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One studies plane Cremona maps by focusing on the ideal theoretic
and homological properties of its homogeneous base ideal (“inde-
terminacy locus”). The leitmotiv driving a good deal of the work is
the relation between the base ideal and its saturation. As a pre-
liminary one deals with the homological features of arbitrary codi-
mension 2 homogeneous ideals in a polynomial ring in three vari-
ables over a field which are generated by three forms of the same
degree. The results become sharp when the saturation is not gen-
erated in low degrees, a condition to be given a precise meaning.
An implicit goal, illustrated in low degrees, is a homological classi-
fication of plane Cremona maps according to the respective homa-
loidal types. An additional piece of this work relates the base ideal
of a rational map to a few additional homogeneous “companion”
ideals, such as the integral closure, the μ-fat ideal and a seemingly
novel ideal defined in terms of valuations.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Let k be an algebraically closed field and let R = k[X] = k[X0, . . . , Xn] denote a polynomial ring
over k, endowed with the ordinary standard grading. A rational map F : Pn ��� Pn is defined by n + 1
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forms in R of the same degree. If F is birational then it is called a Cremona map. Cremona maps
are a classical subject that can do away with any general introduction. Yet, perhaps less known is a
fairly recent body of results on the nature and structure of an individual such map – rather than on
the structure of the Cremona group – that draws on modern geometric and algebraic tools (see, e.g.,
[4,19–21,24–26]).

In many aspects the properties of the base locus of F play a fundamental role, where the base
locus is the scheme defined by the base ideal I ⊂ R generated by the n + 1 forms defining F . There
is a neat difference between the base ideal and its ideal theoretic saturation Isat. Of course they are
both homogeneous ideals defining the same ideal sheaf, but it is I that reflects the nature of the
linear system defining the map. Thus, one could say perhaps appropriately that our approach is more
linear system minded than sheaf theoretic. For plane Cremona maps of degree at least 2, asking when
the base ideal I ⊂ R is saturated is tantamount to asking when R/I is a Cohen–Macaulay ring, i.e.,
when I is generated by the maximal minors of a 3 × 2 homogeneous matrix with entries in R . While
there are many rational maps on P

2, in any degree, defined by such ideals, the question for Cremona
maps becomes much tighter.

In this work we deal only with the plane case (n = 2), largely focusing on a comparison of these
two ideal theoretic versions of the base scheme. Furthermore, we exploit a nice interplay between
the algebraic properties of the base ideal and the geometry related to the underlying linear system
spanned by the coordinate forms defining the rational map. Classically, the role of the underlying
linear system comes through the weighted cluster associated to it. Exploiting the ideal theoretic side
of this linear system we introduce into the picture other ideals squeezed between the base ideal and
the so-called ideal of fat points (to which we refer simply as fat ideals) associated to the proper points
of the underlying cluster. Some of these have not been considered before in a systematic way and it
is not out of question that they might be used to further our understanding of Cremona maps in high
degrees.

Of course, fat point theory (see [11,13] and the core references therein) has undergone consid-
erable stirring, including an effort for classification of the homological types of the corresponding
homogeneous defining ideal J ⊂ R in the case of few points. For that purpose, research has focused
on properties of certain divisors on the blowup of the points defined by the scheme associated to J .
Other than this, an interest was also raised to gather information on the Hilbert function of J . How-
ever, to the best of our knowledge, the question as to when, for a given t � 1, a linear subsystem of
a k-basis of the k-vector space Jt defines a birational map, has been totally overlooked. This question
has an important place in the present work.

Our main results are Theorem 1.5, Theorem 2.7, Theorem 2.12 and Theorem 2.14.
We now proceed to a more detailed description of the sections.
Section 1 gives a hold of the homological properties of a codimension 2 homogeneous ideal I ⊂ R

generated by three forms of the same degree d � 2 in a polynomial ring R = k[x, y, z] over a field k.
The use of local cohomology and spectral sequences at this early stage is justified by a quick deriva-
tion of bounds on the regularity of R/I in terms of d and some sharp prediction for the Betti numbers
of the corresponding minimal free resolution. Furthermore, the true impact of these preliminaries is
toward the relation between I and Isat. Here a crucial assumption is that the initial degree of the
R-module Isat/I is at least d + 1. Coupled with the homological preliminaries this hypothesis triggers
further lower bounds for d if I is non-saturated, gives a sharp upper bound for the saturation expo-
nent in terms of the regularity, and allows to establish the Betti numbers of the resolution of R/I for
d � 7 (see Theorem 1.5 and Proposition 1.6).

We introduce other ideals naturally related to the base ideal I of a plane rational map. One of
these is a version of the usual fat ideal for the case when the rational map has infinitely near base
points. Of course, infinitely near points have a large history, both classical under the Zariski school,
and modern, with blowing-up and sheaf theoretic tools. However, the objective here is to introduce
a seemingly bona fide homogeneous ideal in the polynomial ring k[x, y, z] – as is the case of the
ordinary fat ideal – that contains and is closely related to the base ideal. Besides, it comes along with
another homogeneous ideal defined in terms of divisorial valuations; as it turns out, the latter is a
nice carrier to questions about the integral closure Ī of the base ideal I . Including the usual fat ideal
(associated to the proper base points of the map), one finds the base ideal as a successive subideal
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of three more ideals. It is possible moreover to bring into the picture both the saturation of I and
its integral closure Ī . In the case of a Cremona map, we end up with a sequence of inclusions with
I and the fat ideal as extremes and yields equalities throughout of the corresponding linear systems
spanned in the degree of the rational map. We intend to explore better the inclusions between these
ideals in a future work.

An additional aspect of interest, as a consequence of the present ideal theoretic and homological
steps, is a short proof that a Cremona map of degree � 4 is saturated (Theorem 1.5(i)), a result that
does not seem to have been explicitly proved before.

The second section studies the particulars of a Cremona map.
First is the case of a de Jonquières map, whose crucial role in understanding plane maps is well-

known. De Jonquières maps generate a subgroup of the entire group of Cremona transformations with
well-known group structure. Recently, there has been some intensive activity around the dynamic of
these maps. The latter catches the asymptotic character of the iterates of a Cremona map. Our purpose
here is to convey the ideal theoretic properties of a given map – a static view instead. Accordingly,
we introduce basic ideal theoretic properties of a de Jonquières map (Corollary 2.5), including a neat
description of the syzygies and the Rees ideal (defining the blowup) of the base ideal, in addition
to an analysis of the behavior of the powers of the latter (Theorem 2.7). Such a complete picture of
the ideal theoretic side of these maps does not seem to be found in the previous literature. In any
case, it is a first step toward a classification of homaloidal types in terms of ideal theoretic properties.
A main result of this part is Theorem 2.12 which explains the homological details of non-saturated
base ideals in degrees 5,6,7. The method can in principle be used to classify higher degrees as well,
but the results become more involved to describe.

Since 5 is the first degree where the base ideal of a plane Cremona map is not necessarily sat-
urated, we carry a homological characterization of the three known proper homaloidal types in this
degree. The result is given in Theorem 2.14.

At the end of the section we state a homological criterion for a restricted class of rational maps in
degree 4 to be Cremona (Proposition 2.17). This trades the Cohen–Macaulayness hocus-pocus for the
geometric background. This is just an example of such theorems and we believe that there are more
of the kind. A couple of questions is stated that may suggest further work on the subject along the
present lines.

For convenience we next give a short recap of the terminology used in classical plane Cremona
map theory (see [1] for most of the notions to follow).

Let F : P2 ��� P2 be a rational map. Knowingly, F is defined by three forms of the same degree
d � 1. Its base ideal is the ideal I ⊂ R = k[x, y, z] generated by these forms. As is of wide acceptance,
the k-vector subspace of Rd spanned by these forms is often called a linear system on P

2 (whereas it
is in fact a space of global sections of a suitably defined linear system or locally free sheaf of rank
one on P

2). Clearly, I is generated by the elements of this linear system which allows us to abuse
going back and forth between the two, often in an imprecise style.

If these forms have no non-trivial common factor – i.e., if the linear system has no fixed part
– then F is said to have degree d. In this case, I has codimension � 2 and hence, the radical of I
defines a reduced finite set V (I) of points. Clearly, the codimension of I is in this case exactly 2
if and only if I is not R+-primary (equivalently, the set of base points is nonempty). The points of
V (I) ⊂ P

2 are called proper base points of F – this terminology is suggestive of the existence of other
“improper” base points. Thus, if I has codimension 2 then it has a primary decomposition whose
minimal primary components are associated to the minimal primes of R/I defining the proper base
points V (I) = {p1, . . . , pr}. Since k is algebraically closed, every one of these primes is generated by
two independent linear forms.

We next recall the notion of (effective) multiplicity. Namely, given a variety X , a smooth point
p ∈ X and a hypersurface (divisor) D then the multiplicity ep(D) of D at p is the order of vanish-
ing of a local equation of D at p; algebraically, if f is a local equation of D at p, then ep(D) =
min{r � 0 | f r ∈ m}, where m is the maximal ideal of the local ring of X at p. For our purpose, X will
always be a smooth projective surface; more particularly, X is either P

2 or the resulting surface of
repeatedly blowing-up a reduced finite set of points on the latter.
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Going back to our rational map F : P2 ��� P
2, for each proper base point p j , j = 1, . . . , r, one

introduces into the picture a virtual multiplicity μp j = μp j (F ) := min{ep j ( f ) | f ∈ Id}. Note that the
subset of the linear system whose elements have at p j effective multiplicity equal to μp j forms an
open set U p j (in the set of parameters).

The complication in the theory is that, besides proper base points, F has built in other base points,
called infinitely near base points. To define these points, fix a proper base point p of F and let Bp
denote the surface obtained by blowing-up p on P

2. Let E p ⊂ Bp stand for the corresponding excep-
tional divisor. A point q ∈ E p is a base point infinitely near to p if it belongs to the proper transform of
every divisor in the open set U p as introduced above. We then define the virtual multiplicity of F at q
to be the integer μq = μq(F ) := {eq(D̃) | D ∈ U p}, where ˜ denotes proper transform. This procedure
is to be repeated successively (see [1, Definition 1.1.49] for the details).

The total set K of points, proper and infinitely near ones, is called the (the set of) base points of F .
The complete set μ = {μ1, . . . ,μr} of multiplicities corresponding to the base points, preceded by the
degree d of F , is the characteristic [1] of F – usually denoted (d;μ1, . . . ,μr) or (d;μm1

1 , . . . ,μmn
n ) to

account for the repetitions. The resulting cluster K = (K ,μ) is the (weighted) cluster of base points of F
or of the corresponding linear system – a notion that plays an important role in the classical Cremona
theory; we refer to [3] which contains a detailed study of this notion and its role in plane curve the-
ory. Thus, any rational map F : P2 ��� P2 with codimension 2 base ideal, and in particular, a Cremona
map with codimension 2 base ideal, carries a weighted cluster K = (K ,μ), consisting of the set of its
base points suitably ordered, along with the set of their corresponding virtual multiplicities (weights)
as explained above.

We also recall the classical equations of condition for a plane Cremona map of degree d (see
[1, 2.5]):

∑
p

μp = 3d − 3,
∑

p

μ2
p = d2 − 1, (1)

where p runs through the set of (proper and infinitely near) base points of the corresponding linear
system with respective multiplicities μp . An abstract configuration (d;μ1, . . . ,μr) satisfying the equa-
tions of condition is called a homaloidal type, and is denoted in the same fashion as the characteristic
of a Cremona map.

A Cremona map whose base points are proper is called simple.
A homaloidal type is called proper if there exists a plane Cremona map whose characteristic coin-

cides with it. There is an important practical tool to test whether a given homaloidal type is proper –
it is called Hudson test [1, Corollary 5.3.2].

1. Related ideal theory

1.1. Homological results

In this part we develop some generalities on resolutions of ideals generated by three forms.
The following basic statement about graded minimal resolutions does not seem to have been noted

before in this particular form. Its only use will be in the standard graded case, but because of its
possible independent interest it may be convenient to state it in the larger realm of positively graded
Noetherian ∗local rings (see [2, Definition 1.5.13]).

