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Growth models (also known as linear mixed effects models, multilevel models, and random coefficients models)
have the capability of studying change at the group as well as the individual level. In addition, these methods
have documented advantages over traditional data analytic approaches in the analysis of repeated-measures
data. These advantages include, but are not limited to, the ability to incorporate time-varying predictors, handle
dependence among repeated observations in a very flexible manner, and to provide accurate estimates with
missing data under fairly unrestrictive missing data assumptions. The flexibility of the growth curve modeling
approach to the analysis of change makes it the preferred choice in the evaluation of direct, indirect and moder-
ated intervention effects. Although offering many benefits, growth models present challenges in terms of design,
analysis and reporting of results. This paper provides a nontechnical overview of growth models in the analysis of
change in randomized experiments and advocates for their use in the field of internet interventions. Practical
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recommendations for design, analysis and reporting of results from growth models are provided.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Despite considerable advances in applied statistics and methodology
over the years, the randomized experiment is still the only established
way to test cause—effect associations (Pearl, 2009). By randomizing
participants to conditions and holding everything, save one variable
(i.e., experimental manipulation), constant across conditions, the
average difference between participants treated and controls is an unbi-
ased estimate of the average casual effect of the treated (Rubin, 1974). A
well-designed randomized experiment also allows for the exploration
of how this direct effect between treatment and outcome arises
(i.e., mediation/indirect effects), and under what circumstances or for
whom (i.e., moderation) this effect is most pronounced (Baron and
Kenny, 1986).

A number of factors can bias the estimate of the direct, indirect, and
moderated effects in a randomized experiment. Modern statistical
analyses of repeated-measures data offer potential remedies to
common problems encountered in field experiments, for example,
addressing problems with attrition/missing data, dependence among
repeated observations, and statistical power. Methodological advances
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in the analysis of change also provide researchers with excellent analyt-
ic tools to answer important research questions regarding individual
differences. These advances are most relevant for the statistical analysis
of mediation and moderation in randomized experiments. Despite the
benefits of these techniques, however, these methods also present
specific and real challenges for researchers in terms of designing,
analyzing and reporting results of treatment trials.

The field of internet interventions has grown rapidly over the past
decade (Andersson, 2009; Andrews et al., 2010). Numerous randomized
controlled trials have been conducted to evaluate whether internet-
delivered interventions produce beneficial outcomes relative to control
conditions, other treatments, or delivery-formats for a wide variety of
health issues (see for reviews, Andersson et al., 2011, 2014; Andrews
etal,2010; Hedman, 2014; Spek et al., 2007). There is clear heterogene-
ity, however, among studies on internet interventions in terms of the
scientific methodology used (Barak et al., 2009; Danaher and Seeley,
2009; Ritterband and Tate, 2009). Recently, in an attempt to raise the
quality of research in the area, general research guidelines were devel-
oped that provide researchers with recommendations for how to best
report studies within the field (Proudfoot et al., 2011); yet, to my
knowledge, no guidelines exist that provide recommendations for
how to appropriately design and analyze randomized experiments of
internet interventions. Such guidelines can be of critical importance
for the scientific progression of the field at large, as an appropriate
methodology of experiments is at the heart of scientific claims and
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inferences (Mayo, 1996). Specifically, no guidelines have been devel-
oped that provide recommendations for how to make use of modern
statistical techniques in the analysis of change in experiments of inter-
net interventions. Perhaps as a consequence, coupled with the rapid
growth of research in the area, the data analytic procedures used in clin-
ical trials on internet interventions have varied between studies and
some studies have used out-of date methods to analyze clinical trial
data. This could lead to incorrect conclusions and in the long run be
problematic for the field. In addition, studies within the field have yet
to make full use of the advantages of modern data analytic techniques
offer in the study of individual differences in change and correlates of
individual change in experimental designs.

The overall purpose of this paper is to increase awareness of the
advantages of modern data analytic procedures for repeated-measures
data and to encourage their use over traditional methods in the field
of internet interventions. The paper provides a nontechnical overview
of growth curve models in the analysis of direct, indirect and moderated
treatment effects and summarizes some recommendations from lead-
ing methodological authorities within the field of longitudinal data
analysis. The objective is not to provide a detailed technical account of
how to conduct these analyses. For this, readers are referred to the
many accessible didactic articles and books available (Bollen and
Curran, 2006; Hedeker and Gibbons, 2006; Kwok et al., 2008; Peugh
and Enders, 2005; Singer, 1998; Singer and Willett, 2003; Snijders and
Bosker, 2012).

