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Abstract 

A Q-group is a finite group all of whose ordinary complex representations have rationally 
valued characters. Let G be a solvable Q-group so that the Schur index mR(x) = 1 for all 
x E Irr(G). In [3, Note 1, p. 2851 Gow asks if not, under these conditions, already Q(X)= 1 
for all x E Irr(G). In this paper we shall prove that the answer of this question is positive. 
The notations and definitions will be those of [6]. @ 1999 Elsevier Science B.V. All rights 
reserved. 
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A Q-group is a finite group all of whose ordinary complex representations have 

rationally valued characters. Let G be a solvable Q-group so that the Schur index 

m&)= 1 for all x~Irr(G). In [3, Note 1, p. 2851 Gow asks if not, under these 

conditions, already ma(x) = 1 for all x E h-r(G). In this paper we shall prove that 

the answer of this question is positive. The notations and definitions will be those 

of [6]. 

The following theorem is a version of Brauer-Witt theorem, obtained from maxi- 

mality arguments of a kind used by Benard in [ 1, Section 31. 

Theorem 1 (Benard [l], Gow [5]). Let x be an irreducible character such that 
m&) = 1 of the Q-group G. There is a subgroup W of G and a real-valued ir- 
reducible character cp of W for which (cp, 2~) is odd and [Q(q) : Q] is odd. W can 
be taken either to be a Sylow 2-subgroup of G or to have the form AH, where A 
is a cyclic subgroup of odd order generated by an element a and H is a Sylow 
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2-subgroup of N&z)). In the second case it can be assumed that A is not in the 
kernel of cp. 

Theorem 2 (Gow [3, Theorem 1, Note 11). Let G be a solvable Q-group such that 

TN&) = 1 for all x E Irr(G). Then IGI = 2a3b. 

Theorem 3. Suppose G is a 2-group. Zf x E Irr(G) is rational valued and has Schur 
index m&)= 1, then m&x)= 1. 

Proof. Since ma,(x)= 1 for all prime numbers p#2 and m&)= 1, by Minkowski- 

Hasse theorem and using the Hilbert symbol, it follows that ma(x) = 1 (see [2]). 0 

Main Theorem. Suppose G is a solvable Q-group and m&) = 1 for all x E h-r(G). 

Then m&) = 1 for all x E h-r(G). 

Proof. By Theorem 2 we have (G( =2C3b. If IGI = 2’ the statement follows by 

Theorem 3. Let x E Irr(G) and cp, W, A, H, a be as in Theorem 1. Let K be a field 

such that Q(cp)cK ~Q(E), for E a primitive IGlth root of unity such that /Q(&):Kl 
is the 2-part of IQ(s): Q(cp>(. Let HO = CH(U). 

Remark 1. By the choice of K and since IQ!(q) : QI is odd, IK : Ql is odd. 

Remark 2. Since G is a Q-group, NG(A)/CG(A)EA~~(A), hence a Sylow 2-subgroup 

of Aut(A) is isomorphic to H/Ho. Let o be a primitive ]Alth root of unity. By the 

choice of K, as,af are conjugate in H only if os, 0’ are conjugate under the action of 

Gal(K(s), K). Hence W = AH is K-elementary with respect to 2. 

Case 1: W is a Sylow 2-subgroup of G. Since cp is a character of a 2-group and 

[K : Cl] is odd by Remark 1, cp is Q-valued. 

Since (cp, XW) is odd and m&x) = 1 by Brauer-Speiser theorem (which affirms that 

if 5 E Irr(G) is real valued then mo(<) 5 2, see [6, p. 1711) it follows that mn(cp) = 1. 

Then, by Theorem 3, mep(cp)= 1, so that ma(x)= 1. 

Case 2: W =AH, where A is nontrivial. 

(a) If mu= 1 then m&)= 1. 