Lemma 1.1. Let (R,m) be a positively graded Noetherian ∗local ring and let I ⊂ m be a 3-generated homoge-
neous ideal with graded minimal free resolution

0 →
r−2⊕
m=1

R(−Dm)
ϕ3−→

r⊕
i=1

R(−di)
ϕ2−→

3⊕
l=1

R(−al)
ϕ1−→ R → R/I → 0. (2)

Assume D1 � · · ·� Dr−2 and d1 � · · · � dr . Then Dm � dm + 1 for all 1 � m � r − 2.
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Proof. By the Buchsbaum–Eisenbud criterion [10, Theorem 20.9], rank(ϕ3) = r − 2 and
grade(Ir−2(ϕ3)) � 3. Since the resolution is graded minimal, grade(Ir−2(ϕ3)) = 3. Therefore, the
Eagon–Northcott is a graded minimal resolution of Ir−2(ϕ3), which implies in particular that the
maximal minors of ϕ3 form a minimal set of generators of the ideal generated by these minors. In
particular, every maximal minor is nonzero.

Now set ϕ3 = (mij), with mij ∈ m, ∀i, j. We claim that deg(mii) � 0 for all 1 � i � r − 2. In-
deed, if Di � di for some i then for all p � i and q � i we would have deg(mpq) = Dq − dp �
Di − di � 0 and since mpq ∈ m, necessarily mpq = 0 for all p � i and q � i. It then follows that the
upper (r − 2) × (r − 2) submatrix of ϕ3 is of the following shape:

⎛
⎜⎜⎜⎜⎝

∗ .. 0 · · · 0

∗ .. 0 · · · ...

0 · · · 0
∗
· · · ∗

⎞
⎟⎟⎟⎟⎠ .

This determinant is obviously null, thus contradicting the above assertion. Therefore deg(Di) −
deg(di) = deg(mii) > 0 for all 1 � i � r − 2. �

Our focus in this work is on the case where (R,m) = (k[x0, x1, x2], (x0, x1, x2)) in which k is a field
and R is assigned the standard grading. We set Mˇ for the graded Matlis dual of an R-module into
k = R/m.

For a graded R-module M , we will denote

indeg(M) := inf{μ | Mμ �= 0},

with the convention that indeg(0) = +∞, and

end(M) := sup{μ | Mμ �= 0},

with the convention that end(0) = −∞.
As a matter of further notation, we set Isat := I : m∞ and denote by Iun the unmixed part of the

primary decomposition of the ideal I . Finally, ωR/I will denote the graded canonical module of R/I .
The duality piece in the next result is a special case of [5, Lemma 5.8], but we will give a proof

for the reader’s convenience and later reference.

Theorem 1.2. Let R = k[x0, x1, x2] and let I ⊂ R be an ideal of height 2 generated by 3 linearly independent
forms of degree d � 1. Then:

(i) (Isat/I)ˇ	 (Isat/I)(3d − 3); in particular, if I is not saturated then

end
(

Isat/I
)+ indeg

(
Isat/I

) = 3d − 3.

(ii) end(H1
m(R/I)) + 1 = − indeg(ωR/I ) + 1 � 2d − 3.

Proof. Note at the outset that I is a strict almost complete intersection generated in degree d � 2.
Consider the graded Koszul complex K• generated by a minimal generating set of I and set

Hi := Hi(K•) for its ith homology. Consider the complexes tensor product K• ⊗ C•
m , where C•

m is
the Čech complex on m. Consider the spectral sequence E associated to the total complex of the dou-
ble complex K• ⊗ C•

m . (For details on this terminology, we refer to [10, Sections A3.13.4 and A3.13.5].)
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Note that Hq−p(Tot(E•,•)) = ∞E−p,−q
hor . Putting this complex in the third quadrant, the terms of the

second spectral sequence are

2E−p,−q
ver =

⎧⎪⎨
⎪⎩

Hq
m(R/I) if p = 0 and q = 0,1,

H1
m(H1) if p = 1 and q = 1,

0 otherwise;

2E−p,−q
hor =

⎧⎨
⎩

(H0(3d − 3))ˇ if p = 3 and q = 3,

(H1(3d − 3))ˇ if p = 2 and q = 3,

0 otherwise.

Therefore, by the convergence of the spectral sequence, the homology of the total complex is
filtered by elements on the diagonal of ∞E•,•

ver which contains ∞E−p,−q
ver . The only non-trivial filtration

thus obtained is for H0(Tot(E•,•)) = (H0(3d − 3)) ,̌ which is the following short exact sequence:

0 → H1
m(H1) → (

H0(3d − 3)
)ˇ→ H0

m(R/I) → 0. (3)

Since I is an almost complete intersection, one has H1 	 ωR/I 	 Ext2(R/I, R)(−3d). Moreover,
quite generally, ωR/I = ωR/Iun . Therefore, by graded duality [2]

H1
m(H1) 	 (

Ext2(Ext2(R/Iun, R
)
(−3d), R(−3)

))ˇ	 (
R/Iun(3d − 3)

)
,̌

where the rightmost isomorphism is due to the Cohen–Macaulayness of R/Iun.
Then the exact sequence (3) becomes

0 → (
R/Iun(3d − 3)

)ˇ→ (
R/I(3d − 3)

)ˇ→ H0
m(R/I) → 0. (4)

Thus H0
m(R/I) 	 (Iun/I) (̌3 − 3d). Since H0

m(R/I) = Isat/I and Isat = Iun in the present context, we
are done for (i).

To prove (ii), note that R/Isat is a CM ring of dimension 1 and that Isat/I is a module of finite
length; thus H1

m(R/I) = H1
m(R/Isat). Then

end
(

H1
m(R/I)

) + 1 = − indeg(ωR/Iun) + 1 = − indeg(ωR/I ) + 1

= − indeg
(
Ext2(R/I, R)(3d − 3)

)+ 1.

On the other hand, we may assume that k is infinite, hence

Ext2(R/I, R)(3d − 3) = (α : I/α)(2d − 3),

where α is a maximal regular sequence of d-forms in I . Since I is not complete intersection,
indeg((α : I/α)) � 1. Collecting the information, we arrive at the statement. �
Proposition 1.3. Let R = k[x0, x1, x2] and let I ⊂ R be an ideal of codimension 2 generated by 3 linearly
independent forms of degree d � 1 with minimal graded free resolution

0 →
r−2⊕
i=1

R(−Di) →
r⊕

i=1

R(−di) → R3(−d) → R → R/I → 0 (r � 3). (5)
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Then:

(i) The minimal free resolution of Isat/I as an R-module has the form

0 →
r−2⊕
i=1

R(−Di) →
r⊕

i=1

R(−di) →
r⊕

i=1

R(di − 3d) →
r−2⊕
i=1

R(Di − 3d) → Isat/I → 0 (6)

where the leftmost map is the same as that of (5).
(ii) If in addition Isat

d = Id and Isat
i = 0 for i < d, then the resolution of Isat is

0 →
r⊕

i=1

R
(−(3d − di)

) → R3(−d)

r−2⊕
i=1

R
(−(3d − Di)

) → Isat → 0. (7)

Proof. (i) Applying HomR(−, R(−3)) to (5) yields a minimal free presentation

r⊕
i=1

R(di − 3) →
r−2⊕
i=1

R(Di − 3) → Ext3(R/I, R(−3)
) → 0.

On the other hand, by graded duality and by the exact sequence (4) one has

Ext3(R/I, R(−3)
) 	 H0

m(R/I)ˇ= (
Isat/I

)
(3d − 3).

Therefore, we have a free presentation

r⊕
i=1

R(di − 3) →
r−2⊕
i=1

R(Di − 3) → (
Isat/I

)
(3d − 3) → 0. (8)

Shifting by −3d + 3 yields a free resolution of the form

0 →
l−2⊕
i=1

R(−ai) →
l⊕

i=1

R(−bi) →
r⊕

i=1

R(di − 3d) →
r−2⊕
i=1

R(Di − 3d) → Isat/I → 0, (9)

with suitable integers l,ai,bi . Applying HomR(−, R(−3)) to the latter yields a free complex resolving
the third homology Ext3(Isat/I, R(−3)). But, again by graded duality plus the fact that H0

m(Isat/I) =
Isat/I by definition of Isat, and using Theorem 1.2(i), we get

Ext3(Isat/I, R(−3)
) 	 (

Isat/I
)
(3d − 3).

Shifting by −3d + 3 once more yields a free resolution of the form

0 →
r−2⊕
i=1

R(−Di) →
r⊕

i=1

R(−di) →
l⊕

i=l

R(bi − 3d) →
l−2⊕
i=1

R(ai − 3d) → Isat/I → 0. (10)

Comparing (9) and (10), the uniqueness of the minimal free resolution yields the assertion.
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(ii) Since R/Isat is Cohen–Macaulay, the hypothesis of the item implies a graded minimal resolution
of the form

0 →
s+2⊕
i=1

R(αi) →
(

s⊕
i=1

R(−βi)

)
⊕ R3(−d) → Isat → 0.

In order to determine the shifts αi, βi , we consider a map of complexes lifting the inclusion I ⊂ Isat

0 0
⊕s+2

i=1 R(αi) (
⊕s

i=1 R(−βi)) ⊕ R3(−d) Isat 0

0
⊕r−2

i=1 R(−Di)
⊕r

i=1 R(−di) R3(−d)

ι

I 0

with ι the inclusion in the “second” coordinate. Now, the mapping cone of this map

0 →
r−2⊕
i=1

R(−Di) →
r⊕

i=1

R(−di) →
s+2⊕
i=1

R(αi) ⊕ R3(−d) →
(

s⊕
i=1

R(−βi)

)
⊕ R3(−d)

is a free resolution of Isat/I . Canceling the non-minimal part coming from the summand R3(−d),
yields a minimal free complex. Comparing with (6) yields s = r, αi = di − 3d, βi = 3d − Di . �
1.2. A critical lower bound for Isat/I

If I is a homogeneous ideal minimally generated in some degree d � 1, but non-saturated, typically
Isat/I will have minimal generators in degrees � d. In this part, we derive substantial consequences
by requiring that the initial degree of Isat/I be d + 1. For later use, we remark that this critical bound
holds true when I is the base ideal of a Cremona map [20, Proposition 1.2].

First is an upper bound for the regularity in terms of d.

Corollary 1.4. Let R = k[x0, x1, x2] and let I ⊂ R be an ideal of codimension 2 generated by 3 linearly inde-
pendent forms of degree d � 1. If indeg(Isat/I)� d + 1 then reg(R/I) � 2d − 3.

Proof. By definition, one has

reg(R/I) = max
{

end
(

H0
m(R/I)

)
,end

(
H1
m(R/I)

)+ 1
}
.

By Theorem 1.2(ii), end(H1
m(R/I)) + 1 � 2d − 3. Thus, we are done if I is saturated because

end(H0
m(R/I)) = −∞.

If I is not saturated, then

end
(

H0
m(R/I)

) = 3d − 3 − indeg
(

Isat/I
)
� 3d − 3 − (d + 1) = 2d − 4,

by Theorem 1.2(i) and the hypothesis. Hence we are done in this case too. �
Theorem 1.5. Let R = k[x0, x1, x2] and let I ⊂ R be an ideal of codimension 2 generated by 3 linearly inde-
pendent forms of degree d � 1 with minimal graded free resolution
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0 →
r−2⊕
m=1

R(−Dm) →
r⊕

i=1

R(−di) → R3(−d) → R → R/I → 0 (r � 3), (11)

where D1 � · · · � Dr−2 and d1 � · · · � dr . If indeg(Isat/I)� d + 1 then:

(i) d � 5.
(ii) reg(R/I) = 3d − 3 − indeg(Isat/I) = D1 − 3 � 2d − 4.

(iii) r � d − 2.

Proof. (i) This follows from the equation end(Isat/I) + indeg(Isat/I) = 3d − 3 in Theorem 1.2(i) and
from the assumption indeg(Isat/I) � d + 1. Indeed, one has

2d + 2 � 2 indeg
(

Isat/I
)
� end

(
Isat/I

)+ indeg
(

Isat/I
) = 3d − 3,

hence d � 5.
(ii) Since reg(R/I) = max{d − 1,d1 − 2, D1 − 3}, Lemma 1.1 gives reg(R/I) = D1 − 3. By Proposi-

tion 1.3 and the hypothesis, 3d − D1 = indeg(Isat/I) � d + 1. Assembling yields reg(R/I) = D1 − 3 =
3d − 3 − indeg(Isat/I)� 2d − 4.

