

Journal of Pure and Applied Algebra 135 (1999) 129-133

JOURNAL OF PURE AND APPLIED ALGEBRA

About a question concerning Q-groups

Ion Armeanu*

Mathematics Department, Physics Faculty, University of Bucharest, P.O. Box MG-11, Bucharest-Magurele, Romania

Communicated by A. Dold; received 14 February 1996; revised 9 June 1997

Abstract

A Q-group is a finite group all of whose ordinary complex representations have rationally valued characters. Let G be a solvable Q-group so that the Schur index $m_{\mathbb{R}}(\chi) = 1$ for all $\chi \in \operatorname{Irr}(G)$. In [3, Note 1, p. 285] Gow asks if not, under these conditions, already $m_{\mathbb{Q}}(\chi) = 1$ for all $\chi \in \operatorname{Irr}(G)$. In this paper we shall prove that the answer of this question is positive. The notations and definitions will be those of [6]. © 1999 Elsevier Science B.V. All rights reserved.

1991 Math. Subj. Class.: 20C15

A Q-group is a finite group all of whose ordinary complex representations have rationally valued characters. Let G be a solvable Q-group so that the Schur index $m_{\mathbb{R}}(\chi) = 1$ for all $\chi \in \operatorname{Irr}(G)$. In [3, Note 1, p. 285] Gow asks if not, under these conditions, already $m_{\mathbb{Q}}(\chi) = 1$ for all $\chi \in \operatorname{Irr}(G)$. In this paper we shall prove that the answer of this question is positive. The notations and definitions will be those of [6].

The following theorem is a version of Brauer–Witt theorem, obtained from maximality arguments of a kind used by Benard in [1, Section 3].

Theorem 1 (Benard [1], Gow [5]). Let χ be an irreducible character such that $m_{\mathbb{R}}(\chi) = 1$ of the Q-group G. There is a subgroup W of G and a real-valued irreducible character φ of W for which (φ, χ_W) is odd and $[\mathbb{Q}(\varphi):\mathbb{Q}]$ is odd. W can be taken either to be a Sylow 2-subgroup of G or to have the form AH, where A is a cyclic subgroup of odd order generated by an element a and H is a Sylow

^{*} E-mail: arme scut.fizica.unibuc.ro.

2-subgroup of $N_G(\langle a \rangle)$. In the second case it can be assumed that A is not in the kernel of φ .

Theorem 2 (Gow [3, Theorem 1, Note 1]). Let G be a solvable Q-group such that $m_{\mathbb{R}}(\chi) = 1$ for all $\chi \in Irr(G)$. Then $|G| = 2^a 3^b$.

Theorem 3. Suppose G is a 2-group. If $\chi \in Irr(G)$ is rational valued and has Schur index $m_{\mathbb{R}}(\chi) = 1$, then $m_{\mathbb{Q}}(\chi) = 1$.

Proof. Since $m_{\mathbb{Q}_p}(\chi) = 1$ for all prime numbers $p \neq 2$ and $m_{\mathbb{R}}(\chi) = 1$, by Minkowski– Hasse theorem and using the Hilbert symbol, it follows that $m_{\mathbb{Q}}(\chi) = 1$ (see [2]). \Box

Main Theorem. Suppose G is a solvable Q-group and $m_{\mathbb{R}}(\chi) = 1$ for all $\chi \in Irr(G)$. Then $m_{\mathbb{Q}}(\chi) = 1$ for all $\chi \in Irr(G)$.

Proof. By Theorem 2 we have $|G| = 2^c 3^b$. If $|G| = 2^c$ the statement follows by Theorem 3. Let $\chi \in Irr(G)$ and φ, W, A, H, a be as in Theorem 1. Let K be a field such that $\mathbb{Q}(\varphi) \subseteq K \subseteq \mathbb{Q}(\varepsilon)$, for ε a primitive |G|th root of unity such that $|\mathbb{Q}(\varepsilon):K|$ is the 2-part of $|\mathbb{Q}(\varepsilon):\mathbb{Q}(\varphi)|$. Let $H_0 = C_H(a)$.

Remark 1. By the choice of K and since $|\mathbb{Q}(\varphi):\mathbb{Q}|$ is odd, $|K:\mathbb{Q}|$ is odd.

