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Abstract

We found an additional symmetry hidden in the fermion and Higgs sectors of the Standard Model. It is connected to
the centers of th&J(3) and U(2) subgroups of the gauge group. A lattice regularization of the whole Standard Model is
constructed that possesses this symmetry.

0 2004 Published by Elsevier B.¥pen access under CC BY license.

1. Introduction subgroups. It turns out possible to redefine the gauge
sector of the lattice realization of the SM in such a
way that it has the same naive continuum limit as the

It is well known that to put a quantum field theor . . ) .
P q y fconventlonal one, while keeping the additional sym-

onto a lattice one should keep as much symmetries o

- . : try.
the original model as possible. That is why, for exam- me . . .
ple, any lattice gauge model is made to preserve the ablzz? Standard Model contains the following varl-

gauge symmetry [1] while it is possible, in principle,
to construct a lattice model that comes as a discretiza-
tion of a gauge fixed continuum theory. Other exam-
ples of this kind are the attempts to put fermions on a 4
lattice both avoiding doubling and keeping the chiral resu®, UeU@), ’eU, 1)
symmetry [2].

It is the conventional point of view that all the sym-
metries of the Standard Model (SM), which must be
used when dealing with its discretization, are known. N
In this Letter we demonstrate (in the framework of lat- 2%, e=12 @)
tice regularization) that an additional symmetry is hid-
den within the fermion and Higgs sectors of the SM.
It is connected to the centers of tB (3) andSU(2)

1. The gauge fieldd = (I, U, 6), where

realized as link variables on the lattice.
2. A scalar doublet

3. Anticommuting spinor variables, representing lep-
tons and quarks:

(ve Yy U-[) <u c t) (3)
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The action has the form

S=38;+ Sy + Sy, 4)

where we denote the fermion part of the actionShy
the pure gauge part is denoted By, and the scalar
part of the action bysy.

In any lattice realization ofS; and Sy both these
terms depend upon link variablé$ considered in

the representations corresponding to quarks, leptons,

and the Higgs scalar field, respectively. Therefore,
appears in the combinations shown in Table 1. Our
observation is thagll the listed combinations are
invariant under the following transformations:
U— Ue ™,

0 —>60+nN,

F N I—we(2ni/3)N’

®)

where N is an arbitrary integer link variable. It

represents a three-dimensional hypersurface on the

dual lattice. BothSy and S (in any realization) are
invariant under the simultaneous transformations (5).
This symmetry reveals the correspondence between
the centers of th&U(2) andSU(3) subgroups of the
gauge group.

After integrating out fermion and scalar degrees of
freedom any physical variable should depend upon
gauge-invariant quantities only. Those are the Wil-
son loopsiwsy(3)(€) = Tr[jinkec Tink, @su@(€) =
Tr[Tiinkec Ulink, andwy 1)(€) = [jinkec €XP(560ink)-
Here C is an arbitrary closed contour on the lattice
(with self-intersections allowed). These Wilson loops
are trivially invariant under the transformation (5) with
the field N representing alosed three-dimensional
hypersurface on the dual lattice. Therefore, the non-
trivial part of the symmetry (5) corresponds to a closed
two-dimensional surface on the dual lattice that is the
boundary of the hypersurface representedvbyrhen

Table 1
Ue™i? left-handed leptons
e2? right-handed leptons
rues® left-handed quarks
o
e 30 right-handedi-, s-, andb-quarks
4i
Fe?e right-handed:-, c-, andz-quarks
Ue'? the Higgs scalar field
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in terms of the gauge-invariant quantitieghe trans-
formation (5) acquires the form:

oy (C) — exp(—i37L(C, X))oy (C),
wsy2) (C) = exp(inL(C, Z'))a)su(z)(C),
wsu3)(C) — exp(i 3L (C, 2))wsu( ©). (6)

Here X is an arbitrary closed surface (on the dual
lattice) andL (C, X) is the integer linking number of
this surface and the closed contaur

It is worth mentioning that after integrating out
fermion degrees of freedom as well as the Higgs scalar
the Standard Model in its continuum formulation
becomes a theory defined in a loop space [3], i.e.,
any physical variable depends upon gauge fields only
through thesU (3), SU(2) anU (1) Wilson loops. If we
again denote them asyy(3), wsy(2), andwy (1) (Where
wy 1) corresponds to the worldline of a particle of
U (1) charge} while ogy(2) andwsy s are the Wilson
loops considered in the fundamental representations
of U (2) andSU(3), respectively), the symmetry (6)
understood in the continuum notation would appear if
we neglect the pure gauge-field part of the action. It
is obvious that the latter in its conventional continuum
formulation (or, say, in lattice Wilson formulation) is
not invariant under (6). However, the lattice realization
of the pure gauge field term of the action can be
constructed in such a way that it also preserves the
mentioned symmetry. For example, we can consider
the following expression fo§,:

> {B1(1—3TrU,coss,)

plaguettes

+ B2(1—cosd,)

+B3(1— EReTrI, TrU, explif,/3))

+ Ba(1— FReTrI, exp(—2i6,/3))

+ Bs(1— §Re TrI, expdi6,/3))}, (7)

where the sum runs over the elementary plaquettes of
the lattice. Each term of the action Eq. (7) corresponds
to a parallel transporter along the boundary of a
plaquette considered in one of the representations
listed above. The coefficien{& (i =1,...,5) must
be chosen in such a way as to give rise to the correct
value of the Weinberg angle.

Naively EqQ. (7) has the same continuum limit (with
the appropriate choice of;) as, say the following

g =
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conventional action:

Sg= 2 {A(L-3TrUy) + 430~ coss)

plaquettes
+B3(1- LiReTrr,)}. (8)

However, (7) possesses the additional symmetry (6)
while (8) does not. If the symmetry (6) does occur
in nature, a regularization that does not maintain it
would be inappropriate. The situation here could be
similar to that of an attempt to construct a lattice
gauge model while not keeping the gauge invariance:
the corresponding lattice model may describe physics
improperly.

A particularly interesting question is how the sym-
metry (5) emerges in lattice discretizations of unified
models. Namely, (5) may naturally appear after the
breakdowrG — SU(3) @ U (2) ® U (1). The simplest
example of the unified model of such type is the con-
ventionalSU(5) theory [4]. If we consider its lattice
definition with the Wilson action, the low energy limit
would coincide with Eq. (7) for the following choice
of couplings:
ﬂl—%ﬂ, /34:%/3, p2=PB3=ps=0. 9)
Relation (5) itself appears to be the trivial consequence
of expressing3U(5) link matrices in terms of", U
andé in the low energy approximation:

(" vir)

0 Ue'?
The same picture emerges in any unified theory, if
its gauge grougs containsSU(5) and the symmetry
breakdown pattern i& — --- — SU(5) > VOB ®
VR U().

The other unified models may be transferred to
the lattice either violating or preserving (5). As an
example, let us consider th8U(2); ® U2Q)r ®
U(4); , x Pati-Salam unified model [5]. We arrange
the fermions (of the first generation) as the elements of
2x4 matricesFZf’R (the U(2) r subgroups act on
the first index, the8U (4)” subgroup acts on the second

index):
)

FL.R =<

Leptons and quarks of the other generations are
arranged in a similar way.

2i0

(10)

ul

d/l

u?  ul

d/Z d/3

v
e

11)

381

Let us construct the Higgs sector in such a way
that it provides link matrices which have the form (at
low energies, after the breakdo®d (2);  U(2)r ®
V) —->VUBR U2 ®UQ)):

Fe% )

et? 0
(5 2ol

0
We can define the pure gauge field action, say, in
the following two ways:

0

U® i (12)

1. LetV =Y @VR®Z2eU©Q). @ UQ2kr ®
SU4) be theU(2), @ SU2)r ® SU4) link
matrix (hereyl-R € U(2), Z € U(4)). Then let
us consider the action of the form:

S=p> {(1-3ReTrV},
plag
+(1-1Re Tryrﬁaq)

+ (1 - 3 Re TrZpiag) }- (13)

The lattice model defined in this way obviously
violates (5) in the low energy limit.

. With the above definition of the link variable let us
now consider the lattice model with another action

S=p 2[1 — 15 RE(Tr Vgiag+ Tr Vatag) Tr Zplaq]
plag

~B Z{l — A R Tr Uplag+ 2 cogbpiaq) ]
plag

x (TT Tplage 39020 + ¢ ~i%ia) | (14)

This is exactly the action (7) with the following
choice of couplings:

_B _B _36
lgl—g, '32_16’ B3= 3
3
ﬂ4=ﬂ5=1—§- (15)

Therefore, the full unified model preserves our ad-
ditional symmetry after the breakdov® (2); ®
VQ)r @U@ - UER)Q@U2)L®UD).

Finally, we consider a unified model witnbitrary
gauge grouf; and the arrangement of fermions such
that there exist representatiomsy, ... of G that are
completely composed of the full set of Standard Model
fermions. Let again € G be the link variable. We
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choose the action A comparison of the two approaches in these
respects may be important for understanding whether
S = 1— Reye (Vo itis necessary or notto take; into accoun.t the add|t|qnal
Pa p%%( * paa)) symmetry considered, while constructing the lattice
approximation to the Standard Model.
+8, Y (L—Rex, Voiag) + -+ (16)
plag
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