(iii) From the resolution of R/I its Hilbert series is

1 − 3td +∑r
i=1 tdi −∑r−2

m=1 t Dm

(1 − t)3
, (12)

with a pole of order 2 at t = 1 since dim R/I = 1. Taking t-derivatives of the numerator of (12)
evaluated at t = 1 (see [2, 4.1.14]), one obtains the following relation

dr + dr−1 =
r−2∑
m=1

(Dm − dm) + 3d. (13)

Now, Lemma 1.1 implies that
∑r−2

m=1(Dm − dm) + 3d � r − 2 + 3d. On the other hand, part (ii) yields
reg(R/I) � 2d−4 which implies d1 � 2d−2. Therefore dr +dr−1 � 4d−4. Assembling the inequalities,
we get r − 2 + 3d � 4d − 4, hence r � d − 2 as required. �

As a consequence of the above results, one can classify the virtual resolutions along with the corre-
sponding twists in case of low values of d. In the subsequent sections we will deal with the question
whether such virtual resolutions are in fact realized by the base ideal of a plane Cremona map – note
that realizability is a question only when the resolution has length at least 3. We emphasize that
in the case where I is saturated the virtual resolutions are easily computed by means of (13) and
Corollary 1.4.

Proposition 1.6. With the same notation and hypotheses as in Theorem 1.5, one has:

(i) If d = 5, the minimal free resolution of R/I is
0 → R(−9) → R3(−8) → R3(−5) → R.

(ii) If d = 6, the minimal free resolution of R/I is one of the following:
0 → R2(−11) → R4(−10) → R3(−6) → R, or
0 → R(−11) → R2(−10) ⊕ R(−9) → R3(−6) → R.

(iii) If d = 7, the minimal free resolution of R/I is one of the following:
0 → R3(−13) → R5(−12) → R3(−7) → R,
0 → R2(−13) → R3(−12) ⊕ R(−11) → R3(−7) → R,



S.H. Hassanzadeh, A. Simis / Journal of Algebra 371 (2012) 620–652 629
0 → R(−13) → R(−12) ⊕ R2(−11) → R3(−7) → R,
0 → R(−12) → R3(−11) → R3(−7) → R, or
0 → R(−13) → R2(−12) ⊕ R(−10) → R3(−7) → R.

Proof. First recall the following strand of inequalities from the proof of Theorem 1.5(iii):

4d − 4 � dr + dr−1 =
r−2∑
m=1

(Dm − dm) + 3d � r − 2 + 3d � 1 + 3d. (14)

(i) If d = 5, then r = 3 by Theorem 1.5(iii) and the inequalities in (14) are all equalities, whence
d3 = d2 = d1 = 2d − 2 = 8 and D1 − d1 = 1.

(ii) If d = 6 then r = 3 or r = 4 by Theorem 1.5(iii). In the case where r = 4, the inequalities in
(14) are all equalities except the rightmost one and there is one single solution. The shifts turn out
to be as stated. If r = 3 then (14) yields two virtual solutions, with D1 = 11 or D1 = 12. However, by
Theorem 1.5(ii), only D1 = 11 is possible and the shifts are as stated.

(ii) If d = 7 then 3 � r � 5 by Theorem 1.5(iii). The case r = 5 yields again equalities throughout
(14) except for the rightmost inequality and there is one single solution, as stated.

For r = 4, from (14) we deduce that d3 � r +d + 1 = 12 = 2d − 2, hence d3 = d2 = d1 = 2d − 2 = 12
as this is the highest possible value. As a consequence, both D1 and D2 attain the upper bound
2d − 1 = 13. Thence the equality d4 + d3 = ∑r−2

m=1(Dm − dm) + 3d = 23 gives d4 = 11, as stated.
For r = 3 the argument is slightly more involved, but again (14) yields the result: the third and

fourth possibilities on the list stem from the equality d2 = d + r + 1 = 11 which gives d3 = 11 and
d1 = 12 or d1 = 11 and accordingly D1 = d1 + 1 = 13,12. The last case listed is when d2 = 12, the
largest possible value. Accordingly, from (14) comes d2 = d1 = D1 − 1 = 12, hence d3 = 10. �

For an ideal I in a standard graded or local ring (R,m) over a field one defines the saturation
exponent of I as st(I) := min{s ∈ N | Isat = I : ms}. This number has been variously called saturation
index or satiety.

Corollary 1.7. With the same notation and hypotheses as in Theorem 1.5, one has:

(i) st(I) � 2reg(R/I) − 3d + 4 � d − 4.
(ii) If the module Isat/I is minimally generated by elements of a fixed degree then st(I) = 2reg(R/I)−3d +4.

In particular, this equality holds for d � 7.

Proof. (i) Let i0 = indeg(Isat/I) and e = end(Isat/I). Then

me−i0+1(Isat/I
)

j ⊂ (
Isat/I

)
e+ j−i0+1 = {0},

for all j � 0, because j � i0 as soon as (Isat/I) j �= {0}. Therefore st(I) � e − i0 + 1. On the other hand
Theorem 1.2(iii) and Theorem 1.5(ii) yield e − i0 + 1 = 2reg(R/I) − 3d + 4 � d − 4.

(ii) By Proposition 1.3, Isat/I is generated by elements in (Isat/I)i0 . Therefore it obtains 0 �=
(Isat/I)e ⊆ me−i0(Isat/I)i0 thus yielding the required equality.

Finally, for d � 7, Proposition 1.6 together with Proposition 1.3(i) shows that Isat/I is generated in
fixed degree. �
1.3. Analogues of the fat ideal

In this portion we wish to get hold of other homogeneous ideals closely related to the base ideal
of a rational map F : P2 ��� P2 without fixed part. For the sake of clarity, we briefly go back to some
of the notions given in the Introduction.
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Letting K = (K ,μ) denote the weighted cluster of the linear system defining F , one can consider
the μ-fat ideal

FK := I(p1)
μ1 ∩ · · · ∩ I(pr)

μr ,

corresponding to the proper points of K , where I(p j) stands for the defining prime ideal of the proper
point p j . Thus, for a plane rational map F whose base points are all proper, the μ-fat ideal is a rough
ideal theoretic saturated approximation to the base ideal of F .

One advantage of the fat ideal is that the degree of the corresponding scheme is automatic:

e(R/FK) =
r∑

j=1

μ j(μ j + 1)

2
. (15)

Now, if k is algebraically closed (or if we consider only rational points) then I ⊂ FK . This is because
saying that a form f ∈ R has multiplicity at least μ j locally at the prime I(p j) ⊂ R is equivalent to
asserting that f ∈ I(p j)

(μ j) = I(p j)
μ j (the equality holding because I(p j) is a complete intersection).

This allows for a comparison of the two ideals and shows that e(R/I)�
∑r

j=1
μ j(μ j+1)

2 .
On the other hand, since the saturation Isat = I : (R+)∞ of I coincides with the unmixed part of I ,

it is the smallest unmixed ideal (by inclusion) containing I . Since FK is unmixed by definition and
has same radical as I , one has the valuable setup I ⊂ Isat ⊂ FK , with all three ideals sharing the same
radical.

Alas, if the map has infinitely near points among its base points, then the μ-fat ideal is no longer
the “tightest” ideal to look at. A “correction” is available by introducing two new ideals, one of which
is based on the classical theory of (weighted) clusters and the corresponding blowup gadgets. We
now proceed to establish these definitions.

Definition 1.8. Let K = (K ,μ) denote a weighted cluster.

• A plane curve C ⊂ P
2 passes virtually through K if the divisor on BK

C̄ K −
∑
p∈K

μp Ē K
p (16)

is effective, where BK is the blowup of the set K on P
2, C̄ K and Ē K

p are the total transform of C

and the total p-component of the exceptional divisor E K , respectively (see [1, Definition 1.1.38]).
• Given m � 1, let �K(m) ⊂ Rm consist of all forms f of degree m such the curve C = V ( f ) passes

virtually through K.

Set IK := ⊕
m�0 �K(m) ⊂ R . Then IK is an ideal (not just a vector subspace) of R – we call it the

full ideal of curves through K.
The difficulty in handling the algebraic properties of the full ideal of curves is due to the nature of

the notion in (16). One can modify it to requiring, equivalently, that

C̃ K −
∑
p∈K

(
ep(C) − μp

)
Ē K

p (17)

be effective, where C̃ K now denotes the proper transform of C in BK (use [1, Lemma 1.1.8]). Since
C̃ K is an effective divisor, the condition that C passes through the cluster K means that the divisor∑

p∈K (ep(C) − μp)Ē K
p is effective.
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If we had Ẽ K
p instead of Ē K

p in this divisor, then the condition would simply require the inequalities
ep(C) � μp for every p ∈ K . To still express the actual condition in terms of inequalities, one resorts
to the notion of the proximity matrix PK of the cluster K, whose entries are exactly the coefficients of
each Ẽ K

p in terms of all Ē K
q , with q ∈ K (see [1, Corollary 1.1.27 and Definition 1.1.28]).

For reference convenience, we state the final expression in a separate result:

Lemma 1.9. A plane curve C ⊂ P
2 passes virtually through K if and only if

P−1
K · (eK (C) − μK

)t � 0, (18)

where eK (C) (respectively, μK ) denotes the vector of effective multiplicities at the points of K (respectively,
the vector of virtual multiplicities of K), and −1 , t denote matrix inverse and matrix transpose, respectively.

To make sense, the above inequality relies on the fact that det(PK) �= 0 – actually this matrix is
unimodular, so its inverse is an integer matrix; moreover, it can be shown that the inverse has only
nonnegative entries [1, Lemma 1.1.32].

As a preliminary to the subsequent results we can now prove without difficulty:

Proposition 1.10. Let F : P2 ��� P
2 be a rational map without fixed part, with cluster of base points K =

(K ,μ) and base ideal I ⊂ R. Then:

(a) I ⊂ IK .
(b) IK ⊂ FK := ⋂

j ℘
μ j

j (“fat” ideal), where ℘ j ⊂ R is the homogeneous prime ideal of the proper point
p j ∈ K . If, moreover, K consists of proper points then IK = FK .

Proof. (a) Let d be the degree of F . By the very nature of the definition of the associated weighted
cluster K of F , any curve of the linear system in degree d defining F passes virtually through K –
note that the condition in (18) is here verified “on the nose” through the inequalities ep(C) �μp for
every p ∈ K . Therefore Id ⊂ (IK)d . It follows that Im ⊂ (IK)m for every degree m � d. If m < d then
Im = {0}, hence Im ⊂ (IK)m holds trivially. Thus, I ⊂ IK .

(b) PK is a block-diagonal matrix and it can be arranged so that the submatrix corresponding
to the proper points is the identity matrix; then the inverse P−1

K will also contain an identity block
that multiplies the proper part of the vector (eK (C) − μK )t . On the other hand, it follows from the
definitions that

FK = {
f ∈ R: ep( f )�μp, ∀proper p ∈ K

}
.

Therefore, the inclusion IK ⊂ FK follows immediately.
The second statement of this item is a direct consequence of the part just proved. �
To proceed, we need the following order of ideas.
Recall that given a Noetherian domain R with field of fractions Q , a valuation ring (V ,mV ) of

Q containing R is called a divisorial valuation ring on R if the transcendence degree of V /mV over
RmV ∩R/(mV ∩ R)mV ∩R is ht(mV ∩ R) − 1. The corresponding valuation of V will be called a divisorial
valuation relative to R . Let D(R) denote the set of the divisorial valuations on R .

Given v ∈ D(R) and an ideal I ⊂ R , one denotes v(I) := min{v( f ) | f ∈ I} – this is well-defined
since I is finitely generated and a divisorial valuation ring is a rank one discrete valuation ring (see
[27, Definition 6.8.9 and Theorem 9.3.2]).

Assume now that R = ⊕
m�0 Rm is a standard graded domain over a field k.
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Definition 1.11. Given a homogeneous ideal I ⊂ R and an integer m � 0, set

Ĩ(m) =
⋂

v∈D(R)

{
f ∈ Rm

∣∣ v( f )� v(I)
}

and Ĩ = ⊕
m�0 Ĩ(m).