The structure of the paper is as follows. The article begins with a brief
review of growth models in the analysis of change in randomized exper-
iments. Here, I also focus on design issues of relevance when using
growth models. An example is provided to illustrate how to implement
and interpret a linear growth model in the context of a randomized
controlled trial. I then provide some recommendations for modeling
building issues concerning functional form of change, coding of time,
and variance components. Next, [ focus on a common problem in ran-
domized experiments that can seriously bias inferences: missing data.
In the context of Rubin's (1976) missing data theory, I discuss maximum
likelihood estimation in growth models and argue for its use in clinical
trials with incomplete data over other common ad hoc missing data
handling techniques. In the subsequent section, I discuss how to take
full advantage of the modeling capabilities of growth models in the
statistical analysis of mediation and moderation in randomized experi-
ments. The paper concludes with some recommendations for the
reporting of results from growth models in studies on internet
interventions.

2. Measure and model change in randomized experiments

When researchers conduct a randomized experiment to evaluate an
outcome of an intervention they are, implicitly or explicitly, concerned
with how that outcome changes over time. They might be interested
in how a specific set of behaviors or symptomatology expressed by
the individual at certain time point has changed in response to the
intervention. Consequently, when evaluating the outcome of an inter-
vention, they need to consider how to model and measure change. His-
torically, change has often been examined using one or two assessment
points, such as in a pre- and post-treatment design (Francis et al., 1991).
For such research designs, repeated measures analysis of variance (RM-
ANOVA) or multiple regression analysis (including analysis of covari-
ance which is a form of multiple regression) has frequently been
employed. The primary purpose here is to study mean group differ-
ences. Individual deviations from these averages are treated as error
variance, rather than reflecting the true amount of change that take
place at the individual level (Duncan and Duncan, 2004). Although
this design and data analytic choice can be defended, concerns from a
conceptual and statistical standpoint have been raised by methodolo-
gists, in particular, related to the study of correlates of change (Rogosa
and Willett, 1985). On a conceptual level, these models do not explicitly

model individual change and change is viewed as incremental rather
than as a continuous developmental process that unfolds over time
(Francis et al., 1991; Rogosa, 1988; Rogosa and Willett, 1985). On a
statistical level, these models are concerning because of the (un-) reli-
ability of the difference score, inability to adequately handle time-
varying predictors, missing data as well as unbalanced data (Duncan
and Duncan, 2004; Francis et al., 1991; Gueorguieva and Krystal, 2004;
Kwok et al., 2008; Rogosa and Willett, 1985; Willett and Sayer, 1994).
Moreover, our data analytic approach must be able to handle nested-
data structures and dependence among observations in repeated-
measures data (i.e., observations are nested within individuals over
time). Traditional data analytic approaches (e.g., RM-ANOVA) rest on
strong data analytic assumptions regarding covariance structures for
handling dependence among repeated-measurements (e.g., sphericity
assumption) and if these assumptions are violated it will lead to incor-
rect decisions (Francis et al., 1991; Gueorguieva and Krystal, 2004;
Kwok et al., 2008).

An alternative approach is to view change as a continuous process
that occurs between any two-time periods. Change is captured by an
individual's underlying growth trajectory. Growth models (also
known as random coefficients models, multilevel models, and mixed ef-
fect models) are well suited for the purpose of studying change at the
group as well as the individual level (Bryk and Raudenbush, 1987;
Hedeker and Gibbons, 2006; Meredith and Tisak, 1990; Muthén and
Curran, 1997; Willett and Sayer, 1994). This makes the data analytic
approach highly relevant for the analysis of change in randomized ex-
periments. These models have several clear advantages over traditional
data analytic approaches for the analysis of repeated-measures data.
These advantages include, but are not limited to, the ability to incorpo-
rate time-varying predictors, handle dependence among repeated
observations in a very flexible manner, and to provide accurate esti-
mates with missing data under fairly unrestrictive missing data
assumptions (Duncan and Duncan, 2004; Gueorguieva and Krystal,
2004; Muthén and Curran, 1997). The data analytic approach also
allows researchers to handle other types of dependence among obser-
vations due to clustering. For example, effects may, in certain interven-
tion studies, be due to variability among therapists providing the
treatment and random effects modeling can be one way to control for
clustering due to therapists in experimental designs (Wampold and
Serlin, 2000). Finally, although it is largely an unstudied topic, statistical
power to detect nonzero parameters can be increased in certain circum-
stances when using growth models. For example, compared to tradi-
tional data analytic approaches (e.g., RM-ANOVA) in the analysis of
repeated-measures data from between-group designs, growth models
have shown to produce greater statistical power in detecting a differ-
ence in a linear slope estimate (i.e., time by group interaction) in
small to moderate sample sizes (Fan, 2003).

