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Abstract

We found an additional symmetry hidden in the fermion and Higgs sectors of the Standard Model. It is conne
the centers of theSU(3) andSU(2) subgroups of the gauge group. A lattice regularization of the whole Standard Mo
constructed that possesses this symmetry.
 2004 Published by Elsevier B.V.Open access under CC BY license.
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1. Introduction

It is well known that to put a quantum field theo
onto a lattice one should keep as much symmetrie
the original model as possible. That is why, for exa
ple, any lattice gauge model is made to preserve
gauge symmetry [1] while it is possible, in principl
to construct a lattice model that comes as a discre
tion of a gauge fixed continuum theory. Other exa
ples of this kind are the attempts to put fermions o
lattice both avoiding doubling and keeping the chi
symmetry [2].

It is the conventional point of view that all the sym
metries of the Standard Model (SM), which must
used when dealing with its discretization, are know
In this Letter we demonstrate (in the framework of l
tice regularization) that an additional symmetry is h
den within the fermion and Higgs sectors of the S
It is connected to the centers of theSU(3) andSU(2)
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subgroups. It turns out possible to redefine the ga
sector of the lattice realization of the SM in such
way that it has the same naive continuum limit as
conventional one, while keeping the additional sy
metry.

The Standard Model contains the following va
ables:

1. The gauge fieldU = (Γ,U, θ), where

(1)Γ ∈ SU(3), U ∈ SU(2), eiθ ∈ U(1),
realized as link variables on the lattice.

2. A scalar doublet

(2)Φα, α = 1,2.

3. Anticommuting spinor variables, representing le
tons and quarks:

(3)

(
νe νµ ντ
e µ τ

)
,

(
u c t

d s b

)
.

se.
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The action has the form

(4)S = Sg + SH + Sf ,
where we denote the fermion part of the action bySf ,
the pure gauge part is denoted bySg , and the scala
part of the action bySH .

In any lattice realization ofSH andSf both these
terms depend upon link variablesU considered in
the representations corresponding to quarks, lept
and the Higgs scalar field, respectively. ThereforeU
appears in the combinations shown in Table 1. O
observation is thatall the listed combinations ar
invariant under the following transformations:

U →Ue−iπN ,
θ → θ + πN,

(5)Γ → Γ e(2πi/3)N,

where N is an arbitrary integer link variable.
represents a three-dimensional hypersurface on
dual lattice. BothSH andSf (in any realization) are
invariant under the simultaneous transformations
This symmetry reveals the correspondence betw
the centers of theSU(2) andSU(3) subgroups of the
gauge group.

After integrating out fermion and scalar degrees
freedom any physical variable should depend u
gauge-invariant quantities only. Those are the W
son loops:ωSU(3)(C) = Tr

∏
link∈C Γlink, ωSU(2)(C) =

Tr
∏

link∈C Ulink, andωU(1)(C) = ∏
link∈C exp( i3θlink).

Here C is an arbitrary closed contour on the latti
(with self-intersections allowed). These Wilson loo
are trivially invariant under the transformation (5) wi
the fieldN representing aclosed three-dimensiona
hypersurface on the dual lattice. Therefore, the n
trivial part of the symmetry (5) corresponds to a clos
two-dimensional surface on the dual lattice that is
boundary of the hypersurface represented byN . Then

Table 1

Ue−iθ left-handed leptons
e−2iθ right-handed leptons

Γ Ue
i
3θ left-handed quarks

Γ e
− 2i

3 θ right-handedd-, s-, andb-quarks

Γ e
4i
3 θ right-handedu-, c-, andt-quarks

Ueiθ the Higgs scalar field
,

in terms of the gauge-invariant quantitiesω the trans-
formation (5) acquires the form:

ωU(1)(C)→ exp
(−i 1

3πL(C,Σ)
)
ωU(1)(C),

ωSU(2)(C)→ exp
(
iπL(C,Σ)

)
ωSU(2)(C),

(6)ωSU(3)(C)→ exp
(
i 2

3πL(C,Σ)
)
ωSU(3)(C).