Since v is a valuation, it is clear that Ĩ(m) is a vector subspace of Rm and Ĩ is a homogeneous
ideal such that Ĩm = Ĩ(m) for every m � 0. We will call Ĩ the divisorial cover ideal of I . We next give a
more ideal theoretic formulation of this ideal:

Lemma 1.12. Notation being as above, let in addition R v denote the valuation ring on R corresponding to a
given v ∈ D(R). Then

Ĩ =
⊕
m�0

( ⋂
v∈D(R)

(I R v ∩ Rm)

)
.

Proof. Note that both sides of the sought equality are homogeneous ideals of R , hence it suffices
to show the equality of the homogeneous parts of the same degree. Thus, fix m � 0 and v ∈ D(R).
Let g ∈ R be such that v(g) = v(I). Then f ∈ Rm belongs to Ĩm if and only if v( f /g) � 0, i.e, if and
only if f /g ∈ R v . This shows that Ĩm = g R v ∩ Rm ⊂ I R v ∩ Rm . Conversely, if f = gu ∈ I R v ∩ Rm , with
g ∈ I and u ∈ R v , then v( f ) = v(g) + v(u) � v(g)� v(I), hence f ∈ Ĩm . Since f is arbitrarily taken in
I R v ∩ Rm , it follows that I R v ∩ Rm ⊂ Ĩm . �

Given an ideal I ⊂ R , let Ī ⊂ R denote its integral closure.

Corollary 1.13. Let R be a standard graded domain over a field and let I ⊂ R denote a homogeneous ideal.
Then Ī ⊂ Ĩ .

Proof. First note that the integral closure Ī of I is still homogenous. On the other hand, one has
Ī = ⋂

v(I R v ∩ R), where this time around v varies over all rank one discrete valuations of Q positive
on R [27, Proposition 6.8.2]. Clearly, Ī = ⋂

v(I R v ∩ R) = (
⋂

v I R v ) ∩ R , hence Īm = (
⋂

v I R v ) ∩ Rm =⋂
v(I R v ∩ Rm) for v varying over the rank one discrete valuations positive on R . Since the divisorial

valuations on R are among the latter, we can apply Lemma 1.12 to conclude. �
For the next result we need the following basic result, part of which holds more generally in any

dimension. For the sake of both simplicity and objectiveness we stick to the 2-dimensional case.

Lemma 1.14. Let X stand for a smooth surface over k and let p ∈ X. Denote by (Op,mp) the local ring of p on
P

2 and its unique maximal ideal. Let op stand for the order function relative to mp . Then:

(a) op extends to divisorial valuation v p centered on Op .
(b) Let F : P2 ��� P2 be a rational map with base ideal I and weighted cluster K = (K ,μ); then v p(I) = μp

for every p ∈ K .

Proof. (a) This is a well-known fact going back to Zariski et al. – a good reference is [27, Theo-
rem 6.7.9].

(b) This part follows from the fact that any proper or infinitely near point of K is a point on some
(smooth) surface obtained as a successive blowup of a point on P

2 – so one can apply part (a) – and
the definition of μp . Indeed, tracing through this notion one sees that μp is obtained by evaluating
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the order function at that step on the corresponding extension of the ideal I . To see the latter, observe
that, at each infinitely near point p, μp takes value on a nonempty open subset of the parameters. �
Proposition 1.15. Let I ⊂ R be the base ideal of a rational map F : P2 ��� P

2 with weighted cluster K =
(K ,μ). Then Ĩ ⊂ IK .

Proof. For every p ∈ K let v p as in Lemma 1.14(a) denote the divisorial valuation ring induced by the
order function defined on the local ring (Op,mp). Then, by Lemma 1.14(a) and (b), one has

Ĩm =
⋂

v∈D(R)

{
f ∈ Rm

∣∣ v( f )� v(I)
} ⊂

⋂
p∈K

{
f ∈ Rm

∣∣ v p( f )� v p(I)
}

=
⋂
p∈K

{
f ∈ Rm

∣∣ v p( f )�μp
}
,

for every m � 0.
On the other hand, (IK)m = { f ∈ Rm | P−1

K · (eK ( f ) − μK )t � 0}. Now, for p ∈ K , the effective mul-
tiplicity ep is also given by the order function, hence ep( f ) = v p( f ) for every p ∈ K . As already
observed and used, P−1

K has only nonnegative entries. Therefore, eK ( f ) − μK = vK ( f ) − μK � 0 cer-

tainly implies that P−1
K · (eK ( f ) − μK )t � 0.

This concludes the proof of the statement. �
We collect the various results in the following

Theorem 1.16. Let I ⊂ R be the base ideal of a rational map F : P2 ��� P2 with weighted cluster K. Then

I ⊂ Ī ⊂ Ĩ ⊂ IK ⊂ FK.

1.4. Complements

We state a basic fact of standard graded rings, reminiscent of an argument in the proof of [14,
Theorem 5.19]. It gives an Artin–Rees type of equality “on the nose” (see [27, Chapter 13] for the
known aspects relating Artin–Rees and integral closure in more generality).

Proposition 1.17. Let (R, R+) denote a standard graded ring over a field k and its maximal irrelevant ideal.
Write n := edim(R) = dimk R1 . Let I ⊂ R+ stand for a homogeneous ideal of codimension � 2 generated
by n k-linearly independent forms of degree d, for some d � 1. Given a homogeneous ideal J ⊂ R+ such that
Id = Jd, one has:

(a) For any integer j � 0,

R j
+ J ∩ I = R j

+ I. (19)

(b) If, moreover, J ⊂ I : R∞+ then J is integral over I .

Proof. Clearly, I ⊂ J . Moreover, J� = {0} for � < d. Indeed, if 0 �= g ∈ Jd−1 then R1 g ⊂ Jd = Id . Since
R1 g is spanned by k-linearly independent elements and Id has k-vector dimension n, it follows that
I = (R1 g), hence I would have codimension � 1.

To prove (a), it clearly suffices to show the inclusion R j
+ J ∩ I ⊂ R j

+ I . Now, since R+ is the maximal

irrelevant ideal of R , then R j = (R j
+) j for any j � 0. Therefore, since I� = {0} for � < d, one can write
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Id+ j = R j Id = (R j
+) j Id , for any j � 0 (any linear form that multiplies the generators of I into Id+1 can

be absorbed by R+).
Since R j

+ J ∩ I ⊂ I , it follows that

(
R j

+ J ∩ I
)

d+ j ⊂ Id+ j = (
R j

+
)

j Id ⊂ (
R j

+ I
)

d+ j,

for any j � 0. On the other hand, we have J� = {0} for � < d as shown above. Therefore
(R j

+ J )�+ j = {0} for � < d and any j � 0. Thus, finally one has R j
+ J ∩ I ⊂ R j

+ I for any j � 0, as
required.

To prove (b), one notes that the hypothesis implies the inclusion Rs+ J ⊂ I for some s � 0. Then
clearly Rs+ J = Rs+ J ∩ I ⊂ Rs+ I . Therefore the result follows from the so-called determinantal trick (see
[27, Corollary 1.1.8]). �

As an immediate consequence of this criterion and the results of the previous subsection, we file
the following result.

Proposition 1.18. Let I be the base ideal of a Cremona map of degree d � 1 of P2 with weighted cluster K.
Then

I ⊂ Isat ⊂ Ī ⊂ Ĩ ⊂ IK ⊂ FK.

Supplement. Id = Isat
d = Īd = Ĩd = (IK)d.

Proof. By [20, Proposition 1.2], Id = Isat
d . Thus, we can apply Proposition 1.17(b) to conclude that

Isat ⊂ Ī . The other inclusions were proved in Theorem 1.16.
The statement in the supplement follows from [1, Proposition 2.5.2] in which it is shown that

Id = (IK)d . �
Note that [20, Proposition 1.2] translates into the basic assumption of the previous section, namely,

that indeg(Isat/I) � d + 1. Thus, Theorem 1.2 and all of its consequences are immediately applicable
and will subsequently be drawn upon. For example, one has:

Proposition 1.19. Let I = (Id) ⊂ R = k[x0, x1, x2] (d � 2) stand for the base ideal of a plane Cremona map
without fixed part. If I is non-saturated then d � 5 and:

(i) (d2 + 3d − 4)/2 � e(R/I)� (5d2 − 21d)/2, where lower bound is for the case where the base points are
proper, while the upper bound is valid for d � 6.

(ii) 2d − 4 − �(d − 5)/2� � reg(R/I) � 2d − 4.

Proof. The bounds for the regularity follows from Theorem 1.5(ii) and the inequalities 2(reg(R/I) +
2) � dr + dr−1 � 1 + 3d in (14). As to the upper bound for the multiplicity, it comes out of the
following equality derived from (12)

e(R/I) =
r∑

i=1

(
di

2

)
−

r−2∑
m=1

(
Dm

2

)
− 3

(
d

2

)
. (20)

The lower bound e(R/I)� e(R/FK) = (d2 + 3d − 4)/2 has been previously explained, where FK is the
fat ideal as above and after using the equations of condition (1). �
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Remark 1.20. It would be interesting to obtain an estimate of e(R/IK) in order to get tighter lower
bounds for e(R/I).

Observe that, in contrast to the intangible ideal theoretic properties of the full ideal of curves IK ,
the fat ideal based on the proper part of K is unmixed and integrally closed. An immediate conse-
quence of this facet is the following.

Corollary 1.21. Let F be a plane rational map without fixed part and base ideal I , and let FK denote the fat
ideal associated to the proper part of the corresponding weighted cluster of F . If FK = Isat then FK is the
integral closure of I .

Proof. Since FK is integrally closed and I ⊂ FK then the integral closure Ī of I is contained in FK .
By Proposition 1.17(b), FK ⊂ Ī . Therefore, FK = Ī . �
Example 1.22. An instance of the above is a simple Cremona map of homaloidal type (5;26) (see the
proof of Theorem 2.14).

Finally, using Proposition 1.18 and Theorem 1.5 one gets:

Corollary 1.23. Let I = (Id) ⊂ R = k[x0, x1, x2] (d � 2) stand for the base ideal of a plane Cremona map
without fixed part. If d � 4 then I is saturated.

2. Steps in the classification of plane Cremona maps

2.1. de Jonquières maps

Among plane Cremona maps, the so-called de Jonquières map plays a fundamental role going
back at least to Castelnuovo’s celebrated proof of Noether theorem [1, Proposition 8.3.4]. Follow-
ing [1, 2.6.10], we define it as a plane Cremona map of degree d � 2 whose homaloidal type is
(d;d − 1,12d−2).

A basic geometric datum is its close association with the so-called monoids. Besides, this class of
maps enjoys many interesting properties from the algebraic and homological viewpoints. It may be
convenient to give an overview of some of these properties and describe some relevant families of
such maps.

Monomial de Jonquières maps
An important class of Cremona maps is that of monomial Cremona maps.

Definition 2.1. A monomial Cremona map is a Cremona map in P
n whose base ideal is generated by

monomials in k[x0, . . . , xn].

There is as of now a reasonably extensive literature on these maps (see, e.g., [6–8,24–26]). It is on
itself a guiding case study. The following proposition covers some basic properties of plane such maps
and gives a characterization of plane monomial de Jonquières maps; parts (c) and (d) below seem to
be new.

Proposition 2.2. Let F : P2 ��� P2 denote a plane monomial Cremona map and let I ⊂ R stand for its base
ideal. Then:

(a) Up to permutation of the variables (source) and the defining monomials (target), the base ideal I is one of
the following:
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• (xy, xz, yz).
• (xd, xd−1 y, yd−1z), with d � 1.
• (xd, xd−(a+b) yazb, yd−c zc), with abc �= 0, d � a + b and ac − b(d − c) = ±1.

(b) I is saturated.
(c) F is a de Jonquières map exactly in the following cases:

• (xy, xz, yz).
• (xd, xd−1 y, yd−1z), with d � 2.
• (xd, xyzd−2, yzd−1), with d � 3.

(d) If F is a de Jonquières map then I is an integrally closed ideal exactly in the following cases:
• (xy, xz, yz).
• (x2, xy, yz).
• (x3, x2 y, y2z).
• (x3, xyz, yz2).

