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Abstract

III-V compound nanowhiskers have attracted much attention recently due to their distinguished electronic and
optical properties. In these nanostructures it was observed a phenomenon called polytypism, i. e., a phase alternation
between zinc-blend and wurtzite structure. Although the polytypical effect is now well controlled, a more detailed
band structure model is not still done, especially in the vicinity of the band edges. In this theoretical study we propose
a model to calculate the electronic band structure in the vicinity of the band edges for polytypical nanowhiskers.
Relying on group theory concepts and on the k·p method we connected the irreducible representations at the Γ-point
of the two crystal structures and described them in a single matrix. Our results for InP show the carriers’ spatial
separation which agrees with reported experiments.
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1. Introduction

An increasing number of papers have reported high quality and control growth for nanowires and nanowhiskers
(NWs) of III-V compounds including InP, InAs, GaAs and GaP [1, 2, 3, 4, 5, 6, 7]. Nanoelectronics, nanophotonics
and solar cells are some of the possible technological applications of these nanostructures.

Although most of the III-V compounds (phosphides, arsenides and antimonides) have zinc-blend (ZB) as the most
stable phase, reducing the dimensions to the nanoscale level can change the crystal structure to the wurtzite (WZ)
phase. The natural explanation to this behavior is the small formation energy difference between the two crystal
structures. In fact, both ZB and WZ structures are very similar when looking through the [111] ZB or [0001] WZ
growth directions and can be described as stacked hexagonal layers. An extensive summary of NWs growth, properties
and applications was made by Dubrovskii et al. [8].

From the theoretical point of view, there are very few papers regarding band structure calculations [9, 10]. A
theoretical model for this new kind of nanostructures can lead to band gap engineering and novel electronic properties
and also serve as a guide for the crystal growth community.

We developed a model to calculate the electronic properties of polytypical NWs using the schematics provided
by Murayama and Nakayama [11] to relate the states of the WZ and ZB structures at the interface based on their
symmetry and the k·p method.
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2. Theoretical Model

In our model [12] we used group theory concepts to relate the irreducible representations in the WZ/ZB interface
of the polytypic NWs, and the k·p method to construct the dispersion relations for the desired energy bands. In this
paper, we will consider only the lowest conduction band and the top three valence bands.

The connection of the irreducible representations can be obtained using the relations presented in [11, 13].
Through those relations we could select the energy bands connected by symmetry and consequently determine the
matrix elements of the Hamiltonian.

In polytypical nanowhiskers, the growth of the ZB phase is oriented along [111] direction implying that the
representation must be done in this particular direction. Then, we have two different choices in the description: to
calculate all the symmetry operations in the [111] coordinate system (which is the same as the [0001] WZ direction)
in order to obtain the matrix elements or to apply a basis rotation to the ZB [001] k·p matrix.

Considering the rotation of axes as reported by [14] and dropping out the prime of the notation, the {|cl〉} basis for
both crystal structures is defined as:

|c1〉 = − 1√
2
|(X + iY) ↑〉

|c2〉 =
1√
2
|(X − iY) ↑〉

|c3〉 = |Z ↑〉
|c4〉 =

1√
2
|(X − iY) ↓〉

|c5〉 = − 1√
2
|(X + iY) ↓〉

|c6〉 = |Z ↓〉
|c7〉 = i |S ↑〉
|c8〉 = i |S ↓〉 (1)

For simplicity, the interband interaction is not taken into account here thus the conduction band is a single band
model for spin-up and spin-down reading as

EC(�k) = Eg + EOFF +
�

2

2m‖e
k2

z +
�

2

2m⊥e

(
k2

x + k2
y

)
(2)

where Eg is the gap energy, EOFF is used if the valence band maximum is not set to zero and m‖e, m⊥e are the electron
effective masses parallel and perpendicular do the z axis, respectively. For the ZB structure, m‖e = m⊥e .

The Hamiltonian for the valence band of the two crystal structures is

HV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F −K∗ −H∗ 0 0 0
−K G H 0 0 Δ

−H H∗ λ 0 Δ 0
0 0 0 F −K H
0 0 Δ −K∗ G −H∗
0 Δ 0 H∗ −H λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

the matrix terms being defined as

F = Δ1 + Δ2 + λ + θ

G = Δ1 − Δ2 + λ + θ

λ = A1k2
z + A2

(
k2

x + k2
y

)

θ = A3k2
z + A4

(
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K = A5k2
+ + 2

√
2Azk−kz

H = A6k+kz + Azk2
−

Δ =
√

2Δ3 (4)

where k± = kx ± iky, Ai(i = 1, ..., 6, z) are the effective mass parameters, Δ1 is the crystal field splitting energy and Δ2,3
are the spin-orbit splitting energies.

It is important to notice that the parameter Az was introduced to provide the correct description of the ZB band
structure, retrieving its correct symmetry description. In the regions where the crystal structure is WZ, this parameter
is set to zero. As a consequence of the procedure described above, the WZ Ai(i = 1, ..., 6) parameters together with
the new parameter Az are related to the γi(i = 1, 2, 3) ZB parameters. Also, Δ2,3 WZ parameters are related to ΔS O and
Δ1 is zero for the ZB region.

To evaluate the correctness and reliability of our description, we applied our method to calculate the valence band
of bulk WZ and ZB InP. Figure 1 presents the valence band structure calculated for both phases. The ZB parameters
were obtained from Ref.[15] and the WZ parameters were derived using the effective masses presented in Ref.[13].
Since the conduction band is a parabolic model, we did not present the calculations.

Figure 1: Valence band structure for bulk (a) WZ and (b) ZB. The usual identification of the bands was used for ZB while in WZ it was necessary
to analyze the composition of the states in the Γ-point. We can see the anisotropy between kz and kx in WZ and also in ZB because in the new
coordinate system the x and z axes do not reach equivalent points in the reciprocal space.