Remark 2. Since G is a Q-group, $N_G(A)/C_G(A) \simeq \operatorname{Aut}(A)$, hence a Sylow 2-subgroup of Aut(A) is isomorphic to H/H_0 . Let ω be a primitive |A|th root of unity. By the choice of K, a^s, a^t are conjugate in H only if ω^s, ω^t are conjugate under the action of $\operatorname{Gal}(K(\varepsilon), K)$. Hence W = AH is K-elementary with respect to 2.

Case 1: W is a Sylow 2-subgroup of G. Since φ is a character of a 2-group and $[K:\mathbb{Q}]$ is odd by Remark 1, φ is \mathbb{Q} -valued.

Since (φ, χ_W) is odd and $m_{\mathbb{R}}(\chi) = 1$ by Brauer-Speiser theorem (which affirms that if $\xi \in \operatorname{Irr}(G)$ is real valued then $m_{\mathbb{Q}}(\xi) \leq 2$, see [6, p. 171]) it follows that $m_{\mathbb{R}}(\varphi) = 1$. Then, by Theorem 3, $m_{\mathbb{Q}}(\varphi) = 1$, so that $m_{\mathbb{Q}}(\chi) = 1$.

Case 2: W = AH, where A is nontrivial.

(a) If $m_K(\varphi) = 1$ then $m_Q(\chi) = 1$.

Proof. Since (χ, φ^G) is odd, it follows that $m_K(\chi) = 1$. It follows from [6, Lemma 10.4, p. 162] for $F = \mathbb{Q}$ that $m_{\mathbb{Q}}(\chi)$ divides $m_{\mathbb{Q}}(\varphi) |\mathbb{Q}(\varphi) : \mathbb{Q}|(\chi, \varphi^G)$. Now, $|\mathbb{Q}(\varphi) : \mathbb{Q}|$ divides $|K : \mathbb{Q}|$, which is odd. In view of the Brauer–Speiser theorem and the fact that $|\mathbb{Q}(\varphi) : \mathbb{Q}|(\chi, \varphi^G)$ is odd, the previous relation implies that $m_{\mathbb{Q}}(\chi)$ divides $m_{\mathbb{Q}}(\varphi) = m_{\mathbb{Q}(\varphi)}(\varphi) = m_K(\varphi) = 1$ (see also [6, p. 161]). \Box

Remark 3. In the sequel we shall determine a splitting field for φ . Let X be a \mathbb{C} -representation of φ . By [6, Lemma 2.19, p. 23], $g \in \ker(X)$ if and only if $g \in \ker(\varphi)$.

So, if Y is a \mathbb{C} -representation of $\varphi/\ker(\varphi)$ then X(kg) = Y(g) is a \mathbb{C} -representation of φ . Hence, $m_F(\varphi) = m_F(\varphi/\ker(\varphi))$ for any complex number field F. Also, in the sequel χ appears only by χ_W and the used properties of φ and χ_W do not fail true factorization by $\ker(\varphi)$. Thus we can suppose that φ is faithful.

- (b) By Remark 2 and Theorem 4.3 of [1] we have that:
 - (1) there is $\lambda \times \mu \in Irr(AH_0)$ such that $(\lambda \times \mu)^{AH} = \varphi$.
 - (2) μ is rational valued and is H invariant.
 - (3) λ and μ are faithful.

(c) Suppose that there is $\tau \in Irr(H)$ an extension of μ . If $m_{\mathbb{Q}}(\tau) = 1$ then $m_{\mathbb{Q}(\tau)}(\chi) = 1$ and if besides $\mathbb{Q}(\tau) = \mathbb{Q}$ then $m_{\mathbb{Q}}(\chi) = 1$.

Proof. Let τ be an extension of μ to H. We have that $m_{\mathbb{Q}(\tau)}(\varphi)$ divides $m_{\mathbb{Q}(\tau)}(\tau)$ $|\mathbb{Q}(\varphi,\tau):\mathbb{Q}(\tau)|(\varphi,\tau^W)$ by [6, Lemma 10.4]. It follows from Mackey's theorem that $\varphi_H = \mu^H$. Hence $(\varphi,\tau^W) = (\varphi_H,\tau) = (\mu^H,\tau) = (\mu,\tau_{H_0}) = 1$. Now suppose that $m_{\mathbb{Q}(\tau)}(\tau) = m_{\mathbb{Q}}(\tau) = 1$. Then since $m_{\mathbb{Q}}(\chi)$ divides $m_{\mathbb{Q}}(\varphi)$ and by the previous relation we have that $m_{\mathbb{Q}(\tau)}(\chi)$ divides $|\mathbb{Q}(\varphi,\tau)|$. The latter number is odd by assumption, so the Brauer–Speiser theorem implies that $m_{\mathbb{Q}(\tau)}(\chi) = 1$. \Box

(d) There is an extension τ of μ to H and if $m_{\mathbb{Q}}(\mu) = 1$ then $m_{\mathbb{Q}}(\tau) = 1$.