Proof. (a) This part is proved in [26, Lemma 3.3 and Proposition 3.5].
(b) This is a result of [8, Proposition 2.11] drawing upon part (a).
(c) We first argue that the three alternatives give in fact de Jonquières maps according to the above

definition. We skip the discussion of the first case as being sufficiently known.
It suffices to show that there is a proper base point where the defining d-forms have minimum

multiplicity (i.e., order) d − 1, for then the equations of condition yield the existence of 2d − 2 addi-
tional proper or infinitely near base points.

Consider the case I = (xd, xd−1 y, yd−1z), d � 2. The map has only two proper base points: p =
(0 : 0 : 1) and q = (0 : 1 : 0). By passing to the respective local rings, one readily finds that the mini-
mum multiplicity at p is d − 1, while at q it is 1.

In the case I = (xd, xyzd−2, yzd−1), we have again the same two proper base points. Again, an
immediate check gives multiplicity d − 1 at the point q (and 1 at p).

Conversely, let F be a de Jonquières map. By (a), we may assume that its base ideal has the third
form. Because of the restrictions on the integers a,b, c in this case, we again find that the map has
only the two proper base points p,q as before. Therefore, one (and only one) of these points has
minimum multiplicity d − 1 for the curves of the system.

Now, locally at q and p the minimum multiplicity of the curves of the system is

min{d − a, c} and min
{

d − (a + b) + a = d − b,d − c
}
,

respectively. But since permuting y and z will not change the form of the map, we may assume that
this point is q = (0 : 1 : 0). Suppose first that d − 1 = d − a, hence a = 1. Then, on the other point the
minimum multiplicity must be 1, hence either b = d − 1 or c = d − 1. If b = d − 1 then a + b = d,
contradicting one of the restrictions in the third case of part (a). Therefore, it must be the case that
c = d − 1. But then ac − b(d − c) = ±1 now reads b = d − 1 ± 1. Since b < d, we must have b = d − 2,
as required.

The discussion of the alternative c = d − 1 at the outset is similar: ac − b(d − c) = ±1 now gives
a � (a + b)a − b � (d − 1)a − b = ±1. Since a > 0, we get a = 1. Then as before, b = d − 2.

(d) It is well-known that (xy, xz, yz) is even a normal ideal (see, e.g., [23, Theorem 1.1 and Corol-
lary 2.8], also [15]) and so is (x2, xy, yz) by a similar token: the defining ideal of the Rees algebra in
either case is a codimension 2 complete intersection whose Jacobian ideal has codimension 2.

The cases of (x3, x2 y, y2z) and (x3, xyz, yz2) can be dealt with by readily verifying that the ideal
on the local pieces z = 1 and y = 1 is integrally closed; from this, an easy checking shows that the
original ideal is integrally closed.

On the other hand, neither I = (xd, xd−1 y, yd−1z) nor J = (xd, xyzd−2, yzd−1) is integrally closed
for d � 4. Indeed, for example:⎧⎨

⎩ xd/2 yd/2z /∈ I, but
(
xd/2 yd/2z

)2 ∈ I2, if d � 4 is even,

x(d−1)/2 y(d+1)/2z /∈ I, but
(
x(d−1)/2 y(d+1)/2z

)2 ∈ I2, if d � 5 is odd
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and, similarly⎧⎨
⎩ xd−1 y2z(d−2)/2 /∈ J , but

(
xd−1 y2z(d−2)/2)2 ∈ J 2, if d � 4 is even,

xd−1 y2z(d−1)/2 /∈ J , but
(
xd−1 y2z(d−1)/2)2 ∈ J 2, if d � 5 is odd.

�

Arbitrary de Jonquières maps
The next proposition states the equivalence between two notions of a de Jonquières map. Although

this equivalence is used liberally (see, e.g., [18, Lemme 2], [19, Exemple 1.3]) we could not trace
through the literature a fully rigorous algebraic proof. Since the definition we employ here is based
on properties of the weighted cluster of the map, while the second notion essentially deals with the
format of the base ideal, it would seem desirable to have such a precise proof.

In addition, there is a very good reason to be able to navigate between the two notions as, at one
end, the first is computable in terms of any set of generators of the base ideal, while the second one
is impossible to verify as its formulation depends upon a projective coordinate change both in the
source and the target of the map. At the other end, the second gives a good handling of the algebraic
properties of the ideal, whereas the first notion falls behind in this regard.

A z-monoid is a d-form fd−1z + fd ∈ R , where fd−1, fd are forms in k[x, y] of respective degrees
d − 1,d. It is noteworthy that such a form is irreducible if (and only if) gcd{ fd−1, fd} = 1.

Proposition 2.3. Let F : P2 ��� P2 be a rational map of degree d with no fixed part and let I ⊂ R denote its
base ideal. The following conditions are equivalent:

(i) F is a de Jonquières map.
(ii) Up to permutation of the variables (source) and the defining forms (target), the base ideal I is generated

by d-forms { f , xq, yq} such that f and q are both z-monoids and f is irreducible.

Proof. (i) ⇒ (ii) Since there must be at least one proper base point, we may assume that p =
(0 : 0 : 1) ∈ P

2 is the base point with the (unique) prescribed multiplicity d − 1. On the other hand,
by the genus formula, any irreducible d-form having multiplicity d − 1 at p has no other (proper or
infinitely near) singularities. But among these forms, there is a z-monoid, namely, f = zfd−1(x, y) +
fd(x, y), with fd−1 and fd forms of degrees d − 1 and d, respectively, with gcd( fd−1, fd) = 1. Now,
since fd−1 and fd can be chosen generically, we may assume that they have been chosen so that,
moreover, f goes through the remaining (proper or infinitely near) base points of F . It follows from
[1, Proposition 2.5.2] that f ∈ Id . Such a form being irreducible, the corresponding homogeneous co-
ordinate ring k[x, y, z]/( f ) is an integral domain. Also, V ( f ) is the image of the rational map

(
s0 fd−1(s0, s1) : s1 fd−1(s0, s1) : − fd(s0, s1)

) : P1
s0,s1

��� P2
x,y,z,

which is birational onto V ( f ). Therefore, the natural inclusion

k
[
s0 fd−1(s0, s1), s1 fd−1(s0, s1),− fd(s0, s1)

] ⊂ k[s0, s1](d)

into the dth Veronese is an equality at the level of the respective fraction fields, which in turn induces
an injective k-homomorphism

k[x, y, z]/( f )
α	 k

[
s0 fd−1(s0, s1), s1 fd−1(s0, s1),− fd(s0, s1)

] ⊂ k(s0, s1).

Extending f to a k-vector base {g,h, f } of Id corresponds to a coordinate change on the target,
hence we may assume that the map F : P2 ��� P

2 is defined by (g : h : f ). On the other hand, for
general choices of fd−1 and fd , the restriction of F to V ( f ) ⊂ P

2 is birational onto the image. This
gives, again and over, that the injection
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σ : k[g,h, f ]/k[g,h, f ] ∩ ( f ) ↪→ (
k[x, y, z]/( f )

)(d)

extends to an equality of the respective fields of fractions. But the natural map

k[g,h] γ
↪→ k[g,h, f ]/k[g,h, f ] ∩ ( f )

is injective (which is the translation of the fact that the restriction of F maps V ( f ) onto a line).
Altogether, one has an injective k-homomorphism β : k[g,h] ↪→ k(s0, s1), β = ασγ , which is an iso-
morphism at the level of dth Veronese fields of fractions. Thus, (β(g) : β(h)) defines a Cremona map
of P1, hence must be equivalent to the identity map of P1. In other words, β(g) and β(h) are multi-
ples of s0, s1, respectively, with same common factor in k[s0, s1]. Extending α to the level of fractions
modulo ( f ) yields

α(y/x) = s1 fd−1(s0, s1)/s0 fd−1(s0, s1) = s1/s0 = α(h/g),

thus implying yg ≡ xh (mod f ). Therefore, we obtain a relation yg −xh+� f = 0, for some linear form
� ∈ R . On the other hand, we can write f = xp1 + yp2 for suitable (d − 1)-forms p1, p2 ∈ k[x, y, z].
Substituting in the linear relation for � f , and using that {x, y} is a regular sequence, yields g =
xq − �p2, h = yq + �p1, for some (d − 1)-form q. Then, as one readily checks, f , g,h are (up to a sign)
the 2-minors of the matrix

ϕ =
( x p2

−y p1
� q

)
.

Assume first that d � 3. We claim that x, y, � are linearly dependent.
Indeed, otherwise the ideal I1(ϕ) would have codimension 3, thus implying that I is generically a

complete intersection. But, since I is an almost complete intersection, it would be an ideal of linear
type (see, e.g., [22, Proposition 3.7]). However, since F is a Cremona map and, this would contradict
the main birationality criterion of [9].

This means that � is a 1-form in k[x, y], hence up to a change of coordinates we may assume
that � = 0. It follows that I is now generated by { f , xq, yq}. Here f is an irreducible z-monoid by
construction, while q is again a z-monoid because xq and yq have multiplicity � d − 1 at (0 : 0 : 1).

In the case where d = 2, up to a coordinate change on the source and the target the respective
base ideal has one of the following set of generators:

1. F is given by {xy, xz, yz}. (Three distinct proper base points p1, p2, p3.)
2. F is given by {x2, xy, yz}. (Two distinct proper base points p1, p2 and one infinitely near point

to p1.)
3. F is given by {x2, xy, y2 − xz}. (A unique proper base point p and two infinitely near points to p.)

We deal with the first of these alternatives as the other two are treated similarly. Namely, we take
the following modified set of generators: f = xz + yz + xy = (x + y)z + xy = x(y + z) + yz, g = xz,
h = yz. Then f is an irreducible z-monoid, while q = z. The corresponding syzygy matrix is

ϕ =
( x z

−y y + z
0 z

)
.

(ii) ⇒ (i) According to [18, Lemme 2], the rational map with these properties is birational. In par-
ticular, the equations of condition are satisfied. Thus it suffices to show that the minimum multiplicity
at the base point (0 : 0 : 1) is d − 1. But this follows immediately from the monoidal structure of f
and q. �
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Remark 2.4. A self-contained argument for proving that the map as given in (ii) is birational comes
from the details in the proof of Theorem 2.7(i). Indeed, in [18] it is shown in particular that there
exists a relation of { f , xq, yq} which is a form of bidegree (1,d −2). Such a form, along with the form
of bidegree (1,1) coming from the trivial relation of {xq, yq}, implies that the pertinent matrix in [9,
Theorem 1.18] has rank 2, thus forcing birationality.

Recall that an ideal I of a ring R is of linear type if the natural surjective homomorphism from the
symmetric algebra of I to its Rees algebra is injective.

The following ideal theoretic properties follow suit.

Corollary 2.5. Let F denote a plane de Jonquières map of degree d � 2 with base ideal I ⊂ R = k[x, y, z].
Then:

(a) R/I is Cohen–Macaulay, hence I = Isat .
(b) The degree (algebraic multiplicity) of the scheme R/I is d(d − 1) + 1.
(c) I is an ideal of linear type if and only if d = 2.

Proof. (a) Then a set of generators of I are the 2 × 2 minors of the matrix

ϕ =
( x p2

−y p1
0 q

)
.

Since I has codimension � 2, this shows that R/I is a Cohen–Macaulay ring, hence I is an unmixed
ideal. Thus, a de Jonquières map has a saturated base ideal.

(b) It follows from (a) that R/I has a minimal graded resolution of the form

0 → R
(−(2d − 1)

)⊕ R
(−(d + 1)

) → R(−d)3 → R. (21)

Therefore, its Hilbert series is (1 − 3td + td+1 + t2d−1)/(1 − t)3. From this, by taking the second
t-derivative of the numerator and evaluating at t = 1, one obtains the degree

e(R/I) := −3d(d − 1) + (d + 1)d + (2d − 1)(2d − 2)

2
= d(d − 1) + 1.