One can notice in figure 1 the explicit difference for both crystal structures. The WZ has three twofold degenerated
bands in the Γ-point while ZB has one twofold degenerated and one fourfold degenerated. The anisotropy between
the kx and kz direction can be noticed for WZ. This anisotropy also happens in ZB because the new axes do not reach
equivalent points in the first Brillouin zone like in the [001] coordinate system.

As the typical dimensions of nanowhiskers are from 1 to several hundreds of Angstroms, in a first approximation
we can neglect the effects of lateral confinement. Then a simple multiple quantum well (MQW) model can be used to
simulate their band structures.

Using the envelope function approximation and considering different Bloch functions in each side of the interface
as stated in equation (5), the parameters vary with the growth direction, making it possible to use a common matrix
for both structures.

ψ(�r) =
8∑

l=1

ei(�k⊥·�r⊥)gl(z)uWZ,ZB
l (�r) (5)

The z dependence in the growth direction of the parameters and envelope functions, gl(z), are treated with the
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plane wave expansion

U(z) =
∑

Kz

UKz e
iKzz (6)

where UKz are the Fourier coefficients of the z dependent function. The Fourier expansion also changes kz to kz + Kz

in the k·p matrix.
The total Hamiltonian of our model for a nanowhisker is

HT (�k) = Hk·p(�k) + VMQW (7)

where Hk·p(�k) is the k·p term and VMQW is a term that describes the band mismatch profile for the MQW.

3. Results and Discussion

The band offset for InP at the interface was given by [13] and the band alignment at �k = 0 for the diagonalized
Hamiltonian can be found in figure 2a. This energy profile is characteristic of a type-II structure.

Figure 2: (a) The band edge energy in the WZ/ZB interface relating the WZ and ZB states. (b) The diagonal potential profile of the total Hamiltonian
alongside the growth direction.

The diagonal terms of the total Hamiltonian at �k = 0 are presented in figure 2b. This is not the effective potential
experienced by the carriers because the off diagonal term Δ couples the second (green) and third (blue) valence band
states. Nevertheless, just looking to these energy diagrams it is easy to analyze the coupling of the different basis
states across the barriers. So, using this point of view to this specific MQW profile one can expect having spatial
carriers’ separation.

Figure 3 displays the quantum well diagonal energy profile of the MQW system. We enumerate the conduction
and valence band wells to identify the probability density of the carriers. Since 3 and 4 conduction wells have the
same width, a degeneracy of states should be expected.

Figure 4 shows our calculations of the conduction and valence band structures up to 10% of the kx direction and
100% of the kz direction for the MQW system. All the states presented are inside the wells and the bands are nominated
accordingly to the predominant basis state. The EL states are composed of |c7〉 or |c8〉, HH states are exclusively |c1〉
or |c4〉 and the LH states are a combination of |c2〉 and |c6〉 or |c5〉 and |c3〉, being |c2〉 or |c5〉 the major contribution.
For the conduction band, The EL3 and EL4 states are nearly degenerate as it was expected since we have two wells
of the same width. This effect is not seen in the valence band because all the wells have different widths.
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Figure 3: Diagonal terms of the total Hamiltonian at �k = 0 for the MQW system. The wells are numerated for identification purposes.

Figure 4: (a) Conduction band of the MQW structure. States from bottom to top: EL1 - EL9. The black arrow indicates the nearly degeneracy of
EL3 and EL4 states. (b) Valence band of the MQW structure. States from top to bottom: HH1 - HH28, LH1, HH29 - HH30, LH2.

The dominant states, and their respective symmetry, play an important role in the luminescence spectra, for ex-
ample, since the majority of the valence band states are HH the luminescence spectra is expected to be more intense
perpendicularly to the growth direction. The contribution for luminescence spectra parallel to the growth direction
comes from the LH states.

In figure 5 we show the probability densities calculated from the envelope functions and normalized in the re-
ciprocal space at �k = 0 for EL1-EL4 and HH1-HH5 bands. The location of the states inside the wells of the MQW
profile can be identified by the numbers in the figure and we can notice that the lower energy states belong to the
larger wells. EL3 and EL4 are very similar because they belong to the wells of the same width in the conduction band.
The narrowest well in the valence band, 5, begins to be occupied only by the HH9 state. As expected, the spatial
separation of the carriers is observed: it is more likely to find holes in the WZ region and electrons in the ZB region,
agreeing with experimental data.

Although we achieved reliable results with the model considered here, improvements should be made to treat
other effects and also polytypism in other III-V compounds. To include higher bands, the basis rotation is no longer
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Figure 5: (a) Probability density of the conduction band states. (b) Probability density of the valence band states. We can notice the spatial
separation of the carriers comparing the numbers to the MQW profile (figure 3).

useful, and a full symmetry analysis is necessary. We believe that this theoretical formulation based in the group
theory concepts of the irreducible representations connection can lead to a better understanding and description of the
polytypism effect in NWs.

4. Conclusion

We have presented a theoretical method relying on group theory arguments and the k·p method to calculate the
electronic band structure of polytypical NWs in the vicinity of the Γ-point.

Our results for the MQW structure are in reasonable agreement with the experimental data available so far. We
obtained the spatial separation of carriers and also light polarization trends in the luminescence spectra. According to
our analysis of the valence band states composition, we expect the light emission to be more intense perpendicular to
the growth direction.

It should be pointed out, however, that this is not a ultimate model and some improvements, such as the inclusion of
strain, piezoelectric polarization and spontaneous polarization for WZ, are necessary in order to give a more accurate
description of the polytypical NWs structures.
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