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Abstract

A transitive triple, (a,b,c), is defined to be the set {(a,b),(b,c),(a,c)} of ordered pairs. A
directed triple system of order v, DTS(v), is a pair (D, f}), where D is a set of v points and f
is a collection of transitive triples of pairwise distinct points of D such that any ordered pair
of distinct points of D is contained in precisely one transitive triple of . An antiautomorphism
of a directed triple system, (D, f3), is a permutation of D which maps f to !, where f=! =
{(¢,b,a)|(a,b,c) € p}. In this paper we complete the necessary and sufficient conditions for the
existence of a directed triple system of order v admitting an antiautomorphism consisting of two
cycles.
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1. Introduction

A Steiner triple system of order v, STS(v), is a pair (S, f5), where S is a set of v
points and f§ is a collection of 3-element subsets of S, called blocks, such that any pair
of distinct points of S is contained in precisely one block of . Kirkman [8] showed
that there is an STS(v) if and only if v =1 or 3 (mod 6) or v =0.

An automorphism of (S, ) is a permutation of S which maps f to itself. An au-
tomorphism, o, of (S, f) is called cyclic if the permutation defined by o consists of
a single cycle of length v. Peltesohn [12] proved that an STS(v) having a cyclic au-
tomorphism exists if and only if v = 1 or 3 (mod 6) and v # 9. An automorphism,
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o, of (S,f) is called bicyclic if the permutation defined by o consists of two cycles.
Calahan-Zijlstra and Gardner [1] have shown that there exists an STS(v) admitting a
bicyclic automorphism having cycles of length M and N, with 1 < M < N, if and only
if M =1 or 3 (mod 6),M #9, M|N, and M + N =1 or 3 (mod 6).

A transitive triple, (a,b,c), is defined to be the set {(a,b),(b,c),(a,c)} of ordered
pairs. A directed triple system of order v, DTS(v), is a pair (D, f}), where D is a
set of v points and f is a collection of transitive triples of pairwise distinct points of
D, called triples, such that any ordered pair of distinct points of D is contained in
precisely one element of . Hung and Mendelsohn [6] have shown that necessary and
sufficient conditions for the existence of a DTS(v) are that v =0 or 1 (mod 3).

For a DTS(v),(D, B), we define p~! by B~ ={(c,b,a)|(a,b,c) € B}. Then (D, p~")
is a DTS(v) and is called the converse of (D, ). A DTS(v) which is isomorphic to its
converse is said to be self-converse. Kang et al. [7] have shown that a self-converse
DTS(v) exists if and only if v = 0 or 1 (mod 3) and v # 6. An automorphism of
(D, f) is a permutation of D which maps f to itself. A DTS(v) is called cyclic if there
is an automorphism consisting of a single cycle of order v. Colbourn and Colbourn
have shown that a cyclic DTS(v) exists if and only if v = 1,4, or 7 (mod 12) [5]. An
antiautomorphism of (D, ) is a permutation of D which maps f to f~'. Clearly, a
DTS(v) is self-converse if and only if it admits an antiautomorphism.

An automorphism, o, on a DTS(v) is called d-cyclic if the permutation defined by o
consists of a single cycle of length d and v — d fixed points. Necessary and sufficient
conditions for the existence of a DTS(v) admitting a d-cyclic automorphism have been
given by Micale and Pennisi [10]. An automorphism, o, on a DTS(v) is called f~bicyclic
if the permutation defined by o consists of two cycles each of length N = (v — f)/2
and f fixed points. Micale and Pennisi [9] have given conditions for the existence of
f-bicyclic directed triple systems.

An antiautomorphism, ¢, on a DTS(v) is called d-cyclic if the permutation defined by
o consists of a single cycle of length d and v—d fixed points. Necessary and sufficient
conditions for the existence of a DTS(v) admitting a d-cyclic antiautomorphism have
been given by Carnes et al. [2]. We call an antiautomorphism, «, on a DTS(v) f-bicyclic
if the permutation defined by o consists of two cycles each of length N = (v — f)/2
and f fixed points. A bicyclic antiautomorphism of a DTS(v) is an antiautomorphism,
o, which consists of two cycles of length M and N respectively, where v =M + N.
Carnes et al. [4] have shown that a necessary condition for a DTS(v) to admit a
bicyclic antiautomorphism with cycles of length M and N, 1 <M < N, is that M|N.
Carnes, Dye, and Reed gave necessary and sufficient conditions for the case where
N =M [3], and for the case where N = 2M [4]. In this paper we consider the case
where N = kM, k > 2.