(c) As mentioned in the proof of Proposition 2.3, since I is an almost complete intersection one
knows that I is of linear type if and only it is generically a complete intersection, i.e., if and only
if the ideal of 1-minors of its structural Hilbert–Burch matrix ϕ as above is (x, y, z)-primary. By the
monoidal form of q, q has a pure power term in z only if deg(q) = 1; else, it is either p1 or p2
that has a nonzero term in zr alone, for some r � 1. Again, from the monoidal form of f above this
happens if and only if deg(p1) = 1. �
Remark 2.6.

(1) The interest of a calculation such as the one in item (b) above is that, even if the points are
proper and in general position, the corresponding μ-fat ideal FK may not coincide with Isat,
where I denotes the base ideal of the linear system in degree d. An example is obtained with
d = 4, where I is saturated by Corollary 2.5(a). One has e(R/I) = 13 by the above corollary, while
e(R/FK) = 12 by (15).

(2) As embodied in the proof of Proposition 2.3, the statement of (c) in the above proposition is also
a consequence of the birationality criterion of [9].
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One can even go one step further to give the structure of the Rees algebra of the base ideal of a
de Jonquières map.

Theorem 2.7. Let I ⊂ R denote the base ideal of a de Jonquières map P
2 ��� P2 of degree d � 2 with no fixed

part, with syzygy matrix of the form

ϕ =
( x p2

−y p1
0 q

)
.

Let R(I) denote the Rees algebra of I . One has:

(i) If R(I) 	 R[t, u, v]/J stands for a minimal presentation thenJ is minimally generated by d polynomials
of bidegrees (1,1), (d − 1,1), (d − 2,2), . . . , (1,d − 1).

(ii) I j is saturated for 1 � j � d − 1, while Id is not saturated.
(iii) R(I) is Cohen–Macaulay if and only if d � 3.

Proof. (i) For d = 2 we are assuming that q = z + q′ , where q′ ∈ k[x, y]. Therefore, the ideal I1(ϕ) =
(x, y, z). This forces I to be generically a complete intersection, hence is of linear type – an argument
we have repeatedly used in the text. Thus, the result is immediate in this degree.

Suppose that d � 3. The hypothesis on the form of ϕ implies at the outset that I1(ϕ) = (x, y).
This is suited to applying the method of the Sylvester forms as indicated in [16] and based on the
standard bigrading of the polynomial ring S = R[t, u, v], where x, y, z have bidegree (1,0) and t, u, v
have bidegree (0,1).

The Sylvester form associated to a set of polynomials is computed with respect to a given ideal
that serves as a kind of “frame” for these polynomials. The advantage of this procedure is that the
forms obtained are among the defining Rees equations of I .

Starting with the Rees equations F = xt − yu, G = p2t + p1u + qv ∈ J , coming from the syzygies
of I , we can then write

[
F
G

]
=

(
t −u

Gx G y

)[
x
y

]
,

for suitable forms Gx, G y ∈ R[t, u, v] of bidegree (d − 2,1). By Cramer’s rule, H1 := det(C) ∈J , where

C =
(

t −u
Gx G y

)
.

This is our first Sylvester form. We have H1 �= 0; indeed, otherwise [P Q ] · C = 0, for some nonzero
row vector with P , Q ∈ R[t, u, v]. But then the transpose [P Q ]t would be a syzygy of {F , G}. Since
the latter is a regular sequence, it would give that the columns of C are syzygies of {−G, F }, which is
absurd.

Note that H1 is of bidegree (d − 2,2). By the same procedure, we obtain the next Sylvester form:

[
F

H1

]
=

(
t −u

(H1)x (H1)y

)[
x
y

]
,

for suitable forms (H1)x, (H1)y ∈ R[t, u, v] of bidegree (d − 3,2). By the same argument, the deter-
minant H2 of the above 2 × 2 “content” matrix is a nonzero Sylvester form of bidegree (d − 3,3)

belonging to J . Continuing this way, always using F and the updated Hi−1, we obtain a subideal
(F , G, H1, . . . , Hd−2) ⊂ J , where Hi is a form of bidegree (d − (i + 1), i + 1), for i = 1, . . . ,

d − 2.
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Now, Hd−2 /∈ (x, y)R[t, u, v] because otherwise we could construct a nonvanishing Sylvester form
of bidegree (0,d). This would give a nonzero form in J ∩ k[t, u, v], contradicting birationality. But
then the R-content ideal of the forms {F , G, H1, . . . , Hd−2} has codimension 3. By a known argument,
one has (F , G, H1, . . . , Hd−2) =J , as was to be shown.

(ii) While in (i) we stressed the bigraded structure of the Rees algebra as induced from the bigrad-
ing of the polynomial ring S = R[t, u, v], for the purpose of this part we preliminarily focus on the
usual standard N-grading as induced from the standard N-grading of S with S0 = R . More explicitly,
let W be an additional (tag) variable of bidegree (0,1). Write R(I) = ⊕

i�0 I i W i ⊂ R[W ], so that

in the minimal graded presentation R(I) 	 S/J the component I i W i of N-degree i is presented as
I i W i 	 Si/Ji . Thus, we get an exact sequence of N-graded R-modules

0 → Ji → Si → I i W i → 0. (22)

We now prove that, for i � d − 1, the R-module Ji is free. For this purpose, drawing upon the
notation in part (i), we contend that Ji is generated as a graded R-module by the elements

{
(t, u, v)i−1 F , vi−1G, vi−2 H1, . . . , v Hi−2, Hi−1

}
,

where (t, u, v)i−1 denotes the set monomials of degree i − 1 in k[t, u, v]. Since the cardinality of this
set is

(i+1
2

)+ i = (i+2
2

)− 1 which is the rank of J i , we will be done.
As a slight check, the elements listed above all have bidegree ( j, i) for various j’s, hence they

certainly belong to Ji . We proceed by induction on i.
For i = 1 the list consists of {F , G}; since J1 always generates the presentation ideal of the sym-

metric of I , the result follows immediately.
Consider the 2 × d matrix

H =
(

u −x G y (H1)y . . . (Hd−3)y

−t y Gx (H1)x . . . (Hd−3)x

)
.

Then, by construction, the forms {F , G, H1, . . . , Hd−2} are the 2-minors of the initial 2 × 3 submatrix
and, in addition, the remaining minors fixing the first column (taking the ideal of all 2-minors fixing
the first two columns only gives repetitions).

We do the case i = 2 to illustrate the pattern in the general inductive step. Thus, according to
part (i), J2 is generated as a graded R-module by the set

{
(t, u, v)1J1, H1

} = {t F , uF , v F , tG, uG, vG, H1}. (23)

Now, the forms F , H1, G are the 2-minors (up to a sign) of the following 3 × 2 initial submatrix of H:

(
u −x G y

−t y Gx

)
.

Using that the two rows are relations of the minors and noting that Gx and G y have bidegree
(d−2,1), one readily sees that tG , uG both belong to the graded R-submodule R1 H1 + Rd−2(t, u, v)1 F .
Therefore in the set (23) of generators of J2, tG and uG are redundant.

Let now 3 � i � d − 1 and assume that Ji−1 is generated as a graded R-module by

Li−1 := {
(t, u, v)i−2 F , vi−2G, vi−3 H1, . . . , v Hi−3, Hi−2

}
.

Then, again from part (i), Ji is generated as a graded R-module by (t, u, v)1 Li−1 and by Hi−1. Using
this time around the submatrix
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(
u −x (Hi−2)y

−t y (Hi−2)x

)

of H, whose 2-minors are F , Hi−1, Hi−2, a similar discussion as in the case i = 2 shows that t Hi−2 and
uHi−2 belong to the graded R-submodule generated by Hi−1 and (t, u, v)i−1 F . Thus, the inductive
step yields that, for j = 1, . . . , i − 2, the elements uv j Hi− j−2 and tv j Hi− j−2 belong to the graded
R-submodule generated by v j Hi− j−1 and v j(t, u, v)i− j−1 F , where H0 := G , and hence are superfluous
generators. Therefore

{
(t, u, v)i−1 F , vi−1G, vi−2 H1, . . . , v Hi−2, Hi−1

}
generates the graded R-module Ji , as needed to be shown.

To get the explicit minimal free graded R-resolution of I i , with i � d−1, one uses the identification

Si = R[t, u, v]i 	 R ⊗k k[t, v, u]i 	 R ⊗k k(i+2
2 ) 	 R(i+2

2 ) of graded R-modules and the appropriate shift
based on the bidegree (di,0) + (0, i) = (di, i) of I i W i , in order to obtain

0 → (
R
(−(di + 1)

)(i+1
2 )) ⊕

(
i⊕

l=1

R
(−(d − l + di)

)) Ψi−→ R(−di)(
i+2

2 ) → I i → 0,

where

Ψi = (Li | Di ) , Li =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 x
0 0 · · · 0 −y
0 0 · · · x 0
0 0 · · · −y 0
...

...
...

...
...

x 0 · · · 0 0
−y 0 · · · 0 0
0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with:

• Li is of size (
(i+2

2

)− 1) × (i+1
2

)
, induced by the linear syzygy of I;

• Di is of size
(i+2

2

) × (i − 1), induced by the syzygy of I of standard degree d − 1 and by the
subsequent syzygies of Il , one for each Sylvester form Hl , l = 2, . . . , i + 1.

Finally, we deal with the step i = d. By the previous argument Jd−1 is minimally generated by

{
(t, u, v)d−2 F , vd−2G, vd−3 H1, . . . , v Hd−3, Hd−2

}
.

We prove that Jd is minimally generated by

{
(t, u, v)d−1 F , vd−1G, vd−2 H1, . . . , v2 Hd−3, v Hd−2, t Hd−2, uHd−2

}
.

The elements of this list, except for the last three ones, are part of a minimal set of generators as
it follows again by a similar prior argument. As to the last three elements v Hd−2, t Hd−2, uHd−2 it is
clear that they do not belong to the ideal generated by the previous ones since Hd−2 /∈ (x, y)S (as has
been remarked in the proof of part (i)).

(iii) If d � 3 we may assume that d = 3 since d = 2 is even a complete intersection. Then J is
generated by the 2-minors of the matrix H as above. Clearly, this is Cohen–Macaulay. Conversely,
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suppose that R(I) is Cohen–Macaulay. Since the codimension of J is 2, it is defined by a Hilbert–
Burch type of matrix again. But the presence of a minimal generator of bidegree (1,1) forces this
matrix to be 3 × 2. Therefore, J is 3-generated, i.e., d � 3. �
Remark 2.8. One suspects that I as above is normal (i.e., R(I) is a normal domain) exactly when
d � 3; (in other words, exactly when R(I) is Cohen–Macaulay.) Of course, in general, a Cohen–
Macaulay ideal of codimension 2 in k[x, y, z] fails very often to even being integrally closed. The
traditional examples are the defining ideals of some of the so-called affine monomial curves. For a
homogeneous ideal in k[x, y, z] generated in fixed standard degree, one can take the example of [17],
namely, (xd yd, xdzd, ydzd) with d � 2. Although any such ideal is of linear type for d � 1, its integral
closure is not unmixed for d � 2 – in any case, by the criterion of [9], this ideal is not the base ideal
of a Cremona map. This is an entirely different behavior as from the base ideal of a de Jonquières
map. Thus, looking from the angle of the defining matrix, the de Jonquières base ideal is just on the
border line, with one column in standard degree 1.

2.2. Degree � 4

Plane Cremona defined by forms of degree d � 3 are easily disposed of:

Proposition 2.9. Let I ⊂ R = k[x, y, z] be the base ideal of a plane Cremona map F : P2 ��� P2 defined by
forms of degree � 3. Then F is a de Jonquières map; in particular, I is saturated.

Proof. The case where the degree is 2 is well-known and completely obvious by the equations of
condition (1) and Bézout theorem. Namely, its weights are (1,1,1). Therefore, F is a de Jonquières
map, hence the base ideal I is saturated by Corollary 2.5.

Next let the degree of the three forms be 3. This is not even a bit more difficult than the previous
case. We use again the equations of condition and the fact that the number of base points is at
least 3 [1, 2.6.1]. Since there exists at least one base point if d � 2, then for d = 3 one base point p
is such that μp � 2 [1, 2.6.8]. Then an immediate calculation yields that the only possible sequence
of multiplicities is 2,1,1,1,1, in particular there are exactly 5 proper or infinitely near base points.
Thus, any plane Cremona map of degree 3 is a de Jonquières map. �

In degree 4 the situation gets more involved. Using the equations of conditions and Noether’s
inequality [1, 2.6.10], one has

∑
p

μp = 9,
∑

p

μ2
p = 15, μ1 + μ2 + μ3 � 5,

where μ1 � · · · �μr . An elementary calculation yields only two possibilities, namely, either the map
is a de Jonquières map (of homaloidal type (4;3,16)) or else it is of homaloidal type (4;23,13).