2.1. Recommendations for design

Although it is possible to apply growth models to two-wave data, the
traditional pre-post-treatment design is not optimal, especially if the
researcher intends to model individual heterogeneity in growth
(Rogosa and Willett, 1985)." That is, when only two time points are
available one cannot separate error variance from individual heteroge-
neity in change. This precludes the study of individual differences in
change and of correlates of individual change. In addition, if the re-
searcher suspects that the functional form of change (time trend) can-
not be adequately described with a straight line, two data points are
not sufficient. Also, inclusion of multiple measurements during the

! Even if the aim of the study is not to examine individual growth, there are situations in
which the researcher still might want to consider growth models over traditional ap-
proaches (e.g., RM-ANOVA) because they offer other clear advantages, such as the ability
to include time-varying covariates, handle missing and unbalanced data, and to fit various
forms of variance-covariance structures to the data.
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trial is beneficial when there is missing data. Having more observations
on the outcome between pre- and post-treatment assessment can pro-
vide valuable information about the individual who fails to return the
last assessment point in the study; information that can be used to ob-
tain accurate parameter estimates with incomplete data (I will return
to this last point when I discuss missing data in Sections 5.1 and 5.2). Fi-
nally, increasing the number of measurements can positively affect the
statistical power and reliability of the assessment of individual change
(Muthén and Curran, 1997; Raudenbush and Bryk, 2002).

Thus, more than two time points is often preferred and too few
measurements can in certain situations be detrimental to a longitudinal
study (Collins, 2006). Several factors can be used to determine the num-
ber of time points to be assessed. Consideration needs to be given to the
underlying theory of change such as when change is most likely to occur
and measure relevant constructs frequently and tightly spaced during
these time periods (Collins, 2006). The researcher need also consider
the nature of the measures used to assess change, such as whether the
measures are sensitive enough to detect a significant change during
the time period, whether there is a risk of floor or ceiling effects, and
whether repeated testing changes the meaning of the construct being
measured (Jackson, 2010). The test-retest reliability of the instrument
as well as power issues also factor into decisions about number of mea-
surement occasions. As a general recommendation, researchers should
aim to include, at the minimum, four measurement points in a trial
because the flexibility in the modeling approach is increased substan-
tially when more than three time points are available. However,
whenever possible, the aim should be to include more measurements
during the active intervention phase, for example, weekly or biweek-
ly measures of primary outcomes (and process variables) can be
beneficial, especially when examining moderators and mediators in
a trial.

3. Implementing and interpreting growth models

Growth models can be estimated within a multilevel, mixed model
or structural equation modeling framework. Although there are some
differences in modeling capabilities, different frameworks often yield
identical results (Bollen and Curran, 2006; Enders, 2011b). In fact,
Preacher et al. (2008) point to the fact that differences between frame-
works to a large extent are products of the software and as new versions
of software are released, differences between frameworks become more
difficult to identify. In this paper, I use the generic term growth models
(or growth curve models), but readers should be aware that there are
some differences between frameworks that will affect results in certain
types of models (e.g., models with time-varying predictors). Some
models can also be more readily estimated within one framework as
compared to another (e.g., parallel process growth models and not
missing at random growth models are easier to implement in structural
equation modeling framework as compared to linear mixed or multilev-
el framework). Jackson (2010) has provided some general recommen-
dations when one framework may be preferred over another, but as
stated earlier, the software may play an even more important role here.