2. Preliminaries

If K is the length of a cycle, K € {M,N}, we let the cycles be (0;,1;,2;,...,(K —
1);),i€{0,1}. Let A={0,1,2,...,(K — 1)}. We shall use all additions modulo K in
the triples. For a;,b;,cr € D,i,j,k €{0,1},(a;,bj,cr) € f, let the orbit of (a;,b;,ci) be
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{{(a+ 1), (b+ 1), (c+ )| teAteven} U{((c+ 1), (b+1);,(a+ 1))t A todd}.
Clearly the orbits of the elements of f yield a partition of f.

We say that a collection of triples, B,_is a collection of base triples of a DTS(v)
under o if the orbits of the triples of f produce f and exactly one triple of each
orbit occurs in f. Also, we say that the reverse of the transitive triple (a,b,c¢) is the
transitive triple (¢, b, a).

Let (S, ) be an STS(v). Let f={(a,b,¢),(c,b,a)|{a,b,c} € f'}. Then (S, B) is called
the corresponding DTS(v), and the identity map on the point set is an antiautomor-
phism. This yields a self-converse DTS(v) for v =1 or 3 (mod 6). For v = 1 (mod 6)
the cyclic STS(v) from Peltesohn’s constructions [12] has no orbit of length less than
v, hence the corresponding DTS(v) admits a cyclic antiautomorphism.

In the constructions of the base triples, we use the following systems. An (4, n)-system
is a collection of ordered pairs (a,, b,) for r=1,2,...,n that partition the set {1,2,...,2n},
such that b, =a, +r for r=1,2,...,n. Skolem [13] showed that an (4, n)-system exists
if and only if » = 0 or 1 (mod 4). A (B,n)-system is a collection of ordered pairs
(ay,b,) for r = 1,2,...,n that partition the set {1,2,...,2n — 1,2n + 1}, such that
b, =a,+r for r=1,2,...,n. O’Keefe [11] showed that a (B,n)-system exists if and
only if n =2 or 3 (mod 4). In either case, the triples used in the constructions are of
the form (0;,(a, + n);, (b, +n);) for r =1,2,...,n, where i =0 in the cycle of length
M and i =1 in the cycle of length N.

3. Necessary conditions
The types of cyclic triples possible are:

(1) Type 1: (xo, vo,2z0) Where xg, y9,zo are in the cycle of length M,

(2) Type 2: (x1, y1,z1) where xi, y1,z; are in the cycle of length N,

(3) Type 3: (xp, y1,21) or (¥1,X0,21) or (¥1,2z1,X0) where x¢ is in the cycle of length
M and y;,z are in the cycle of length N,

(4) Type 4: (x0,v0,21) or (xo,z1,¥0) or (z1,X9, vo) Where xg, yo are in the cycle of
length M and z; is in the cycle of length N.

Carnes et al. [4] have shown that if a DTS(v) admits a bicyclic antiautomorphism
with cycles of length M and N, where 1 <M < N, and a type 4 triple occurs, then M
is odd and N =2M. Since the cases for N =2M are settled in [4], for the remainder,
we consider the cases where N = kM, k > 2, so that only triples of type 1,2, or 3 are
possible.

If a DTS(v) admits a bicyclic antiautomorphism with cycles of length M and N,
where 1 < M < N, then the restriction of the permutation to the points of the cycle of
length M is clearly a cyclic subsystem.

Lemma 1. If a DTS(v) admits a bicyclic antiautomorphism with cycles of length M
and N, where 1 <M < N, then M = 1,4, or 7 (mod 12).
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Proof. If M is even, then M =4 (mod 12) by Carnes et al. [2].
If M is odd, then o2 is a cyclic automorphism of the form (0, 2, ..., (M —1)o, 1o, 30,
...,(M —2)). But then M =1 or 7 (mod 12) by Colbourn and Colbourn [5]. [

Lemma 2. If there exists a DTS(v) which admits a bicyclic antiautomorphism with
cycles of length M and N, where 1 <M <N and N >2M, then M = 1,4, or
7 (mod 12) and N =kM, where k =2 (mod 3) if M = 4 (mod 12) and k = 2 (mod 6)
if M =1 or 7 (mod 12).

Proof. We need only show that £ =2 (mod 3) if M =4 (mod 12) and £ = 2 (mod 6)
if M =1 or 7 (mod 12).