Proof. Since H/H_0 is cyclic $(|H/H_0| = 2$. since $|a| = 3^d$) by [6, Theorem 1.22, p. 186] it follows that there is an extension τ of μ to H. Since $(\tau_{H_0}, \mu) = 1$ if \mathbb{Q} is a splitting field for μ it follows that $m_{\mathbb{Q}}(\tau) = 1$. \Box

(e) $m_{\mathbb{Q}}(\mu) = 1$ iff τ is real valued.

Proof. Let 1, $t \in H$ be a transversal of H_0 in H such that $t^2 \in H_0$ and $tat^{-1} = a^{-1}$. Since φ is real valued and $m_{\mathbb{R}}(\varphi) = 1$, the Frobenius-Schur invariant $v_2(\varphi) = v_2((\lambda \times \mu)^{AH}) = 1$.

A direct computation shows that

$$v_2((\lambda \times \mu)^{AH}) = (1/|H_0|) \sum_{h \in H_0} \mu((ht)^2).$$

Then,

$$v_2(\tau) = (1/|H|) \sum_{x \in H} \tau(x^2) = (1/|H|) \sum \mu(x^2) = \left(1/(2|H_0|) \left(\sum_{h \in H} \mu(h^2) + \mu((ht)^2)\right)\right)$$

Hence $v_2(\tau)$ is 0 or 1. \Box

(f) To compute the Schur index of $(\lambda \times \mu)^{AH}$ over the field K, we can assume that $(\lambda \times \mu)^{AH}$ is K-primitive (i.e. is not induced from a K-valued character v of a proper subgroup AH' of AH). Indeed, if there is a K-valued irreducible character φ_1

of a proper subgroup W_1 of W such that $\varphi_1^W = \varphi$ then by the general properties of the Schur index $m_K(\varphi) = m_K(\varphi_1)$.

Then, applying Theorem 4.6 of [1] it follows that $H'_0 = H_0 \cap H'$ is a dihedral or quaternion group of order 8, or $|H'_0| \leq 2$.

(g) If $|H'_0| \leq 2$ then μ is linear. If $|H'_0| = 1$, or $H' \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ there is a rational-valued extension τ of μ such that $m_{\mathbb{Q}}(\tau) = 1$ and the statement follows by (c).

If $|H'_0| = 2$, since $v_2(\varphi) = 1$ and μ is linear, an element of $H' - H'_0$ which inverts a is an involution. Thus $H' \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$.

(h) Let H_0 be dihedral or quaternion group. Then |H| = 16. They are nine nonabelian groups of order 16.

(1) $H = H_1 \times H_2$, where H_1 is the dihedral group of order 8 and $|H_2| = 2$. Then τ is rationally valued and $m_{\mathbb{Q}}(\tau) = 1$ and the statement follows by (c).

(2) $H = H_1 \times H_2$, where H_1 is the quaternion group of order 8 and $|H_2| = 2$. Then $v_2(\varphi) = -1$. Thus this case is impossible.

(3) *H* is the generalized quaternion group. Then $v_2(\varphi) = -1$. Hence this case is impossible.

(4) *H* is the semidihedral group and H_0 is dihedral. Then $v_2(\varphi) = -1$, impossible.

(5) *H* is semidihedral and H_0 is quaternionic. Then τ extends to a faithful character τ of *H* with $\mathbb{Q}(\tau) = \mathbb{Q}(i\sqrt{2})$ and $m_{\mathbb{Q}}(\tau) = 1$. Since $\mathbb{Q}_3 = \mathbb{Q}_3(i\sqrt{2})$ it follows by (c) that $m_{\mathbb{Q}_3}(\varphi) = 1$. Since $m_{\mathbb{Q}_\infty}(\varphi) = 1$, by Hasse's theorem (see [2]) it follows that $m_{\mathbb{Q}}(\varphi) = 1$.

