mapping f :C(B)→C(B) ◦ PICKB de9ned as follows is
a bijection: for a t-ts transformation � :T→B〈〈T�〉〉, let f(�) = � ◦ pickB; �.

Now since both C1(B) ◦̃ · · · ◦̃Cm(B) and D1(B) ◦̃ · · · ◦̃Dn(B) are classes of t-ts
transformations over B, it is suRcient to show that

(C1(B) ◦̃ · · · ◦̃Cm(B)) ◦ PICKB ⊂ (D1(B) ◦̃ · · · ◦̃Dn(B)) ◦ PICKB:

This can be seen as follows:

(C1(B) ◦̃ · · · ◦̃Cm(B)) ◦ PICKB
= (C1(B) ◦ PICKB) ◦ · · · ◦ (Cm(B) ◦ PICKB)

(by Corollary 6:18)
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= C1 ◦ · · · ◦ Cm

(by Corollaries 4:7 and 4:11 of [9])

⊂ D1 ◦ · · · ◦ Dn

(by our assumption)

= (D1(B) ◦ PICKB) ◦ · · · ◦ (Dn(B) ◦ PICKB)

(by Corollaries 4:7 and 4:11 of [9])

= (D1(B) ◦̃ · · · ◦̃Dn(B)) ◦ PICKB
(by Corollary 6:18):

Now we prove the third lift lemma, which says that if an inclusion holds for two
compositions of polynomial t-ts transformation classes over an izz-semiring A and the
proper version of the same inclusion holds for the same two compositions of the same
t-ts transformation classes over B, then the 9rst mentioned inclusion over A is also
proper.

Lemma 6.23 (Lift lemma 3). Let A be an izz-semiring. Assume that the two inclu-
sions:
(1) C1(A) ◦̃ · · · ◦̃Cm(A) ⊆ D1(A) ◦̃ · · · ◦̃Dn(A) and
(2) C1(B) ◦̃ · · · ◦̃Cm(B) ⊂ D1(B) ◦̃ · · · ◦̃Dn(B)
hold, where Ci and Dj are either p-TOPt−ts or p-BOTt−ts for 16i6m and 16j6n.

Then also

C1(A) ◦̃ · · · ◦̃Cm(A) ⊂ D1(A) ◦̃ · · · ◦̃Dn(A):

Proof. By our assumption (2), there are polynomial bottom-up or top-down tree
series transducers M1; : : : ; Mn over B such that �= �M1 ◦̃ · · · ◦̃ �Mn and � =∈C1(B) ◦̃
· · · ◦̃Cm(B). By Lemma 6.12, em(�) = em(�M1 ) ◦̃ · · · ◦̃ em(�Mn). Now consider the bottom-
up or top-down tree series transducers N1; : : : ; Nn over A which are associated with
M1; : : : ; Mn by embedding, respectively. By Lemma 6.16, �Ni = em(�Mi) for every
16i6n. Note that the Ni are boolean. Thus, em(�) = �N1 ◦̃ · · · ◦̃ �Nn hence we get
em(�)∈D1(A) ◦̃ · · · ◦̃Dn(A). We show that em(�) =∈C1(A) ◦̃ · · · ◦̃Cm(A).

On the contrary, assume that em(�)∈C1(A) ◦̃ · · · ◦̃Cm(A), note that em(�) is
boolean. Then, by Lemma 6.9, there are boolean and polynomial bottom-up or top-
down tree series transducers N 1; : : : ; Nm over A such that em(�) = �N 1

◦̃ · · · ◦̃ �Nm
. Now

let M 1; : : : ; Mm be bottom-up or top-down tree series transducers over B such that
M 1; : : : ; Mm are associated with N 1; : : : ; Nm by embedding. Then, again by
Lemma 6.16, �Ni

= em(�Mi
) for every 16i6m. Thus em(�) = em(�M 1

) ◦̃ · · · ◦̃ em(�Mm
)

and, by Lemma 6.12, em(�) = em(�M 1
◦̃ · · · ◦̃ �Mm

). From this �= �M 1
◦̃ · · · ◦̃ �Mm

follows,
which implies that �∈C1(B) ◦̃ · · · ◦̃Cm(B). A contradiction, hence em(�) =∈C1(A) ◦̃
· · · ◦̃Cm(A).

Now we can prove that the uniform top-down and the uniform bottom-up t-ts
transformation hierarchies are proper for every (not necessarily commutative) izz-
semiring A.
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Theorem 6.24. For every izz-semiring A and n¿1, p-BOTn
t−ts(A)⊂p-BOTn+1

t−ts(A) and
p-TOPn

t−ts(A)⊂p-TOPn+1
t−ts(A).

Proof. We prove only the bottom-up case because the top-down one can be han-
dled in the same way. Obviously, for every semiring A, p-BOTn

t−ts(A)⊆p-BOTn+1
t−ts(A).

Moreover, by Proposition 4.1, BOTn
tt ⊂BOTn+1

tt , which, by Lemma 6.22, implies that
p-BOTn

t−ts(B)⊂p-BOTn+1
t−ts(B). Then it follows from Lemma 6.23 that, for every izz-

semiring A and n¿1, p-BOTn
t−ts(A)⊂p-BOTn+1

t−ts(A).

Corollary 6.25. The uniform polynomial bottom-up and the uniform polynomial top-
down t-ts transformation hierarchies over every izz-semiring A are proper.

We note that, for every ranked alphabet �, Langf(�) is a natural example of an
izz-semiring which is not commutative (and not complete either). Another example of
a semiring with these properties is the semiring consisting of the 2× 2 0-matrix over
B and all 2× 2-matrices M over B such that M1;1 = 1.

For the sake of completeness, we state the following result about the alternating t-ts
transformation hierarchies.

Corollary 6.26. The alternating polynomial bottom-up and the alternating polynomial
top-down t-ts transformation hierarchies over every commutative izz-semiring A are
proper.

Proof. It follows immediately from Theorem 6.21.
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