There are [v(v— 1)]/3 triples and [M(M —1)]/3 type 1 triples. The number of other
triples, type 2 and 3 triples, is then [v(v—1)]/3—[M (M —1)]/3=[N(N+2M —1)]/3. All
of these have orbits of length N, so there are [N +2M —1]/3=[(k+2)M — 1]/3 orbits.
Then (k+2)M =1 (mod 3) and since M = 1 (mod 3), we have (k+2) =1 (mod 3),
so that £ =2 (mod 3).

Now, suppose M =1 or 7 (mod 12). If N is odd, then otN(xi,yj,z;) = (21, yj,%i),
so that we have an STS(v) where v =M + N. But M + N is even, a contradiction.
Therefore, if M is odd, N is even and so k is even. Since k is even and £ = 2 (mod 3),
we have £k =2 (mod 6). [

4. M = 1 (mod 12)

Lemma 3. If v=M + N,N =kM,M = 1 (mod 12) and k = 2 (mod 6), there exists
a DTS(v) which admits a bicyclic antiautomorphism where M and N are the lengths
of the cycles.

Proof. Let M =127 + 1.
For k = 12r + 2 and r + ¢ even, the base triples include the following and their
reverses:

N
01,00, [ =—
(l’ 0’(2>1>’
N
<00,(s+1)1,<2sl>) fors =0,1,...,3t —1,
1

N
(00,(6t+s+1)1,(2+6t—s)) fors=0,1,...,3t — 1.
1

The remaining triples in the cycle of length N are formed using an (4,24rt + 2r +
2t)-system. The triples in the cycle of length M are from the corresponding DTS(M)
of a cyclic STS(M).
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For k=12r+2 and r-+¢ odd, the base triples include the following and their reverses:

N
01,00, [ =
N
<00,(s+1)1,<2sl>) fors =0,1,...,3¢t — 2,
1

N
<00,(6t+s+1)1,<2+6ts>) fors =0,1,...,3t¢
1

The remaining triples in the cycle of length N are formed using a (B,24rt + 2r +
2t)-system. The triples in the cycle of length M are from the corresponding DTS(M)
of a cyclic STS(M).

For k =12r + 8 and r 4 ¢ even, the base triples include the following:

o (2))

Also included are the following triples and their reverses:

N
(00,(s+1)1,(2 —s— 1) ) fors=0,1,...,3t — 1,
1

N
(00,(6t+s+1)1,(2+6t—s)) fors=0,1,...,3t — 1.
1

The remaining triples in the cycle of length N are formed using an (4,24rt+2r+14¢t+
1)-system. The triples in the cycle of length M are from the corresponding DTS(M)
of a cyclic STS(M).

For k =12r + 8 and r + ¢ odd, the base triples include the following:

o))

Also included are the following triples and their reverses:

N
(00,(s—|—1)],<2—s—1)> fors=0,1,...,3t — 2,
1

N
(00,(6t+s+ 1), (2 +6t—s> ) fors =0,1,...,3¢
1

The remaining triples in the cycle of length N are formed using a (B,24rt+2r+ 14t +
1)-system. The triples in the cycle of length M are from the corresponding DTS(M)
of a cyclic STS(M). [

5. M = 4 (mod 12)

Lemma 4. If v=M + N,N =kM,M = 4 (mod 12) and k = 2 (mod 3), there exists
a DTS(v) which admits a bicyclic antiautomorphism where M and N are the lengths
of the cycles.
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Proof. Let M =12t +4 and k = 6r + 2.
For ¢ =0, the base triples include the following:

N N N
0,0 00,11, | = —1 Al=—-1),(N—=2)1,00 ),
00 (3),)- (o1 (3 1) )-((3 1) 0 -2n0)
N N N N
——=3],00,(=—2 0, = —2 ——1 .
(G (G2)) (0 (5-2)-(5 )
For r =1, also included are the following triples and their reverses:

(01,61,111),(01,81,121),(01,101,137),(01,71,91).

For r > 2, also included are the following and their reverses:

N 2 N 5
o, = = IO AR, fors=0,1,...
(o (& #03) (5 0-3)) om0

N 1 N

3+S+3>1,<2—S—3>1> fors=0,1,...