Proof. Since (x, qG) is odd, it follows that m&) = 1. It follows from [6, Lemma 10.4, 

p. 1621 for F = Q that mu divides m~(cp)lQ(cp): Ql(x,(~~). Now, IQ(q): Q( 

divides IK : QI, which is odd. In view of the Brauer-Speiser theorem and the fact 

that IQ(cp) : Ql(x, cp’) is odd, the previous relation implies that m&) divides 

mo(cp) =m~(~p,(cp)=m~(cp)= 1 (see also [6, p. 1611). 13 

Remark 3. In the sequel we shall determine a splitting field for q. Let X be 

a @-representation of cp. By [6, Lemma 2.19, p. 231, g E ker(X) if and only if g E ker(cp). 
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So, if Y is a C-representation of cp/ker(cp) then X(kg) = Y(g) is a C-representation of 

cp. Hence, m&cp) = mF(cp/ker(cp)) for any complex number field F. Also, in the sequel 

x appears only by xw and the used properties of cp and 1~ do not fail true factorization 

by ker(cp). Thus we can suppose that cp is faithful. 

(b) By Remark 2 and Theorem 4.3 of [l] we have that: 

(1) there is il x p E Irr(AHo) such that (1 x n)AH = cp. 

(2) ~1 is rational valued and is H invariant. 

(3) il and p are faithful. 

(c) Suppose that there is r E Irr(H) an extension of CL. If ma(z) = 1 then rn~(~)(~) = 1 

and if besides Q(r) = Q then mo(~) = 1. 

Proof. Let r be an extension of p to H. We have that m~(~,(cp) divides me(,)(r) 

\Q(cp,r):Q(r)J((~,r~) by [6, Lemma 10.41. It follows from Mackey’s theorem that 

(PH = Pi. Hence ( ~P,~~)=((PH,z)=(~~,z)=(~,zH~)= 1. Now suppose that ma(,)(r)= 

ma(r) = 1. Then since ma(x) divides mo(cp) and by the previous relation we have that 

Q(~)(X) divides lQ(cp,r)l. The latter number is odd by assumption, so the Brauer- 

Speiser theorem implies that mo(,)(~) = 1. 0 

(d) There is an extension r of p to H and if m&) = 1 then ma(r) = 1. 

Proof. Since H/Ho is cyclic ( jH/Ho 1 = 2. since Ial =3d) by [6, Theorem 1.22, p. 1861 

it follows that there is an extension r of p to H. Since (zH,,, p) = 1 if Q is a splitting 

field for ~1 it follows that ma(r) = 1. 

(e) mo@) = 1 iff r is real valued. 

Proof. Let 1, t E H be a transversal 

0 

of HO in H such that t2 E HO and tat-’ = a-‘. 

Since ‘p is real valued and mn(cp) = 1, the Frobenius-Schur invariant v~((P) = 

v2((A x #H) = 1. 

A direct computation shows that 

vz((i x dAH)=UIIHoI) c /4W2>. 
hEHo 

Then, 

hEH 

. 

Hence vz(r) is 0 or 1. 0 

(f) To compute the Schur index of (2 x p)AH over the field K, we can assume 

that (2 x ~-1)~~ is K-primitive (i.e. is not induced from a K-valued character v of 

a proper subgroup AH’ of AH). Indeed, if there is a K-valued irreducible character cpi 



132 I. Armeanul Journal of Pure and Applied Algebra 135 (1999) 129-133 

of a proper subgroup WI of W such that ‘pr = cp then by the general properties of the 

Schur index mK(cp)=mK(cpl). 

Then, applying Theorem 4.6 of [l] it follows that H,/ = Ho n H’ is a dihedral or 

quatemion group of order 8, or IHA/ < 2. 

(g) If IH;i I 2 th en p is linear. If IH,‘I = 1, or H’ N 252 x 772 there is a rational-valued 

extension z of ,u such that mQ(z) = 1 and the statement follows by (c). 

If IHAl = 2, since vz(cp) = 1 and p is linear, an element of H’ - HA which inverts a 

is an involution. Thus H’ Y 772 x Z$. 

(h) Let HO be dihedral or quatemion group. Then (HI = 16. They are nine nonabelian 

groups of order 16. 

(1) H = HI x Hz, where HI is the dihedral group of order 8 and IHz I = 2. Then z 

is rationally valued and mQ(z) = 1 and the statement follows by (c). 