(6) $H = \langle \{u, v, w \mid u^4 = v^2 = w^2 = 1, uv = vu, uw = wu, vwv = wu^2 \} \rangle$ and H_0 is dihedral. Then $v_2(\varphi) = -1$.

(7) $H = H_0\langle x \rangle$, with $H_0 = \langle u, v \rangle$ dihedral, $u^4 = v^2 = 1$, $x^2 = u$ and $x^{-1}vx = uv$. Then $v_2(\varphi) = -1$.

(8) $H = \langle \{u, v, w \mid u^4 = v^2 = w^2 = 1, uv = vu, uw = wu, vwv = wu^2 \} \rangle$ and H_0 is quaternionic or H is generalized dihedral and H_0 is dihedral. In both cases $m_{\mathbb{Q}}(\varphi) = 2$ but we shall prove using methods of [4], that these cases are impossible.

Let |A| = 2n + 1 and β_1, \ldots, β_n be the characters of the *n* nontrivial irreducible real representations of *A*. Then these characters can be extended to *n* characters $\sigma_1, \ldots, \sigma_n$ of real representations of *W*. To prove that, let ω a primitive (2n + 1) root of unity. Then $\beta_i(a^j) = \omega^{ij} + \omega^{-ij}$. Take α_i to be the complex linear character of *A* defined by $\alpha_i(a^j) = \omega^{ij}$. Each α_i may be extended to an irreducible character γ_i of AH_0 by putting $\alpha_i(a^jh) = \alpha_i(a^j)$, for every *h* in H_0 . The *n* induced characters $\sigma_i = \gamma_i^W$ are real-valued irreducible characters of *W* which extend the β_i . Now it is easy to show that σ_i are realizable in \mathbb{R} by computing the Frobenius–Schur invariant $v_2(\sigma_i)$.

Let $\theta_i = \sigma_i^G$. Clearly θ_i are rational valued. Let Φ be an irreducible constituent of θ_i . Since $m_{\mathbb{R}}(\Phi) = 1$, Φ must occur with even multiplicity, hence $\theta_i(a) \equiv 0 \pmod{2}$.

Let D be the $n \times n$ matrix with entries $d_{ij} = \beta_j(a^i)$. D is a $n \times n$ submatrix of the real character table of A. Using the orthogonality relations we may show that $(\det D)^2 = |A|^{n-1}$.

Let \mathbb{Q}_{3^b} the field obtained by adjoining a primitive 3^b root of unity to \mathbb{Q} . Let S be the ring of algebraic integers in \mathbb{Q}_{3^b} and let P be a maximal ideal of S containing 2.

Then there is a matrix *E* with entries in \mathbb{Q}_{3^b} such that $DE = \alpha I$, where $\alpha \in \mathbb{Q}_{3^b}$, and α is not congruent to $0 \pmod{P}$. Set $\rho = \sum_{i=1}^n e_i \theta_i$, where e_1, \ldots, e_n are the entries of the first column of *E*. From the definition of induced characters, we have

$$\rho(a) = (1/|W|) \sum_{x \in G} \sum_{i} e_i \theta_i(xax^{-1}),$$

where $\theta_i(xax^{-1}) = 0$ if xax^{-1} is not in W. If $xax^{-1} \in W$, then $xax^{-1} \in A$, hence $\theta_i(xax^{-1}) = \beta_i(a^j)$. By the choice of e_1, \ldots, e_n , the value of the inner sum in the above formula is 0 unless $a^j = a$ or a^{-1} . It follows that $\rho(a) = \alpha |W:H|$, hence $\rho(a) \neq 0 \pmod{P}$. Since $\theta_i(a) \equiv 0 \pmod{P}$ this is impossible. \Box

References

- M. Benard, On the Schur indices of characters of the exceptional Weyl groups, Ann. of Math. 94(1) (1971) 89-107.
- [2] Z.I. Borevich, I.R. Shafarevich, Number Theory, Nauka, Moscow, 1972.
- [3] R. Gow, Groups whose characters are rational valued, J. Algebra 40 (1976) 280-299.
- [4] R. Gow, Real-valued characters and Schur index, J. Algebra 40 (1976) 258-270.
- [5] R. Gow, Real-valued and 2-rational group characters, J. Algebra 61 (1979) 388-413.
- [6] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.