3.1. An example of a linear growth model in the context of a randomized
trial

To illustrate how to implement and interpret a linear growth model,
consider the following hypothetical randomized depression trial
in which participants were randomly assigned to either an internet-
delivered intervention or an active control condition and the primary
outcome was measured at four time points weekly throughout the
active treatment phase. Fig. 1 illustrates a randomly selected sample of
observed individual trajectories and the average mean trend for the
entire sample (i.e., the treatment group and control group combined).
As can be seen in the figure, individuals started at different levels and
changed at different rates over time, but, on average, they seemed to

decrease in depression scores over time. Now consider if the researchers
wish to fit a linear growth trajectory to the observed data and evaluate
whether individuals assigned to the intervention decrease at faster
linear rate in depression symptoms as compared to those assigned to
the control condition (and hence ending up with lower depression
scores at the end of the treatment period).

Growth models can be expressed in the form of a linear regression
equation in which the outcome is modeled as function of a temporal
predictor variable that captures how the individual changes on the
outcome over time. A linear growth model is,

Yi = Bo + Bi(TIMEy) 4 bg; + by;(TIME) + &

where Y;; is the outcome at time point t for individual i, TIME, is the
value of the predictor for individual i at time point t (e.g., the time
passed since the onset of the study), 3o is the mean intercept, 3; is the
mean growth rate (i.e., expected change in the outcome as function of
1 unit change on the time predictor variable), by; and by; are so-called
random effects that allow the intercepts and growth rates to vary across
individuals, and & is a time-specific residual that expresses the differ-
ence between an individual's fitted linear trajectory and the observed
data. Thus, the model includes both fixed effects (i.e., averages
across individuals) and random effects (i.e., individual deviations
from these averages); hence, the use of the term mixed effects
models.

The most noteworthy aspects of the model are the random effects,
bo; and by;, that capture individual heterogeneity (normally assumed
to be multivariate normally distributed). Thus, each individual would
get his or her own intercept, by; (here the value on the outcome at initial
assessment) and slope, by; (expected change in the outcome as function
of 1 unit change, e.g. one week, on the time predictor variable). In addi-
tion, by estimating the covariance between random effects we can
obtain information on whether individuals' intercepts and slopes are
correlated; that is, in this case, whether there is a relationship between
individuals' starting values and individuals' rates of change on the
outcome. For example, the researcher may expect that individuals
with high initial depression scores will change at faster rate over time
(decrease more in depression symptoms) as compared to those with
low scores at baseline. This covariance between intercepts and slopes
is estimated in the covariance structure associated with random effects
(error variance also has an associated covariance structure; I return to
this covariance structure in Section 4.1). When only two random effects
are included in the model, we can either estimate this covariance
(i.e., unstructured covariance structure) or constrain it to be zero
(ie., diagonal covariance structure).
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Fig. 1. Observed mean trend and randomly selected individual trajectories with artificial
depression trial data.
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Up until now, the model only examines change over time in the
entire sample of individuals and does not reflect the fact the individuals
were randomized to different groups. The primary goal of a treatment
trial is, of course, to determine whether individuals randomized to the
intervention change at a faster (or slower) rate over time as compared
to those in the control group. To accomplish this, our linear growth
model needs to include a binary coded predictor variable representing
conditions (1 = intervention, 0 = control). The model then becomes,

Yi= Bo + Bi1(TIME,) + B,(CONDITION;) + {3;(CONDITION;)(TIME,;)
+ bg; + by (TIMEy;) + &;

where (3¢ is the population estimate of the intercept for the control
group, 3; is the population estimate of the linear slope for the control
group (i.e., control = 0), 3, and 35 capture the estimates of the mean
difference in intercept and slope between conditions, bg; and b,; are
random effects that allow the intercepts and growth rates to vary across
individuals, and & is a time-specific residual that expresses the differ-
ence between an individual's fitted linear trajectory and the observed
data. Most relevant, of course, for the primary goal of the study is to
test whether 3 (i.e., condition by time interaction; mean difference in
slopes between conditions) is nonzero. What is important to note,
however, if this coefficient is significantly different from zero it will
explain some of the variance in linear slope trajectories, by;. That is, by
including the condition variable in the model we aim to account for
the individual heterogeneity and random effects now act as residuals
(i.e., unexplained individual heterogeneity not accounted for by condi-
tion). In fact, this model is sometimes described as a conditional growth
model in which random effects (i.e., intercepts and slopes) are condi-
tioned on the predictor variable, whereas the former model is often
referred to as an unconditional growth model because it only includes
the temporal predictor of time without other explanatory variables
(Bollen and Curran, 2006). Thus, by allowing intercepts and slopes to
vary across individuals we can add predictor variables to account for
this heterogeneity in growth trajectories.

