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Abstract

A Q-group is a finite group all of whose ordinary complex representations have rationally
valued characters. Let G be a solvable (Q-group so that the Schur index mgr(x)=1 for all
7 € Irr(G). In [3, Note 1, p. 285] Gow asks if not, under these conditions, already mqg(y)=1
for all y €Irr(G). In this paper we shall prove that the answer of this question is positive.
The notations and definitions will be those of [6]. © 1999 Elsevier Science B.V. All rights
reserved.
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A Q-group is a finite group all of whose ordinary complex representations have
rationally valued characters. Let G be a solvable Q-group so that the Schur index
mp(x)=1 for all y€lr(G). In [3, Note 1, p. 285] Gow asks if not, under these
conditions, already mg(y)=1 for all y €Irr(G). In this paper we shall prove that
the answer of this question is positive. The notations and definitions will be those
of [6].

The following theorem is a version of Brauer—Witt theorem, obtained from maxi-
mality arguments of a kind used by Benard in [1, Section 3].

Theorem 1 (Benard [1], Gow [5]). Let y be an irreducible character such that
mr(x)=1 of the Q-group G. There is a subgroup W of G and a real-valued ir-
reducible character ¢ of W for which (@,yw) is odd and [Q(¢): Q) is odd. W can
be taken either to be a Sylow 2-subgroup of G or to have the form AH, where A
is a cyclic subgroup of odd order generated by an element a and H is a Sylow
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2-subgroup of Ng((a)). In the second case it can be assumed that A is not in the
kernel of o.

Theorem 2 (Gow [3, Theorem 1, Note 1]). Let G be a solvable Q-group such that
mp(x)=1 for all y €Irr(G). Then |G| =223,

Theorem 3. Suppose G is a 2-group. If y € Irr(G) is rational valued and has Schur
index mg(x) =1, then mg(y)=1.

Proof. Since mq,(3)=1 for all prime numbers p#2 and mr(y)=1, by Minkowski—
Hasse theorem and using the Hilbert symbol, it follows that mg(x)=1 (see [2]). O

Main Theorem. Suppose G is a solvable Q-group and mg(x)=1 for all y elrr(G).
Then mg(x)=1 for all y € Irr(G).

Proof. By Theorem 2 we have |G|=2°3% If |G|=2¢ the statement follows by
Theorem 3. Let y €Irr(G) and ¢, W,A,H,a be as in Theorem 1. Let K be a field
such that Q(¢) C K C Q(e), for ¢ a primitive |G|th root of unity such that |Q(¢): K|
is the 2-part of |Q(e) : Q(@)|. Let Hy= Cg(a).

Remark 1. By the choice of X and since |Q(¢): Q| is odd, |K: Q)| is odd.

Remark 2. Since G is a Q-group, Ng(4)/Cs(A4)~ Aut(4), hence a Sylow 2-subgroup
of Aut(4) is isomorphic to H/Hy. Let w be a primitive |4|th root of unity. By the
choice of K, a*,a’ are conjugate in H only if o, ®’ are conjugate under the action of
Gal(K(¢),K). Hence W =AH is K-elementary with respect to 2.

Case 1: W is a Sylow 2-subgroup of G. Since ¢ is a character of a 2-group and
[K:Q] is odd by Remark 1, ¢ is Q-valued.

Since (@, xw) is odd and mr(y)=1 by Brauer-Speiser theorem (which affirms that
if £ eIrr(G) is real valued then mg(§) < 2, see [6, p. 171]) it follows that mg(¢@)=1.
Then, by Theorem 3, mg(@)=1, so that mg(y)=1.

Case 2: W =AH, where A is nontrivial.

(a) If mg(p)=1 then mg(y)=1.

Proof. Since (x, ) is odd, it follows that my(y)= 1. It follows from [6, Lemma 10.4,
p. 162] for F=Q that mg(y) divides mq(9)|Q(¢):Q|(x,¢%). Now, |Q(¢): Q|
divides |K:Q)|, which is odd. In view of the Brauer—Speiser theorem and the fact
that |Q(¢): Q|(x,¢%) is odd, the previous relation implies that mg(x) divides

ma(®) =ma)(¢)=mk(@)=1 (see also [6, p. 161]). O

Remark 3. In the sequel we shall determine a splitting field for ¢. Let X be
a C-representation of ¢. By [6, Lemma 2.19, p. 23], g € ker(X) if and only if g €ker(¢).
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So, if Y is a C-representation of ¢/ker(¢p) then X(kg)=Y(g) is a C-representation of
¢. Hence, mp(@)=mp(p/ker()) for any complex number field F. Also, in the sequel
¥ appears only by yy and the used properties of ¢ and yp do not fail true factorization
by ker(¢). Thus we can suppose that ¢ is faithful.

(b) By Remark 2 and Theorem 4.3 of [1] we have that:
(1) there is A x u€Ir(4Hp) such that (1 x p)*# =¢.
(2) u is rational valued and is A invariant.
(3) 4 and y are faithful.
(c) Suppose that there is 7 € Irr(H) an extension of p. If mg(7)=1 then mg)(x) =1
and if besides Q(7)=Q then mo(y)=1.

Proof. Let t be an extension of u to H. We have that mg)(¢@) divides mgq)(1)
|Q(e,7): Q(1)|(@, ") by [6, Lemma 10.4]. It follows from Mackey’s theorem that
on = . Hence (¢,7") = (pu,7)= (1, 1)=(1t,7n,) = 1. Now suppose that mg,)(1)=
mg(t)=1. Then since mg(y) divides mg(p) and by the previous relation we have that
mag)(x) divides |Q(¢,7)|. The latter number is odd by assumption, so the Brauer—
Speiser theorem implies that mge)(x)=1. O

(d) There is an extension 7 of y to H and if mg(u)=1 then mg(z)=1.