3N 11N 5
+S),<—S—)> fors=0,1,...,

1 2 31

(o

(5

(00 (5o e3), (B me3),) om0t
(o

(o

(

Rz Rl=
[FSRIEN| [SSAREN

R =
W

5-2), G50 (5, (-9)
)G G)

For ¢t > 1, the base triples include the following:

o (3))- (o GG -2) (5-) )
(o (3-2))- (0 (52) (5 2))



N.P. Carnes et al.| Discrete Mathematics 281 (2004) 97—114

For t =1, also included are the following and their reverses:

(o (1)) (0. (£3))- om (349)
(o () (o () s (3-9)
0y, (JZ +5— §>1 , (J;] —5— 230)1> fors:O,l,...,;\]—4 - g,
1;/+S_134>1’<1;,_S_“>1> fors:O,l,...,%—g—O,

N o) (N _B o, (N _16) (LN 26
4 A2 3 ) )\ \ 24 3 )0 \2s 3 ) )

N_g) (N _28 o (N_17\ (N _2
4 CJ\iz o 3) )\ s )\ 3 ) )
N N 5N 37\ (5N 16
0,(=-9),(%—1 o, (=-=).(=-=
G G (-3 (7))
N 4 1
o (5) ) o (E3). (- 5))
4 ') \4 ) 2 3)°\12 3
N N N N
0,(=-8),(=—4 0,(=—-6],(=-3
(Ge) (G oG (G 2))

o, (2N 31} (3N _ 25
Pl 3 )0\ 3 ) )

For r > 2, also included are the following and their reverses:

SN 8\ /TN 19 N 19
sy (A2 fors=0.1,... . — _
(0"(24 *s 3>1’(24 s 3)1) ors=01....52 = 3>

3N 11N 29 N 19
O, (= 4s—7) (= —s— = fors =0,1,..., — — —.
( 1’( 8 i )1’( 24 ’ 3 >1> o o ’24 3

For ¢ > 2, also included are the following and their reverses:

N
(00,(s—|—2)1, (2 —s—3) ) fors =0,1,...,3t — 2,
1

103
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N
(00,(6t+s+4)1,<2+6t—s>> fors=0,1,...,3t — 2,
1

<00,(6t +3)1, <];[ + 61 + 2> ) ,(00,(32+ 1)1,(6¢ + 1)).
1

For ¢t even, ¢t > 2, also included are the following and their reverses:

N 2 N t 4

- —4t—s5— = fors=0,1,...,—~— > — =

( 1,<3 ’ 3)1) TR T Ty
N 4 N N t 7

01, = —4 = — —6t—5—2 fors=0,1,...,— — = — =
1,(3 +s+3 1,<2 s >1> ors=0.1....57 =3 3

3N 9t 1IN 11¢ 2 N 4
— - = 1 - —— —5— = fors=0,1,...,— =2t — =
3 + 5+ )1,< 4 5 3)1> ors=0,1,...,

SN 5t 7 IN Tt 1 N 7
R z s fors=0,1,...,— — 2 — =
o3 rd) Gy o)) ooy

2 3 24 2 3

SN 5t 4\ (3N 9 N N 1
O (-2 42) . (= -Z O, (= —3t+1) . (> —4r+=) ).
(-33) (5 -3)) (0 (Go) G ooes))

For t =0 (mod 4),t > 4, also included are the following and their reverses:

N o N 3 3¢
0,(> -2 2) (= -2 —s+1 fors=0,1,...,> —2
(1,(4 5 TS+ >1,<4 7 —s+ >1> ors=0,1,...., > =2,

5N 13t 2\ (5N Tt 4 3t
TP (M, T I (A P fors=0,1,...,> — 1
(1,(12 2 - S+3>1’(12 2 ’ 3)1) o 4 ’

5N 13t 11 SN Tt 1 3t
o (22 = i osr — ) (2 - Z s - fors=0,1,..., = —2
(1’(12 2+S+3>1’<12 2 ’ 3)1) " T4 ,

N o SN 13¢5 N 5N 5
O (=>—=+1).(>—-—=+2 O (= —3t+2) . (= -5+2) ).
(53 ) (5 -3 +3)) (oo (G e2) (2 -03))

For t =2 (mod 4),t > 2, also included are the following and their reverses:

N 9 N 3t 33
O[> —=+2s+1).(>-= -2 fors=0,1,...,> — >
( 1’(4 2 e )1’<4 2 S>l) o o ’ 4 2’

SN 13t 2\ /5N T 4 3t
0L (22 2 pogp o) (2L 2 fors=0,1,.... 2 —
("(12 2 T S+3>1’(12 2 7 3)1) s =515y

>

N W
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N SN 2 N 9t SN 13t 5
0, (= —3¢) . (2= -5t O, (>—=+2) . (2 - =242
(00 (52 (5 -5) ) (o (G- 02) (2 - 245))
5N 1 5N 8 N N
0 — —5t— = 5t 0 — —3t+2 — —3t+4 .
(00 (5 o3) (i -o3) ) (0 (G -22) (5 -24))

For t =2 (mod 4),t > 6, also included are the following and their reverses:

N 9t N 3t 3t
P AT PRIV [ (AL PO fors =0,1,..., > —
(la(4 2+ + )1 <4 > + )1> ors s Ly 74

SN 13t 11\ (5N 7t 1 35
o, (22 - p PR [ (L P fors=0,1,..., > — 2.
("(12 2+S+3>1’<12 2 - 3)1> OrF= 0L Ty

N D

For ¢ odd, ¢ > 3, also included are the following and their reverses:

N 1 N t 11
— 4¢ — —6t—s5—2 fors=0,1,...,— — = — —

3 +s+3>1 ( y >1> Y B

5 N ¢t 11
Yoo fors=0.1,. . ~_L_ 10
( s 3>1> Os=0hoy 72 7 6

(-3

(o
(5 -5 s-3),
( ( )
(0 (5

Ola

N 5
01, g 2t+S+

3

11 11 1 N 4
(555 —¢)) fors=0legg-2-3
1

24 2 6 24 Ty

SN 5t 5\ (IN Tt 3 N 7

o, (2 -2 S I (R fors=0,1,..., 0 — 2t — =
tl2g 7270 % 1’(24 2 ¢ 6)1> Y 3

7t 5\ (1IN 11z 7 N 2\ (5N 4
O (o2 ) (=52 ). (o, (543 —5i—- ).
2 6)°\ 24 2 6), 3 3)°\12 3),

For t =1 (mod 4),t > 5, also included are the following and their reverses:

N % | N 3 | 31
0 (2 - o) (222 fors=0,1,..., 2 —
(1,(4 2 + S+2)1’(4 2 * 2)1) o o ’
N % 1 N 3 7 ‘
AT T TN (AL PR fors=0,1,..., 2 —
N 2)1’<4 2 2)) ors=0 0y

SN 13t 1\ (5N 7 1 3t
o, (22— Lost o) (2 -2 s — fors=0,1,..., > —
("(12 2+S+6>1’<12 2 6)1> orF= S by

SN 13t 5\ /5N 7t 29 311
RN w—2) (222 fors=0,1,..., 2% -
T ) (12 2 6)1> s =0 by ™

N~
EENIRN]

w
R

A1

>
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N SN 1 N 3t 3 SN 7t 17
S 31 (25— 0, (=S ).
4 12 3/, 4 2 2 1 12 2 6/,
N N SN 13 SN 7
0L (=~ —3t—2) (5 —3c+1 0. (22 s 2 (22 _sp— L) ).
(o (5 );(4 ' )l)»(l»(u 2, (5 --1))

For t =3 (mod 4),t > 3, also included are the following and their reverses:

SN 13, SN T 1 35
0 Sl N (L fors=0,1,..., 2 —2
("(12 +6>1’(12 2 ¢ 6>1> ors =515 2’
N 1 N 3t 3 35
0 — 2 s LA P fors=0,1,..., 2 —2
(1’(4 * 2)1’<4 2 7 2>1> ors=0L... o~ 2
N 5 N 3t 1 35
(01,( —|—2s+ ) (——2s—)> fors:O,l,...,——Z
1 1

4 2
N 5N 1 N 9 1 5N 13t 5
(01’(4‘3“) (12‘5"3>1> ("1’<4 2+2>1’(12_2_6>1)'

The remaining triples in the cycle of length M are from a cyclic DTS(M).
Let M =12t + 4 and k =5, so that N = 60¢ + 20.
For ¢ even, the base triples include the following:

4 2 2

(01,00, (307 + 10)1), ((67 + 2)1,00,01), (01, (3¢ + 1)1,(6¢ + 2)1).
For ¢ odd, the base triples include the following:

(01,00, (307 +10)1), ((6¢ + 2)1,00,01 ), ((3t 4+ 1)1, 01, (67 + 2)1).
For t =0, also included are the following and their reverses:

(00, 11,71),(01,31,81), (01,41, 111).
For t =1, also included are the following and their reverses:

(00, 11,471),(00,21,461),(00,31,451),(00, 107,557 ), (00, 111, 54y),
(00,121,531),(00,41,91),(01,191,321),(01,171,29;), (01, 164,27,),
(01,151,251),(04, 141,231),(01,261,331),(01,241,301),(01,28,,31),
(01,184,201),(01,21,,22¢).