We know by Corollary 1.23 that the base ideal of any Cremona map in degree 4 is saturated. What
is left is to describe the invariants of the two alternatives.

The first is dealt with using Corollary 2.5(a). For the second possibility, we have the following
result:

Proposition 2.10. Let I ⊂ R = k[x, y, z] stand for the base ideal of a Cremona map of homaloidal type
(4;23,13), such that the base points are proper and in general position. Then I = FK and, in particular, the
degree e(R/I) of R/I is 12.

Proof. The 3 quartics defining the map belong to the linear system of all quartics going through the
six points with the prescribed multiplicities 2,2,2,1,1,1. The degree of the corresponding μ-fat ideal
FK is 3 + 3 + 3 + 1 + 1 + 1 = 12. We will use the associativity formula:
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e(R/I) =
∑

j

�(R P j /I P j )e(R/P j),

where P j runs through the minimal primes of R/I and � denotes length. To see how, note that
e(R/P j) = 1 as P j is generated by linear forms (since k is algebraically closed). Therefore, one has
to show �(R P j /I P j ) = 3 if the quartics pass through the corresponding point with multiplicity 2, and
�(R P j /I P j ) = 1 if the corresponding point is a simple point on the quartics.

We can assume that I is generated by 3 quartics each having a double point at each of the
coordinate points (0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0), since these points cannot be on a line (see [1,
Corollary 2.6.9]). Following [12, Lemma 11.3], any such quartic can be written in the normal form

λx2 y2 + μx2z2 + ν y2z2 + 2xyz(u1x + u2 y + u3z),

for suitable values of λμν not vanishing simultaneously.
Up to another change of coordinates, we may assume that three quartics generating I are of the

form

x2 y2 + xyz(t1x + t2 y + t3z) = xy
(
xy + t1xz + t2 yz + t3z2),

x2z2 + xyz(u1x + u2 y + u3z) = xz
(
xz + u1xy + u2 y2 + u3 yz

)
,

y2z2 + xyz(v1x + v2 y + v3z) = yz
(

yz + v1x2 + v2xy + v3xz
)
, (24)

for suitable ti, ui, vi ∈ k \ {0}. One can further pick special values of the above parameters such that
the parenthetical 2-forms are reduced, so as to guarantee that the three quartics admit the remain-
ing 3 points as simple points and these points be not aligned (otherwise, the line would be a fixed
component thereof). For example, one may choose the parameters so as to factor these three 2-forms
into products of linear factors taken two at the time for each point (see [1, 2.1.8] for a concrete
example).

To check �(R P /I P ) = 3 for a corresponding coordinate point, because of the obvious symmetry, we
can assume that P = (x, y). Since z is invertible in the localization at P , an easy manipulation of the
equations in the format of the right-hand side of (24) yields I P = (x2, xy, y2), hence �(R P /I P ) = 3. �
2.3. Non-saturated behavior in degree � 7

In higher degrees the discussion becomes a lot more involved. For one thing, there are homaloidal
types for which no Cremona map exists having these types as characteristic (see [1, 5.3.7]). On the
bright side, such examples exist only if the number of base points exceeds 7 [1, 5.3.10]. Moreover,
for any given proper homaloidal type there exist simple Cremona maps whose base points can be
generically chosen [1, 5.3.5]. For this reason, we will focus only on simple Cremona maps.

As explained in Section 1.3, the multiplicity (geometric degree) of the base locus of a simple Cre-
mona map with weighted cluster K = (K ,μ) is bounded below by the degree of the associated μ-fat
ideal FK . We will say that a simple Cremona map has minimum multiplicity if the multiplicity of its
base locus attains its lower bound. Clearly, a similar notion could be introduced for non-simple maps
by resorting to the multiplicity of the associated full ideal of curves IK , but, unfortunately, we know
no closed formula for the latter.

Proposition 2.11. The homaloidal type of a simple Cremona map of minimum multiplicity is one of the follow-
ing:

(5;2,2,2,2,2,2), (4;2,2,2,1,1,1), (3;2,1,1,1,1), (2;1,1,1). (25)
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Proof. Write μ = {μ1, . . . ,μn}. By the associativity formula, the degree of the base locus is

e(R/I) =
n∑

j=1

�(R P j /I P j )e(R/P j) =
n∑

j=1

�(R P j /I P j ),

since the base field is assumed to be algebraically closed. The minimal multiplicity assumption means
that

∑
j �(R P j /I P j ) = ∑

j �((R/P
μ j

j )P j ), where 1 � j � n. But the minimal number of generators of

I P j is 3 whereas (P
μ j

j )P j = (P j P j
)μ j requires at least 4 minimal generators if μ j � 3. Therefore, one

must have μ j � 2 for 1 � j � n.
Thus, up to ordering, we may assume that {μ1, . . . ,μn} = {1, . . . ,1︸ ︷︷ ︸

j

;2, . . . ,2︸ ︷︷ ︸
k

}. Then the equations

of condition read {
j + 2k = 3d − 3,

j + 4k = d2 − 1.
(26)

This system gives j = (5 − d)(d − 1) which yields d � 5 as j � 0. The asserted alternatives now follow
by an easy case by case calculation. �
Theorem 2.12. Let F be a simple plane Cremona map of degree d � 7 with base ideal I . Assume that I is not
saturated (hence, d � 5).

(i) If d = 5, F has homaloidal type (5;26) := (5;2,2,2,2,2,2), e(R/I) = 18, and the minimal resolution of
R/I has the form

0 → R(−9) → R3(−8) → R3(−5) → R.

(ii) If d = 6, F has homaloidal type (6;4,24,13), e(R/I) = 26, and the minimal resolution of R/I has the
form

0 → R(−11) → R2(−10) ⊕ R(−9) → R3(−6) → R.

(iii) If d = 7, F has homaloidal type (7;5,25,13) or else (7;4,32,23,12). In the second case e(R/I) = 36
and the minimal resolution of R/I has one of the following forms:

0 → R(−12) → R3(−11) → R3(−7) → R

or

0 → R(−13) → R2(−12) ⊕ R(−10) → R3(−7) → R.

Proof. By Corollary 1.23, one has only to consider the range 5 � d � 7.
(i) According to Proposition 1.6(i) the minimal free resolution of the base ideal of a plane Cremona

map (not necessarily simple) of degree 5 has the form mentioned there. Thus, for all such maps
e(R/I) = 18. This is the minimum value for simple maps (Proposition 1.19). The result, now, follows
from Proposition 2.11.

(ii) By Proposition 1.6(ii) there are two virtual resolutions of R/I . By Proposition 2.11, the first of
these alternatives conflicts with the content of Proposition 1.6(ii) as applied to simple plane maps. The
second alternative says that e(R/I) = 26, which is exactly one more than the minimum multiplicity.
Thus among the inequalities �((R/I)Pi ) � �((R/Pμi

i )Pi ) for i = 1, . . . ,n, only one of them is strict.
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Hence, by the same argument as in the proof of Proposition 2.11, we may assume that μ1 � 3 and
μi � 2 for all i � 2. According to Corollary 2.5(a), μ1 � 4. Thus, μ1 ∈ {3,4}. If μ1 = 3, the equation of
conditions lead to the following system (with the similar notations as in (26))

{
j + 2k = 3d − 3 − 3 = 12,

j + 4k = d2 − 1 − 9 = 26.

This system has no solution in nonnegative integers. For μ1 = 4, the solution yields the homaloidal
type (6;4,24,13).

(iii) The case where d = 7 is more involved. Again Proposition 1.6(iii) implies that 33 � e(R/I)� 36,
where 33 is the minimum multiplicity. Then among the inequalities �((R/I)Pi ) � �((R/Pμi

i )Pi ) for
i = 1, . . . ,n at most three ones are strict. Therefore, we may assume that 3 � μ1 � 5 and μi � 2 for
i � 4 as in the proof of Proposition 2.11 and by Corollary 2.5(a). We now deal separately with the
three alternatives for μ1.

If μ1 = 3 we have (d − μ1)/2 = (7 − 3)/2 = 2, hence μ2 = μ3 = 3 [1, Definition 8.2.1 and
Lemma 8.2.6]. Plugging these data into the equations of condition yields no solution in positive inte-
gers.

Let μ1 = 5. In this case the equations of condition yield no solution in positive integers for 4 �
μ2 � 5 or μ2 = μ3 = 3. Then the triple (μ1,μ2,μ3) ∈ {(5,3,2), (5,2,2)}. Plugging the first of these
into the equations of condition yields the homaloidal type (7;5,3,22,16). In a similar vein, (5,2,2)

yields the homaloidal type (7;5,25,13). Now, an application of the Hudson’s test shows that the first
of these homaloidal types is improper. Therefore, we are left with (7;5,25,13) as the only possibility.

Finally, let μ1 = 4. The triple (μ1,μ2,μ3) belongs to the following list

(4,4,4), (4,4,3), (4,4,2), (4,3,3), (4,3,2), (4,2,2).

Now, let the set {μi: i � 4} have j elements equal to 1 and k elements equal to 2. Consider the
system given by the equations of condition:

{
j + 2k = 3d − 3 − (μ1 + μ2 + μ3),

j + 4k = d2 − 1 − (
μ2

1 + μ2
2 + μ2

3

)
.

The solution pair ( j,k) is, respectively, (−3,12), (0,7), (3,4), (3,2), (5,−1), (7,−4). Clearly, the first
and the last two pairs are absurd. Next applying Hudson’s test to the first two possible homaloidal
types shows that they are improper. Hence, the remaining possibility is (7;4,32,23,12).

As to the form of the resolution of R/I is, notice that, for this homaloidal type, the first three
multiplicities exceed 2. It follows that e(R/I) � 3 + 33 = 36, which is the maximal possible value.
Then among the virtual resolutions in Proposition 1.6(iii) only the last two satisfy e(R/I) = 36, as
claimed. �

We note that the converse of item (ii) in the above theorem is not true in general, at least if one
does not assume that F is simple.

Example 2.13. The following non-simple Cremona map appears in [1, Example 2.1.14]:

((
x3 − yz(y + x)

)(
x2 − yz

)
(y + x) : (x2 − yz

)
x2(x + y)2 : x3(x3 − yz(x + y)

))
.

The homaloidal type of this map is (6;4,24,13), but it has a saturated base ideal.
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2.4. Structure in degree 5

Degree 5 has special arithmetic features, such as being the only degree d � 2 having the property
that

∑
p

μp = 1/2
∑

p

μ2
p . (27)

Further, an elementary scrutiny in the equations of condition yields that the only homaloidal types
are

(a) 4,1, . . . ,1︸ ︷︷ ︸
8

(de Jonquières type).

(b) 3,3,1, . . . ,1︸ ︷︷ ︸
6

.

(c) 3,2,2,2,1,1,1.
(d) 2, . . . ,2︸ ︷︷ ︸

6

(symmetric type).

Of these, only type (b) is not proper (cf. [1, Example 5.3.7]) and the classical result the fact that
for 7 points or less every homaloidal type is proper. Some of this can be readily checked by Hudson’s
test.

Our purpose is to give a precise characterization of the three proper homaloidal types in terms of
the homological features of the corresponding base ideals.