To aid in the interpretation of this linear growth model, I used artifi-
cial data to mimic results of a depression trial and implemented the
growth models (unconditional and conditional model) in the linear
mixed effects framework using SPSS version 21 (full information maxi-
munm likelihood estimation with an unstructured covariance structure
for random effects and an identity covariance structure for error
variance). The results can be found in Table 1. As can be seen in the
table, there were significant individual heterogeneity in initial levels
(i.e., intercepts) and slopes. Participants, regardless of assignment,
decreased, on average, in depression scores by —0.71 (3;) points per
week. Most noteworthy, the slope heterogeneity could in part be
accounted for by the inclusion of the condition predictor variable in
the growth model (i.e., the variance associated with random slope
was reduced from 0.14 to 0.11, see Table 1). Indeed, there was a
significant condition by time interaction, 33 = —0.40, indicating that
participants assigned to the intervention decreased, on average, by 0.4
points more in depression scores per week as compared to those
assigned to control. Thus, condition could systematically explain some
of the variance in individual slope estimates. To aid in the interpretation
of this effect, Pseudo-R? can be calculated as the proportion of explained
variance in the random effect by the condition predictor variable
(Singer and Willett, 2003). By subtracting the estimate of the random
effect variance in the conditional growth model (i.e., the model with
the predictor) from the estimate of the variance in the unconditional
growth model (i.e., the model without the predictor) and by dividing
this difference with the unconditional random effects variance, we
obtain the proportion of explained variance by the predictor. Based on
the information in Table 1, it can be concluded that the condition
predictor variable accounted for about 21% of the slope variance
((0.14-0.11) / 0.14 = 21.4%).

3.2. Growth models within structural equation modeling framework

As previously stated, growth models can be implemented in
different frameworks. One useful and flexible framework is structural
equation modeling. Although a review of structural equation modeling
is beyond the scope of this article, here I briefly show how the linear
growth model can be cast within this framework. In structural equation
modeling, the linear growth model is a two-factor confirmatory factor
analysis, where the random intercept and slope are captured by the
two latent factors. Fig. 2 depicts a path diagram of the conditional linear
growth model. The ellipses are latent variable (with means and
variances), rectangles are observed measured variables, single-headed
straight arrows represent regression coefficients, and the double-
headed arrow denotes covariance. Specifically, the variances associated
with the latent variables capture the heterogeneity in growth trajecto-
ries (intercept and slopes; bg;, and, by;) and the mean of the latent
intercept and latent slope variable corresponds to the mean of the inter-
cept and slope (Bo, and (;; here the average initial level and rate of
change in the control condition, as the condition status variable is
included in the model). The coefficients for the single-headed arrows
that connect the condition status variable (binary coded variable) to
the latent variables correspond with the mean differences between con-
ditions (3, and 33; mean difference in initial level and slope). Finally,
the factor loadings for the intercept (1, 1, 1, and 1) and slope (0, 1, 2,
and 3) stipulate the functional form of change (i.e., a linear model
with equally spaced measurements).

3.3. Type of predictors in growth models

One of the strengths of this modeling approach is that it can incorpo-
rate various forms of predictors in the model. The predictor values may
vary over time within individuals, so-called time-varying covariates
(e.g., change in medication use over time), or values may be fixed across
time within individuals but vary across individuals, so-called time-
invariant covariates (e.g., condition in between-group design) (Singer
and Willett, 2003). In other words, predictors may either covary with
the outcome over time or represent stable characteristics that do
not change over time. Time-varying covariates generally account for the
variance within individuals (i.e., error variance), whereas time-invariant
covariates account for variance between individuals (i.e., random effects;
although these variance components are related within a general co-
variance structure so both within and between variance may be
affected with inclusion of both types of predictors, Singer and
Willett, 2003; Wu et al., 2009). An applied example of the use of
time-varying covariates can be found in a study that examined asso-
ciations between the frequency of patient's use of particular words in
their text communication with therapists and outcomes in an

Table 1
Results from a linear growth model with artificial depression trial data.
Unconditional Conditional
Estimate SE Estimate SE
Fixed effects
Initial level, o 533" 0.06 539" 0.13
Time, B —0.71" 0.04 —039" 0.08
Condition, (3, - - —0.08 0.15
Time by condition, 33 - - —0.40" 0.09
Random effects
Variance initial level, by; 0.33" 0.09 0.33" 0.09
Variance slope, by; 0.14* 0.03 0.11* 0.03
Covariance initial level-slope 0.05 0.04 0.05 0.04
Residual, &; 0.69" 0.05 0.69" 0.05

Note. Unconditional growth model does not include condition, whereas the conditional
model does. Condition is binary coded variable (1 = intervention, 0 = control). SE =
standard error.