(2) H = HI x Hz, where HI is the quatemion group of order 8 and lHzl= 2. Then 

vz((p) = - 1. Thus this case is impossible. 

(3) H is the generalized quatemion group. Then vz((p) = - 1. Hence this case is 

impossible. 

(4) H is the semidihedral group and HO is dihedral. Then vz((p) = - 1, impossible. 

(5) H is semidihedral and HO is quatemionic. Then z extends to a faithful char- 

acter z of H with Q(z) = Q(id) an d ma(z) = 1. Since Qs = U&(ifi) it follows by 

(c) that ma,(q) = 1. Since rnQ, (q) = 1, by Hasse’s theorem (see [2]) it follows that 

mo(cp) = 1. 
(6) H = ({u, u, w I u4 = u2 = w2 = 1, uv = vu, uw = wu, vwv = wu*}) and HO is dihe- 

dral. Then vz((p)= -1. 

(7) H = HO(X), with HO = (u, v) dihedral, u4 = v* = 1, x2 = u and X-~VX = uv. Then 

v*(rp)= -1. 

(8) H = ({u, v, w 1 u4 = v2 = w2 = 1, uv = vu, uw = wu, vwu = wu2}) and HO is quater- 

nionic or H is generalized dihedral and HO is dihedral. In both cases mQ( cp) = 2 but 

we shall prove using methods of [4], that these cases are impossible. 

Let IAl=2n+l and pi, . . . , /In be the characters of the 12 nontrivial irreducible real 

representations of A. Then these characters can be extended to n characters ~1,. . . , a,, 

of real representations of W. To prove that, let cc) a primitive (2n + 1) root of unity. 

Then /$(a’) = c$ + &j. Take Cli to be the complex linear character of A defined by 

ai = WV. Each cli may be extended to an irreducible character yi of AHo by putting 

ai(ajh) = ai( for every h in HO. The n induced characters Gi = yw are real-valued 

irreducible characters of W which extend the pi. Now it is easy to show that oi are 

realizable in R by computing the Frobenius-Schur invariant vz(0i). 

Let 0i = @. Clearly 8i are rational valued. Let @ be an irreducible constituent of 6i. 

Since m&Q) = 1, Q, must occur with even multiplicity, hence 0,(a) = 0 (mod 2). 

Let D be the iz x IZ matrix with entries d, = pj(ui). D is a n x n submatrix of 

the real character table of A. Using the orthogonality relations we may show that 

(detD)2 = IA]“-‘. 

Let Qs6 the field obtained by adjoining a primitive 3b root of unity to Q. Let S be 

the ring of algebraic integers in Q$ and let P be a maximal ideal of S containing 2. 
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Then there is a matrix E with entries in 62~~6 such that DE = cd, where CI E Cl+, and 

c1 is not congruent to 0 (modP). Set p = EYE, e;0i, where ei,. . . , e, are the entries of 

the first column of E. From the definition of induced characters, we have 

p(a)=(l//~/)~,~,ei8i(xnx-‘), 

XEG i 

where Bi(xax-i) = 0 if xax-’ is not in W. If xax-’ E W, then xax-’ EA, hence Bi 

(xax-’ ) = /?;(a’). By the choice of ei,. . . , n, e the value of the inner sum in the above 

formula is 0 unless J = a or a- l. It follows that p(u) = al W :H(, hence p(u) $ 

0 (modP). Since &(a) E 0 (modP) this is impossible. 0 

References 

[l] M. Benard, On the Schur indices of characters of the exceptional Weyl groups, Ann. of Math. 94( 1) 

(1971) 89-107. 

[2] Z.I. Borevich, I.R. Shafarevich, Number Theory, Nauka, Moscow, 1972. 

[3] R. Gow, Groups whose characters are rational valued, J. Algebra 40 (1976) 280-299. 

[4] R. Gow, Real-valued characters and Schur index, J. Algebra 40 (1976) 258-270. 

[5] R. Gow, Real-valued and 2-rational group characters, J. Algebra 61 (1979) 388-413. 

[6] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976. 