HereΣ is an arbitrary closed surface (on the du
lattice) andL(C,Σ) is the integer linking number o
this surface and the closed contourC.

It is worth mentioning that after integrating o
fermion degrees of freedom as well as the Higgs sc
the Standard Model in its continuum formulatio
becomes a theory defined in a loop space [3],
any physical variable depends upon gauge fields o
through theSU(3),SU(2) anU(1)Wilson loops. If we
again denote them asωSU(3),ωSU(2), andωU(1) (where
ωU(1) corresponds to the worldline of a particle
U(1) charge1

3 whileωSU(2) andωSU(3) are the Wilson
loops considered in the fundamental representat
of SU(2) andSU(3), respectively), the symmetry (6
understood in the continuum notation would appea
we neglect the pure gauge-field part of the action
is obvious that the latter in its conventional continuu
formulation (or, say, in lattice Wilson formulation)
not invariant under (6). However, the lattice realizat
of the pure gauge field term of the action can
constructed in such a way that it also preserves
mentioned symmetry. For example, we can cons
the following expression forSg :

Sg =
∑

plaquettes

{
β1

(
1− 1

2 TrUp cosθp
)

+ β2(1− cos 2θp)

+ β3
(
1− 1

6 Re TrΓp TrUp exp(iθp/3)
)

+ β4
(
1− 1

3 Re TrΓp exp(−2iθp/3)
)

(7)+ β5
(
1− 1

3 Re TrΓp exp(4iθp/3)
)}
,

where the sum runs over the elementary plaquette
the lattice. Each term of the action Eq. (7) correspo
to a parallel transporter along the boundary o
plaquette considered in one of the representat
listed above. The coefficientsβi (i = 1, . . . ,5) must
be chosen in such a way as to give rise to the cor
value of the Weinberg angle.

Naively Eq. (7) has the same continuum limit (wi
the appropriate choice ofβi ) as, say the following



B.L.G. Bakker et al. / Physics Letters B 583 (2004) 379–382 381

(6)
ur
it

be
ce
ce:

sics

-
ed
the

on-

it
e

nce

, if

to
an

ge
s of

nd

are

ay
(at

, in

ly

s
ion

g

d-

ch

el
conventional action:

S0
g =

∑
plaquettes

{
β0

1

(
1− 1

2 TrUp
) + β0

2(1− cosθp)

(8)+ β0
3

(
1− 1

3 Re TrΓp
)}
.

However, (7) possesses the additional symmetry
while (8) does not. If the symmetry (6) does occ
in nature, a regularization that does not maintain
would be inappropriate. The situation here could
similar to that of an attempt to construct a latti
gauge model while not keeping the gauge invarian
the corresponding lattice model may describe phy
improperly.

A particularly interesting question is how the sym
metry (5) emerges in lattice discretizations of unifi
models. Namely, (5) may naturally appear after
breakdownG→ SU(3)⊗SU(2)⊗U(1). The simplest
example of the unified model of such type is the c
ventionalSU(5) theory [4]. If we consider its lattice
definition with the Wilson action, the low energy lim
would coincide with Eq. (7) for the following choic
of couplings:

(9)β1 = 2β

5
, β4 = 3β

5
, β2 = β3 = β5 = 0.

Relation (5) itself appears to be the trivial conseque
of expressingSU(5) link matrices in terms ofΓ , U
andθ in the low energy approximation:

(10)

(
Γ e− 2iθ

3 0
0 Ueiθ

)
.

The same picture emerges in any unified theory
its gauge groupG containsSU(5) and the symmetry
breakdown pattern isG→ ·· · → SU(5)→ SU(3)⊗
SU(2)⊗U(1).

The other unified models may be transferred
the lattice either violating or preserving (5). As
example, let us consider theSU(2)L ⊗ SU(2)R ⊗
SU(4)′L+R Pati–Salam unified model [5]. We arran
the fermions (of the first generation) as the element
2 × 4 matricesFabL,R (theSU(2)L,R subgroups act on
the first index, theSU(4)′ subgroup acts on the seco
index):

(11)FL,R =
(
u1 u2 u3 ν

d ′1 d ′2 d ′3 e

)
L,R

.