* p<.001.
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internet-delivered psychological intervention for generalized anxi-
ety disorder (Dirkse et al., 2014). Researchers can also incorporate
regression among random effects in the growth model; in such
models, the random effects (intercepts and/or slopes) serve as
predictors of other random effects in the model (I return to this
type of growth model when I discuss moderation and mediation in
Sections 6.1 and 6.2).

3.4. The coding of time and interpretation of the intercept

The interpretation of both the average and individuals' intercepts
and slopes changes with the coding of the predictor variables in the
equation. Thus, it is necessary to know how time is coded in order to
interpret the coefficients. Similar to standard regression analysis, the
intercept represents the value at the time point when the predictor
variable(s) in the model is zero. For example, if individuals are mea-
sured weekly from pre- to post-treatment (4 weeks), a possible coding
of time could be 0, 1, 2, and 3. As the first time point is coded as zero, we
would interpret the intercept as the average level at the first assessment
and individual heterogeneity at that time point (in an unconditional
growth model). We could also recode the variable so that the intercept
would be at the end of the assessment period, as in, —3, —2, —1,and 0.
This would only be a reparameterization of the same model, but it
would change the interpretation of the intercept and associated
variance (i.e., random effects) (Biesanz et al., 2004). The inclusion of
other predictors in the model, besides time, would also change the in-
terpretation of the intercept, so it is import to know how each predictor
variable is coded in the model.

Although it is possible to use coding schemes common in standard
regression or ANOVA, such as centering or polynomials contrasts, it is
generally not recommended (Biesanz et al., 2004). The coding of time
should produce readily interpretable estimates that reflect the substan-
tive research question (Biesanz et al., 2004 ). For example, if researchers
wish to evaluate the outcome at the end of the treatment period,
making the last measurement point the intercept makes sense. Of
course, if one is interested in the time point in the middle of all assess-
ment points (e.g., as a transition point between two phases) centering
the time variable is an option (Raudenbush and Bryk, 2002). It is also
important to observe that coding of time should reflect the time

o

Y1 2

Condition

Fig. 2. Schematic figure of a linear growth model with a condition status variable
(1 = intervention; 0 = control) predicting individual intercepts and slopes.

intervals between measurement occasions; for instance, if measure-
ments were taken every other week, rather than every week, the coding
of time would be 0, 2, 4, and 6 (for a linear model).

4. Model building strategies for growth models

In order not to obtain biased parameters estimates, we need to fit an
accurate model to the observed data. As with most model building strat-
egies, the goal is to identify a parsimonious statistical model that
describes the observed data to satisfactory extent. To identify an appro-
priate growth model it is important to consider, the time trend, as well
as variance within individuals (i.e., error variance) and between individ-
uals (i.e., random effects) (Wu et al., 2009). Given the flexibility of the
approach and the many models available to choose from, it is recom-
mended to start the analysis phase by plotting both the average trend
and individual trends over time (Kwok et al., 2008). In a randomized
controlled trial, plotting these trends as a function of condition can
help to identify the functional form of change and allow for the exami-
nation of individual heterogeneity. This visual inspection serves to limit
the number of models that need to be tested.

4.1. Modifying the time trend and variance components

Several different time trends or functional forms of change can be
specified in growth models and this is accomplished by altering how
time is coded in the model (Bollen and Curran, 2006). Growth models
can incorporate polynomial terms (as standard regression) to capture
non-linear change. For example, to obtain a quadratic function we
could simply square the linear term (using the aforementioned depres-
sion trial example, the quadratic term is 0, 1, 4, and 9) and then include
both terms in the model. As before, we can incorporate individual
heterogeneity in the trajectories by including random effects associated
with the intercept, linear and quadratic terms in the model. As the
quadratic function captures the curvature from the straight line, it
may be suited for a trial with follow-up data; that is, individuals may
change rapidly during the active treatment phase and then change
may stabilize during the follow-up phase of the trial. However, an
even better data analytic approach in this situation would be to model
the treatment trial as qualitatively distinct phases by estimating a sepa-
rate regression coefficient for each phase of the trial (Duncan and
Duncan, 2004; Muthén and Curran, 1997). This can be accomplished
with a piecewise function. With a sufficient number of data points (at
least 3 per phase, assuming a linear change model in each phase),
researchers may wish to entertain such a model because this would
allow them to include all data points in the same analysis and also
model change in a way that fits nicely with how change is likely to
occur in most trials that include follow-up assessments. In addition,
using a piecewise growth model, a set of predictors may be used to
predict individual growth in one phase (e.g., pre- to post-treatment)
and a separate set may be used during the other phase of the trial
(e.g., follow-up phase) (Duncan and Duncan, 2004; Muthén and
Curran, 1997). An example of this model can be found in a study that
compared internet-delivered cognitive behavior therapy with face-to-
face group therapy for depression over a time period of three years
using a randomized design (Andersson et al., 2013).