Proof. Since H/H, is cyclic (|H/Hy|=2. since |a| =3%) by [6, Theorem 1.22, p. 186]
it follows that there is an extension 7 of u to H. Since (ty,, #)=1 if Q is a splitting
field for u it follows that mg(z)=1. O

(e) mg(pu)=1 iff 7 is real valued.

Proof. Let 1, t € H be a transversal of Hy in H such that 1> Hy and tar '=a"!,
Since ¢ is real valued and mg(@)=1, the Frobenius—Schur invariant v,(¢)=
va((2 X )y =1.

A direct computation shows that

va((A x py*)=(1/Hol) Y u((ht)?).
h€EH,

Then,

() =(1/|H) D 1) =(/|H])> u(x2)=(1/(2|H0|)(Zu(h2)+u((ht)2))).

x€H heH

Hence w(t) is O or 1. O

(f) To compute the Schur index of (A x ) over the field K, we can assume
that (4 x p)*# is K-primitive (i.e. is not induced from a K-valued character » of
a proper subgroup AH' of AH). Indeed, if there is a K-valued irreducible character ¢,
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of a proper subgroup W; of W such that ¢! = ¢ then by the general properties of the
Schur index mg(¢@)=mg(@;).

Then, applying Theorem 4.6 of [1] it follows that H;=HyNH’ is a dihedral or
quaternion group of order 8, or |Hy| < 2.

(g) If |H}| < 2 then p is linear. If |Hj| =1, or H' ~ 7, x 7, there is a rational-valued
extension 7 of u such that mg(t)=1 and the statement follows by (c).

If |Hy| =2, since v2(@)=1 and u is linear, an element of H’ — H] which inverts a
is an involution. Thus H' ~ 7, x Z».

(h) Let Hy be dihedral or quaternion group. Then |H| = 16. They are nine nonabelian
groups of order 16.

(1) H=H; x Hy, where H, is the dihedral group of order 8 and |H;|=2. Then
is rationally valued and mg(t)=1 and the statement follows by (c).

(2) H=H, x H,, where H; is the quaternion group of order 8 and |H,| =2. Then
v2(@) = —1. Thus this case is impossible.

(3) H is the generalized quaternion group. Then v;(¢)= —1. Hence this case is
impossible.

(4) H is the semidihedral group and H; is dihedral. Then v,(¢)= —1, impossible.

(5) H is semidihedral and Hj is quaternionic. Then 7 extends to a faithful char-
acter t of H with Q(1)=Q(iv2) and mg(1)=1. Since Q3 =Q3(iv/2) it follows by
(c) that mq,(¢)=1. Since mqg_ (¢)=1, by Hasse’s theorem (see [2]) it follows that
ma(@)=1.

(6) H={u,v,w|u* =0 =w? =1, uv=ovu, uw=wu, vwo=wu’}) and Hy is dihe-
dral. Then vy(¢@)=-1.

(7) H = Hy{x), with Hy= (u,v) dihedral, #* =v>=1, x>=u and x~'vx=uv. Then
va(@)=—1.

&) H={u,v,w|u* =v>=w? =1, uv=vu, uw=wu, vwo=wu?}) and Hj is quater-
nionic or H is generalized dihedral and Hy is dihedral. In both cases mq(¢@)=2 but
we shall prove using methods of [4], that these cases are impossible.

Let |[A|=2n+1 and f,..., B, be the characters of the n nontrivial irreducible real
representations of A. Then these characters can be extended to n characters ¢1,...,0,
of real representations of . To prove that, let w a primitive (2n+4 1) root of unity.
Then fi(a’)=w"” + w Y. Take «; to be the complex linear character of 4 defined by
o;(a’)=wY. Bach «; may be extended to an irreducible character 7; of AH, by putting
a(a’h)=a;(a’), for every h in Hy. The n induced characters ;=7 are real-valued
irreducible characters of W which extend the ;. Now it is easy to show that o; are
realizable in R by computing the Frobenius—Schur invariant v;(o;).

Let 6; =c?. Clearly 0; are rational valued. Let @ be an irreducible constituent of 6;.
Since mp(P) =1, ¢ must occur with even multiplicity, hence 6;(a)=0(mod2).

Let D be the nxn matrix with entries d;;=f;(a’). D is a nxn submatrix of
the real character table of 4. Using the orthogonality relations we may show that
(det D)2 = |4|"~ L.

Let Qj the field obtained by adjoining a primitive 3° root of unity to @. Let S be
the ring of algebraic integers in @3 and let P be a maximal ideal of S containing 2.
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Then there is a matrix £ with entries in Q3 such that DE = af, where a € (3, and
o is not congruent to 0(mod P). Set p:Z;'ZI e;0;, where ey,...,e, are the entries of
the first column of E. From the definition of induced characters, we have

p@) =/ > ebi(xax™),

x€G i

where 0;(xax~')=0 if xax~! is not in W. If xax~' € W, then xax~' € 4, hence 0,
(xax~')= Bi(a’). By the choice of ey,...,e,, the value of the inner sum in the above
formula is 0 unless a/=a or a~!. It follows that p(a)=«|W :H|, hence p(a)#
0 (mod P). Since 8;(a)=0(mod P) this is impossible. [
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