Leptons and quarks of the other generations
arranged in a similar way.
Let us construct the Higgs sector in such a w
that it provides link matrices which have the form
low energies, after the breakdownSU(2)L⊗SU(2)R⊗
SU(4)→ SU(3)⊗ SU(2)L ⊗U(1)):

(12)U ⊗
(
eiθ 0
0 e−iθ

)
⊗

(
Γ e

iθ
3 0

0 e−iθ
)
.

We can define the pure gauge field action, say
the following two ways:

1. Let V = YL ⊗ YR ⊗ Z ∈ SU(2)L ⊗ SU(2)R ⊗
SU(4) be the SU(2)L ⊗ SU(2)R ⊗ SU(4) link
matrix (hereYL,R ∈ SU(2),Z ∈ SU(4)). Then let
us consider the action of the form:

S = β
∑
plaq

{(
1− 1

2 Re TrYLplaq

)

+ (
1− 1

2 Re TrYRplaq

)
(13)+ (

1− 1
4 Re TrZplaq

)}
.

The lattice model defined in this way obvious
violates (5) in the low energy limit.

2. With the above definition of the link variable let u
now consider the lattice model with another act

S = β
∑
plaq

[
1− 1

16 Re
(
TrYLplaq+ TrYRplaq

)
TrZplaq

]

(14)

∼ β
∑
plaq

{
1− 1

16 Re
[
TrUplaq+ 2 cos(θplaq)

]

× (
TrΓplaqe

i
3θplaq + e−iθplaq

)}
.

This is exactly the action (7) with the followin
choice of couplings:

β1 = β

8
, β2 = β

16
, β3 = 3β

8
,

(15)β4 = β5 = 3β

16
.

Therefore, the full unified model preserves our a
ditional symmetry after the breakdownSU(2)L ⊗
SU(2)R ⊗ SU(4)→ SU(3)⊗ SU(2)L⊗U(1).

Finally, we consider a unified model witharbitrary
gauge groupG and the arrangement of fermions su
that there exist representationsα,γ, . . . of G that are
completely composed of the full set of Standard Mod
fermions. Let againV ∈ G be the link variable. We
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choose the action

S = βα
∑
plaq

(
1− Reχα(Vplaq)

)

(16)+ βγ
∑
plaq

(
1− Reχγ (Vplaq)

) + · · · ,

where χα is the character of the representationα
and the sum is over the mentioned representati
The resulting model preserves (5) after the breakd
G→ SU(3)⊗ SU(2)⊗U(1). We like to mention here
that Eq. (7) with the couplings given by Eq. (15) (t
SU(2) ⊗ SU(2) ⊗ SU(4) model) would appear als
in the low energy limit of theSU(5) unified model
if the action of the latter is chosen as the sum
(16)-like terms corresponding to both representatio
in which the fermions are arranged. This happ
because in both cases the action (16) involves all
representations that exhaust the full set of the Stan
Model fermions.

So, the symmetry (5) being confirmed (or rejecte
would give a criterion for the choice of a unifie
model. The dynamical consequence of (5) could
pear due to the fact, that it ties the centers of theSU(3)
and SU(2) subgroups of the gauge group. It is w
known that the center elements of the color subgr
of the gauge group play an important role in the
scription of the confinement of color [6–9]. Therefo
one might expect that in the model with the pure ga
field action (7) it may not be possible to investiga
color dynamics alone (without taking into account t
SU(2) or U(1) subgroups of the gauge group) a
the confinement picture may be different from the o
found within the framework of the conventional di
cretization.

On the other hand, the topological excitations c
responding to the center of theSU(2) subgroup may
play an important role in the finite temperature no
perturbative electroweak phenomena [10]. Theref
due to the mentioned ties, the description of, say,
finite temperature electroweak phase transition m
also be different for the lattice models which do or
not maintain the additional symmetry.
A comparison of the two approaches in the
respects may be important for understanding whe
it is necessary or not to take into account the additio
symmetry considered, while constructing the latt
approximation to the Standard Model.
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