The choice of functional form of change should be based on theory of
change and previous examination of the particular phenomenon under
study. Indeed, methodologists have emphasized the importance of
theory in model building and design in longitudinal data analysis
(Collins, 2006). Sometimes theoretical assumptions about change are
nonexistent (Jackson, 2010). In these situations, researchers may
choose to test a number of different models to determine the model
that best fits the observed data. Several different relative and global fit
measures can be used here and some practical guidance for model
building is also available (Bollen and Curran, 2006; Wu et al., 2009).
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It is often appropriate to assess the statistical (and practical) signifi-
cance of model parameters (e.g., means, variance and covariance) when
evaluating model fit. Assuming a large enough sample, a common and
general way to test the significance of a parameter is the Wald test, in
which the point estimate is divided by its standard error; if the ratio ex-
ceeds 1.96, it is said to be significantly different from zero at the .05
level. When models are nested, researchers may use a likelihood ratio
test to determine whether the inclusion of additional parameters (one
or more) in the model contributes significantly to the model (Snijders
and Bosker, 2012). The test is a deviance score, which is the difference
in —2 Log Likelihood values between a less restrictive model and a
more restrictive one. The significance of the deviance test value is
evaluated against the chi-square distribution, where degrees of freedom
is equal to the number of parameters that are set to zero in the more
restrictive model. Likelihood ratio tests may be useful when examining
individual heterogeneity in the form of the inclusion of random effects
and associated covariance structure, error variance covariance struc-
tures as well as fixed effects (Snijders and Bosker, 2012).2 It should be
noted, however, that under certain circumstances, the Wald-test and
the likelihood ratio test are too conservative and can produce biased
standard errors (which is especially true for variance components as
these are bounded; they are by definition nonnegative, making the
standard normal symmetric sampling distribution inapplicable)
(Snijders and Bosker, 2012). Various corrections and modifications to
these commonly used tests can reduce such bias and create more pow-
erful tests for parameters (Molenberghs and Verbeke, 2007). More
detailed information on hypothesis tests of fixed and random effects
in multilevel models can be found in the text by Snijders and Bosker
(2012).

Once the number of random effects has been analytically
determined, researchers may also decide to modify the error variance
(Kwok et al., 2007). Longitudinal data analysis has historically often
incorporated correlated error terms in the model to account for
dependence among repeated measurements (e.g., autoregressive struc-
ture) (Willett and Sayer, 1994). Dependence is now, at least in part,
accounted for by the inclusion of random effects in the model
(i.e., dependence associated with that the same individuals are mea-
sured repeatedly over time); still, it may be meaningful to test whether
the assumption of independence of error variance is tenable. It may also
be reasonable to test whether error variance changes over time
(i.e., diagonal covariance structure) rather than assuming that variance
is homogenous across measurement points (i.e., identity covariance
structure) (Willett and Sayer, 1994), which is the default in most
multilevel or linear mixed software.

4.2. Overall approach to model building

Unfortunately, the methodological literature offers little clear-cut
guidance when it comes to the order in which components should be
added to the model and where to start modifying the growth model
(Wu et al,, 2009). Some recommend estimating all parts in the model
and then removing components that do not contribute significantly to
the model (e.g., Verbeke and Molenberghs, 2000). Others argue for a
bottom-up approach in which one starts with a simple model and
evaluates whether the inclusion of additional components adds to the
model, working upward from level 1 in multilevel repeated-measures
terminology (e.g., Raudenbush and Bryk, 2002; Snijders and Bosker,
2012).