For ¢ > 2, also included are the following and their reverses:

(00, (1 +5)1,(36t —s+11),) fors=0,1,...,3t — 1,

(00, (6t + 5 +4)1,(42t —s+13);) fors=0,1,...,3t — 1,

(00, (3t + 1)1,(6¢ + 3)1),
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01,8t +s5+6);,(16t —s+7);) fors=0,1,...,t—1,
(01,(16¢ +5+9)1,(24t —s+9)1) fors=0,1,...,t -2,
0, (A7t +5+9)1,(23t =5 +10);) fors=0,1,...,t — 1,
01,9 +s+7)1,(15t —s+7)) fors=0,1,...,t—2,
(01,(102 4 6)1, (182 4+ 9)1), (01, (97 + 6)1, (17t + 8)1),

(01, (167 + 8)1,(207 + 10); ).

For ¢t =2, also included are the following and their reverses:

(01,311,521),(01,341,541),(01,271,361),(01,291,351),(01,481,531),
(01,281,321),(01,301,331),(01,491,511),(01,461,471).

For ¢ even, ¢t > 4, also included are the following and their reverses:
t
(01,(102 + s + 7)1,(14t — s + 8)1) fors:O,l,...,E -1,

t
(01,(187 +5+10)1,(22 =5 +10)1) fors=0,1,....5 ~2.

37t 43¢ 3t
(01,<+s+11> ,(—s+10) ) fors=0,1,...,— — 3,
2 | 2 | 2

27t 43¢
1 1

37t 37t
(01,(20¢ + 9),(20¢ + 11))), <01, <2 +9) , (2 + 10> ) .
1 1

For t =0 (mod 4),t > 4, also included are the following and their reverses:

21t 27t 3t

0, —+2s+8) ,[ — —2s+8 fors=0,1,...,— — 1,
2 | 2 ' 4
21t 27t 3t

0, —+2s+7) ,| — —2s+5 fors=0,1,...,— — 2,
2 | 2 : 4

(01, (12¢ +5)1, (12t + 8)1).

For t =2 (mod 4),t > 6, also included are the following and their reverses:

211 27t 3t 3
0, (== +25+8) (2= —25+8 fors =0,1,...,> — =
(00 (3 v208) (T 2003) ) oomo g

21t 27t 3t 3
0, — +2 —_— =2 fors=0,1,...,— — =
<1,< 2 + S+7>l,( > s+5)1> ors Lo g 2

(01, (12t +6)1, (12t +9)1).
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For ¢ odd, ¢ > 3, also included are the following and their reverses:
t 3

(01, (107 45+ 7)1, (141 — s +8)1)  fors=0,1,....5 — 7.

(01,(18¢ + 5+ 10)1,(22t — s+ 10);) fors=0,1,...,

5

21t 15 27t 13 3t 7
— — e — fors=0,1,..., — — =
<01,<2 +s+2>l,(2 s+2)1> ors =0,1, = 2

0&+E ﬂ—Fg 0&+E %—FE
Pl T2\ T2 ) )02 T2 )2 T ) )

For t =1 (mod 4),t > 5, also included are the following and their reverses:

371 19\ (43t 19 33
O, (25 425+ — ) [ = —25+ — fors=0,1,...,> — =
(l’(z - s+2)1,(2 S+2)1> o o ’4 4’

37t 25\ (43 21 3t 7
O (- 25+ 2 ) [ = —2s+ = fors=0,1,..., > — =
(o0 (Fe2e2) (F2e3)) omord

(01, (127 + 7)1, (20¢ + 12)1), (01, (12¢ + 5)1, (12¢ + 9)1), (01, (12¢ + 6)1, (12¢ + 8)1).

N~
| W

For t =3 (mod 4),t > 3, also included are the following and their reverses:

371 19\ (431 19 3t 5
O (- 425+ — ) | = =254 — fors=0,1,...,> — =
(0 (G2 3) (B2ey)) oo g

37 25\ (43t 21 39
0, (- 4+2s+ 2 ) (== — 25+ = fors =0,1,..., > — -
(572 3) (T 207)) eemor g

(01,(12¢ 4+ 6)1,(20¢ 4+ 11)1),(01, (20 + 9)1, (202 + 13)1), (01, (12¢ + 5)1,(12¢ + 8)1),
(01, (12¢ + 7)1, (12t + 9)1).