Theorem 2.14. Let F : P2 ��� P2 stand for a simple plane Cremona map of degree 5 whose base points are in
general position, and let I ⊂ R = k[x, y, z] denote its base ideal. Then

(i) F is a de Jonquières map if and only if R/I is Cohen–Macaulay of degree 21 with resolution of the form

0 → R(−9) ⊕ R(−6) → R(−5)3 → R; (28)

(ii) F has type (5;3,23,13) if and only if R/I is Cohen–Macaulay of degree 19 with resolution of the form

0 → R(−8) ⊕ R(−7) → R(−5)3 → R; (29)

(iii) F is symmetric of type (5;26) if and only if R/I is non-Cohen–Macaulay of degree 18 (minimal possible)
with resolution of the form

0 → R(−9)
ψ2−→ R(−8)3 ψ1−→ R(−5)3 → R. (30)

Supplement. The maps ψ1,ψ2 come out of the minimal free resolution of the corresponding fat ideal F

0 → R(−7)3 ϕ−→ R(−5)3 ⊕ R(−6) → R

as follows: up to shifts, ψ1 is the restriction of the dual map ϕt , and ψ2 is the tail of the Koszul complex
on three k-linearly independent linear forms generating the coordinates of the syzygies of the additional
minimal generator of F of degree 6.
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Proof. We note at the outset that there are three virtual resolutions in this degree. Indeed, if I is not
saturated then according to Theorem 2.12 the minimal resolution must be of the form

0 → R(−9) → R(−8)3 → R(−5)3 → R.

If I is saturated then one easily sees that the only possible minimal resolutions are

0 → R(−9) ⊕ R(−6) → R3(−5) → R (31)

or

0 → R(−8) ⊕ R(−7) → R3(−5) → R. (32)

Let us first prove (iii). Since we are assuming that the Cremona map is simple, the “if” part follows
from Proposition 2.11 (or also from Theorem 2.12).

We now show the “only if” part of (iii). Thus assume that the homaloidal type is (5;26). Let
F ⊂ k[x, y, z] stand for the associated 2-fat ideal based on the given points.

The homological nature of F has been determined in [11]:

0 → R(−7)3 ϕ−→ R(−5)3 ⊕ R(−6) → R → R/F. (33)

In particular, F = (I, f ), where f is a 6-form and there are three linear forms �1, �2, �3 such that
�i f ∈ I for every i.

Suppose that �1, �2, �3 are k-linearly dependent. Then a suitable k-linear combination of syzygies
gives a syzygy of the generators of I in standard degree 2. Such a syzygy would necessarily be of
minimal degree among the syzygies of I since the latter cannot have linear syzygies because the
resolution (33) is minimal. But, among the three virtual resolutions above, the only one having such
a minimal syzygy is (32). We now argue that this is impossible.

Indeed, let {p1, . . . , pn} denote the set of proper base points and {P1, . . . , Pn} the corresponding
defining prime ideals. Now, for this free resolution, e(R/I) = 19 which is exactly one more than
the minimum degree. Therefore, there is exactly one prime ideal, say P , among P1, . . . , Pn such
that �((R/I)P ) = �((R/P 2)P ) + 1. Without loss of generality we may assume that P = (x, y). It then
follows that �((P 2/I)P ) = 1, that is, (P 2/I)P 	 (R/P )P ; in particular, P 3

P ⊂ I P . Let us consider the
three cases (P 2/I)P = (xy/1), (P 2/I)P = (x̄2/1) or (P 2/I)P = ( ȳ2/1). Say, (P 2/I)P = (xy/1). Then,
(x̄2/1) = a1(z)

a2(z) (xy/1) and ( ȳ2/1) = b1(z)
b2(z) (xy/1) where ai(z) and bi(z) are polynomials in k[z]. Solving

these equations, one finds polynomials ci(z) and di(z) for i = 1,2 such that c1(z)x2 − c2(z)xy ∈ I and
d1(z)y2 − d2(z)xy ∈ I . The fact that I is a homogeneous ideal then implies that there are integers
n,m and elements b,b′ ∈ k such that g1 = zn(x2 − bxy) and g2 = zm(y2 − b′xy) belong to I . Thence,
all of the base points of F are contained in the variety defined by g1 and g2 which consists of two
lines, (provided bb′ = 1). This, however, contradicts the assumption that the base points are in general
position. The remaining two other cases are dealt with in an entirely similar fashion.

Therefore, it must be the case that �1, �2, �3 are k-linearly independent, hence generate the maxi-
mal ideal (x, y, z). It follows that, f drives (x, y, z) inside I . This means that depth(R/I) = 0 as f /∈ I .
In other words, R/I is not Cohen–Macaulay and Isat = F; in particular, e(R/I) = 18, as claimed in the
statement. This concludes the proof of (iii).

The “only if” implication of (i) was already shown in Corollary 2.5.
We now prove the “only if” implication of (ii). The free resolution of the associated fat ideal F is

known [13]:

0 → R(−7)3 ϕ−→ R(−5)3 ⊕ R(−6) → R. (34)
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Therefore, up to a projective coordinate change, we may assume that F is defined by the three
minimal generators of degree 5 of I and one extra generator of degree 6, say f . Focusing on the
entries of ϕ , we see that there are 3 linear forms �1, �2, �3 such that �i f ∈ I for every i. By Theo-
rem 2.12 in this type, (5;3,23,13), I is saturated. This implies that �1, �2, �3 are k-linearly dependent.
Thus, by a projective coordinate change, one may assume that �3 = 0. Therefore the third column in
ϕ is a syzygy of (standard) degree 2 of the generators of I . Since R/I is Cohen–Macaulay and I is
generated in degree 5 the resolution has got to be of the form indicated in (29). From this we easily
compute the degree of R/I , as stated.

In order to complete the proof it now suffices to prove the “if” parts of (i) and (ii). But since we
have completed the proofs of the “only if” parts of all three items, this follows automatically.

It remains to deal with the supplement of item (iii), to explain the nature of the maps in the
resolution of the non-saturated case. First dualize (33) into R:

0 → J∗ 	 R → R(5)3 ⊕ R(6)
ϕt−→ R(7)3.

Consider the restriction ψ := ϕt�R(5)3 : R(5)3 → R(7)3. Then consider the left tail of the Koszul com-
plex on the regular sequence �1, �2, �3 shifted by 5:

0 → R(3) → R(4)3 → R(5)3.

Call ψ the composite of the right most map with the restriction ϕt�R(5)3 : R(5)3 → R(7)3 of ϕt

to R(5)3. The following sequence of maps obtains:

0 → R(3) → R(4)3 ψ−→ R(7)3.

Now shift by −12 to get

0 → R(−9) → R(−8)3 Ψ−→ R(−5)3,

where Ψ = ψ(−12) for lighter reading. We claim this resolves I . Proving this involves first showing
that it is a complex. For it, the only missing piece is that Ψ (R(−8)3) are syzygies of the three quintics
generating I . But this is clear since the ith row of ψ is

(
h(i)

1 ,h(i)
2 ,h(i)

3

)( 0 �3 −�2
−�3 0 �1
�2 −�1 0

)
= (−h(i)

2 �3 + h(i)
3 �2,h(i)

1 �3 − h(i)
3 �1,−h(i)

1 �2 + h(i)
2 �1

)
,

where (h(i)
1 ,h(i)

2 ,h(i)
3 ) denotes the ith row of ϕt chopping off the fourth coordinate. But the right

most row above is obtained from the three syzygies of J by multiplying by � j and by �k the syzygy
involving �m as coordinate, where { j,k,m} = {1,2,3}, then subtracting in the obvious way.

To use the acyclicity criterion as formulated by Buchsbaum–Eisenbud [10, Theorem 20.9] it remains
to argue that I2(Ψ ) has height � 2. But Ψ is the transpose of the composite

R(−7)3 ϕ−→ R(−5)3 ⊕ R(−6) → R(−5)3,

where the rightmost map is projection onto the first factor. Therefore, one has to show that the
2-minors of the first 3 rows of the latter matrix has codimension � 2. But this is clear as this ideal
contains the ideal of 3-minors of ϕ , which has codimension 2. This shows that the complex is ex-
act. �
Corollary 2.15. A Cremona map of degree � 5 and its inverse have the same homaloidal type.
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Proof. Since there are only three homaloidal types and the inverse of a de Jonquières map is a de Jon-
quières map, it suffices to argue that a Cremona map and its inverse cannot be of type (5;32,16) and
(5;26), respectively. But this follows from Clebsch theorem [1, Theorem 3.3.2]. �

It could be of some interest to give an independent proof of the preceding corollary, staged in the
spirit of the rest of the paper. By the results obtained so far, it would suffice to know that a Cremona
map of degree 5 and its inverse have base ideals of the same (scheme) degree. A parallel challenge
is to decide when the saturation Isat of the base ideal I of a simple Cremona map F coincides with
the associated μ-fat ideal (recall that, from Corollary 1.21, this implies that Isat is the integral closure
of I). Unfortunately, many Cremona maps do not share any of the two properties, which is already
the case in degree 6 [1, Example 2.1.14].

Remark 2.16. In principle it ought to be possible to explicitly enumerate all homaloidal nets stemming
from ideals of fat points up to any given upper bound for the multiplicities of the given set of proper
points. For any 3 linearly independent forms of a fixed degree thus found, one could apply Hudson’s
test. It would be interesting to understand the complexity of one such algorithm.

2.5. An algebraic test

One often needs a more algebraic criterion to decide when a good candidate is indeed a Cremona
map. The following statement gives such an alternative test for a special class of plane rational maps.
It could be used to prove that the linear system of quartics through six points with multiplicities
2,2,2,1,1,1 defines a Cremona map, regardless of the point configuration.

Proposition 2.17. Let J ⊂ R be a homogeneous ideal having a minimal free resolution of the form

0 → R(−6)2 ϕ−→ R(−4)3 → R

and analytic spread 3. If R/ J 2 is also Cohen–Macaulay then the generators of J define a Cremona map of P2

of degree 4.

Proof. Let ϕ also denote a matrix of the map ϕ . Say,

ϕ =
(

α1 α2
β1 β2
γ1 γ2

)
.

It produces trivially the following matrix of syzygies of J 2:

ϕ[2] =

⎛
⎜⎜⎜⎜⎜⎝

α1 α2 0 0 0 0
β1 β2 α1 α2 0 0
γ1 γ2 0 0 α1 α2
0 0 β1 β2 0 0
0 0 γ1 γ2 β1 β2
0 0 0 0 γ1 γ2

⎞
⎟⎟⎟⎟⎟⎠ .

We claim that ϕ[2] has maximal possible rank, namely, 5. The determinant of the first 5 columns
and last 5 rows is ±γ1(β1γ2 − β2γ1)

2. By symmetry, we find a similar determinant whose value is
±γ2(β1γ2 − β2γ1)

2. Since γ1, γ2 cannot simultaneously vanish, we are through.
Now, since rankϕ[2] = 5 and the total syzygy matrix Φ of J 2 is 5 × 6 of rank 5 – because by

assumption the analytic spread of J is 3 and R/ J 2 is Cohen–Macaulay – then the columns of Φ have
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standard degree � 2. However, its 5 × 5 minors are the generators of J 2 which are of degree 8, the
only possibility that adds up correctly is that the columns of Φ be of degrees 1,1,2,2,2.

This argument shows that the ideal J 2 has two independent syzygies with linear coordinates. Now
consider a presentation of the Rees algebra RR( J ) 	 R[t, u, v]/J , with J a bihomogeneous ideal
in the standard bigrading of R[t, u, v] = k[x, y, z, t, u, v]. Then the two linear syzygies of J 2 induce
generators of J of bidegree (1,2) generating a subideal of codimension 2. We can now apply [9,
Proposition 3.9]. �

It seems natural, in the present stringent setup, to pose:

Question 2.18. Under the hypotheses of Proposition 2.17 is the converse true, i.e., if J defines a Cre-
mona map must R/ J 2 be Cohen–Macaulay?

Observe that the assumption on J 2 is delicate. Thus, the general 3 × 2 matrix ϕ with 2-forms as
entries defines a Cohen–Macaulay ideal J whose square is not saturated and has minimal resolution of
the form 0 → R(−12) → R(−10)6 → R(−8)6 → R . As a matter of fact, the syzygies of any power Jm ,
with m � 2, have degree at least 2, hence the rational map defined by a set of minimal generators of
J is not Cremona by the criterion of [9]. There is an easy background explanation for the map failing
to be Cremona and that is the fact that J is a radical ideal, hence it is the fat ideal of points with
multiplicities unit – this defines a Cremona map only in degrees � 2.

Question 2.19. If ϕ is not general, an interesting side question is what are the homological properties
of J that trigger the existence of a unique linear syzygy among all powers of J ? By [9] such an ideal
does not define a Cremona map, but still the nature of the base points is subtle.
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