The remaining triples in the cycle of length M are from a cyclic DTS(M).
Let M =12t+4 and k=6r+5, k > 11.
For ¢ even, the base triples include the following:

(01,00, (Z;[) ) ,((6t +2)1,00,01),(01, (32 + 1)1,(6¢ 4+ 2)1).
1

For ¢ odd, the base triples include the following:
N
(0000 (5) ) €6+ 200,00, + 11,016+ 20,
1

For t =0,k =5 (mod 12), also included are the following and their reverses:

(09, 11, (k +2)1),

2k 8\ [ 4k 2 k11
0, (= S N (i fors=0,1,...,~ — —
(0 (53 (5-5)) wmmori-y
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4k 7 ko1l
= 2) @k —s—2 fors=0,1,...,~ — —

5k 2 2k 5 4k 4
(o (3+3))- (0 (5+3) (5 +3))
4k 1 5k 1
(Ol’(s*s);(z"‘”‘)’("1’“‘“%(3—3)1)-

For t =0,k = 11 (mod 12), also included are the following and their reverses:

oo (343)
<01,<4;C+s+:)1,(2ks2)1> fors:O,l,...,gf%,
(01, (23k + 5+ §)1’<43k —5— 2)) fors:O,l,...,g — 13—1,
a3 (4D 0

(5 +3) (5 73)) oo (5-3))

For ¢ > 1, also included are the following and their reverses:
N
(00,(1+s)1,(2+6t—s+1>> fors=0,1,...,3t— 1,
1

N
(Oo,(6t—|—s—|—4)1, (2 + 12t—s+3) > fors=0,1,...,3t — 1,
1

(00, (32 + 1)1, (61 + 3)1),

N 8\ (N 1 N ¢ 11
0, (= —2¢ ) (= -4 —s+ = fors=0,1,...,— — = — —
(00 (% +s+3)l,(3 ”3)) ors =01t L
N 7\ (N N ot 17
0, (= —4 ) (Z-6r—s—1 fors=0,1,...,— — = — —
(0 (5 -we3) (5momem) ) o057

0 ﬂ—z—&-s—&-ll E—E—s—&-z fors =0,1 N_ & T
Plaa 2 6) \24 2 6), T4 2 6



110 N.P. Carnes et al.| Discrete Mathematics 281 (2004) 97114

0 3N 9t+ +3 1IN 11t +5 for 0.1 N 7t 11
— = ——— =5+ s=0,1,...,—~— = ——,

P\ 27T2) s 2 6), 242 6
N SN 2 SN 5t 11 3N 9 1

0 ——6t+1 ——8t 01, — |, =+= R

(o0 (5moe) - (Gs3) ) (0 G2+ 9) (5 -3 32))
N 4 SN 5

0 — =4+ ), —= -5+ .

(00 (5 -23) (5203

For ¢t =1, also included are the following and their reverses:

(Ou,(4k—1)l,<zgk—:>),(ol,(4k 3)1,<2(3)k 133>>,
! 1

20k 19 20k 1
01,(4k —4)1,(4k +3)1), ( 04, === s
(01, ( s ( )1)(1<3 3>1(3 3)1>

(ol, (20" 16) (20]‘ - 7) ) (01 (4K — 21, (4K)1), (01, (4K + 1)1, (4K +2))).
3 3 )3 7 3),

For ¢ even, ¢t > 2, also included are the following and their reverses:

N N 31
01,( 6t+s+2> (—s+3)) fors=0,1,...,— — 1,
4 T\ 4 . 2
5N 5 5N 5 3¢
- - fors=0,1,...,> —2,
(12 8t+s+3) (12 t s—|—3)1> ors L
SN 13t 8\ (5N Tt 5 3¢
== ) (== = fors=0,1,...,> —3,
0"(12 2 S+3) (12 2~ +3)1> orF=0 L5y
N 1 N 3t 5N 7t 8
- 2 - il 2 2
( 3f+)( we3)) (0 (55 2) (55+3))
N W5 8
12 1’ 12 3),)°
0 5N _;’_g ﬂ_g_;’_é
Pl 3)°\12 2 "3))

For t =0 (mod 4),t > 4, also included are the following and their reverses:

N 9 N 3t 3
) - -2 2543 fors =0,1,..., > — 1,
(Ol’(4 2 - S+3>1 (4 2 o )1) o o ' 4

Ola

01,

01,

(
(
(
(
(
(
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)) fors:O,l,...,g
| 4

N 9t N 3t
M o) (B2 g
(01,<4 2+s+ )1 (4 2

oo 2)-(333))

For t =2 (mod 4),t >

N 9 N 3t
O~ —=+2s+3) . (>—2 —2s+3
(o (33 r20) (3320

N 9 N 3t 3t
On(=>—=+2s+2) ., (=>-2 -2 fors=0,1,...,> —
<1’<4 2+ o >l’<4 2 S)l) o o ’4

N N
O, (= —3t+1),(=—-3+4) ).
(00 (G oe) (5-29))

For ¢ odd, ¢ > 3, also included are the following and their reverses:

9 3
0 . —_
(1,( 2+2>1,

N
4

N
— 6t+s+2> (—s+3)) fors=0,1,...,
4 1 1
5 5 3t
3 )1> fors=0,1,...,5—
N 3t 3 3¢
— - = - - fors=0,1,...,— —
1,(4 3 S+2>1> ors o3

SN 13 13 0
12 2 6), b

3t
2

3t

2

3,5
2 1

N W

N 3,
'\ 4 2

-2,

2, also included are the following and their reverses:

) ) fors=0,1,...,
1

33
47

N W

3
2’

N

2),)

For t =1 (mod 4),t > 5, also included are the following and their reverses:

5N 13¢ 7 5N Tt
(m(_.+%+),(__%+

2 2 6) \ 12 2
0 ﬂ_g_kzs_'_zj ﬂ_ﬁ_
Pl 2 6) \12 2

SN B
o) (o))

2s

7
6

(Z

>) fors=0,1,...,
1

3 3
4 ¥
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For t =3 (mod 4),t > 3, also included are the following and their reverses:

SN 13t 7\ (5N 7 7 3 s
o (22— 2l 2) (22 - L gy L fors=0,1,..., 2 — >
("(12 2 " S+6>1’(12 2 S+6>1) F=0 Ly T

SN 13t 25\ (SN Tt 13 39

o, (22 - 2o 2) (22 0 gy fors=0,1,..., 20—~

(1’(12 2+S+6>1’(12 2 s+6)1> rF=0 Ly Ty
N SN 8 SN _ 2\ (5N 14

o (= —3041) L (225042 (Y (b A I (Y P

(o0 (5) (om93))- (0 (), (5o 5) )
N N N N

0, (——-3¢),(——3t+3 N0, ——3t+2) ,(——3t+4 .

(00 (G -20) (5 2) ) (on (522 (5 -9))

The remaining triples in the cycle of length M are from a cyclic DTS(M). [

6. M =7 (mod 12)

Lemma5. If v=M + N,N = kM,M = 7 (mod 12) and k = 2 (mod 6), there exists
a DTS(v) which admits a bicyclic antiautomorphism where M and N are the lengths
of the cycles.

Proof. Let M =121+ 7.
For k = 12r + 2, the base triples include the following and their reverses:

N
01,00, [ =
( " O’(2>1>’
N
<00,(s+1)1,<2sl>) fors =0,1,...,3¢t,
1

N
(00,(6t+s—|—4)1, (2 +6t—s+3) ) fors=0,1,...,3¢
1

For r + ¢t even, also included are the following and its reverse:

(00,(9t +5), (ZZ 30+ 2) > .
1

The remaining triples in the cycle of length N are formed using an (4, 24rt+ 14r+2t+
1)-system. The triples in the cycle of length M are from the corresponding DTS(M)
of a cyclic STS(M).

For r 4 ¢t odd, also included are the following and its reverse:

(00,(31 +2)1, (]Z —3t— 2) > .
1

The remaining triples in the cycle of length N are formed using a (B, 24rt + 14r +2¢+
1)-system. The triples in the cycle of length M are from the corresponding DTS(M)
of a cyclic STS(M).
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For k = 12r + 8, the base triples include the following:

()

Also included are the following and their reverses:

N
(00,(S+1)1,<2S1)> s=0,1,...,3¢t,
1

N
(00,(6t+s+4)1, (2 +6t—s+3) ) fors=0,1,...,3¢
1

For r 4 ¢ even, also included are the following and its reverse:

(00,(9t +5),, (Z 13+ 2) ) .
1

The remaining triples in the cycle of length N are formed using an (4, 24rt+ 14r+14¢+
8)-system. The triples in the cycle of length M are from the corresponding DTS(M)
of a cyclic STS(M).

For r + ¢ odd, also included are the following and its reverse:

(00,(3t—|—2)|, (JZ - 3z—2> ) .
1

The remaining triples in the cycle of length N are formed using a (B,24rt+ 14r+ 14t +
8)-system. The triples in the cycle of length M are from the corresponding DTS(M)
of a cyclic STS(M). [

7. Conclusion
By the lemmas in the previous sections and [4], we have the following theorem.

Theorem 6. There exists a DTS(v) which admits a bicyclic antiautomorphism where
v=M + N,N > M,M and N being the lengths of the cycles if and only if M = kN
and

(1) M =1 or 7 (mod 12) and k =2 (mod 6),
(2) M =3 or 5(mod 6) and k=2, or
(3) M =4 (mod 12) and k = 2 (mod 3).
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