Wu et al. (2009) provide a baseline model as a starting point for
evaluating and re-specifying growth models in both multilevel and
structural equation framework. It is often advisable to begin by

2 When using restricted maximum likelihood estimation (REML), likelihood ratio tests
cannot be used to test fixed effects nor to compare models with different covariates, as the
method adjusts the likelihood for number of covariates in the model (Hedeker and Gib-
bons, 2006).

modifying and evaluating the functional form of change and then
adding random effects as needed (see also a recent article that argued
that random effects structure should be kept maximal in confirmatory
hypothesis testing, Barr et al., 2013). After considering the time trend
and taking into account heterogeneity at the individual level, re-
searchers may want to modify the error variance. In a randomized
trial, it is often useful to do this process for each condition separately
before including all groups in the same model. Finally, predictors
(e.g., condition) could be added to account for individual heterogeneity
in growth trajectories.

There are no clear and fixed rules to follow when it comes to model
specification and both substantive and statistical considerations should
be taken into account when choosing among data models (Snijders and
Bosker, 2012). As stated earlier, theory should guide researchers and it is
often advisable to not test models in isolation, but to compare compet-
ing theoretically derived models (Preacher et al., 2008). It is also critical
that the specified model accurately reflects the design of the study and
the theoretical predictions. This also means that researchers should not
drop or include variables in the model solely based on statistical criteria
(e.g., significance level). Snijders and Bosker (2012) distinguish
between two parts of the data analytic model that can be treated
distinctly in the model building phase: the part that involves a priori
hypotheses of parameters and the part that is required to get the
model to fit the data well and is a prerequisite for valid tests of hypoth-
eses. For the latter part, they argued, an inductive data driven-approach
can sometimes be adequate, whereas for the former part of the model a
data-driven approach to model specification is not suitable. However,
see also Barr et al. (2013) for specific concerns regarding data-driven
approaches to the specification of random effect structure in hypothesis
testing.

5. Statistical inferences in growth models with missing data

Missing data is arguably one of the biggest data analytic concerns in
arandomized controlled trial. For example, in an intervention study for
depression, it is reasonable to expect that participants who do not
respond to treatment, and subsequently are the most depressed, are
more likely to drop out of the study and not return to complete the
follow-up assessment. This is an example of when there is a relationship
between outcome and the probability for missing data, so-called non-
ignorable missing data (Enders, 2010, 2011b). To understand how
missing data, and the extent to which missing data, influence statistical
inferences, Rubin's (1976) missing data theory is of critical importance.
Although the framework has been long established in the methodolog-
ical literature, it has not always spread to the applied sciences. One rea-
son is probably that the terminology is somewhat confusing and the
practical implications of the theory are often elusive to most researchers
(Graham, 2009). Three so-called missing data mechanisms are central
to the theory: Missing Completely at Random (MCAR), Missing at
Random (MAR), and Not Missing at Random (NMAR) (Little and
Rubin, 2002). Each one of these mechanisms describes the association
between the probability of missing data and other variables and the
outcome variable itself. Missing mechanisms are important to consider
as they act as assumptions for missing data handling techniques and
determine the performance of these techniques (Enders, 2010).

5.1. Ignorable missing data: MCAR and MAR

In the case of MCAR, the probability of missing data on a variable
should be unrelated to other measured variables and to the would-be
values of that variable (Enders, 2011a). For example, if we have
measured participants at four measurement points in a randomized
control trial (such as in the depression trial) and we only have missing
data at the final time point, MCAR requires that missing, at this time
point, is unrelated to treatment group status, to scores on the outcome
variable at previous assessments, and to the would-be scores on the
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outcome variable at the final time point. In other words, if missing data
is a random sample of the whole data set then MCAR holds. This is often
an unrealistic assumption. Yet, most simple forms of strategies for han-
dling missing data, such as eliminating cases with missing data
(e.g., pairwise or list wise deletion) or single regression or mean impu-
tation, assume MCAR. Indeed, numerous simulations studies have
shown that these techniques produce biased estimates when data are
missing under MAR or NMAR mechanisms (see for reviews, Enders,
2010; Graham, 2009).

A more lenient missing data assumption is MAR, in which the prob-
ability of missing data on a variable is allowed to be related to other
observed variables, but not to the would-be values of that variable
(Enders, 2011a). Despite what the name implies (random missingness),
this is, in fact, systematic missing, because it allows the propensity for
missing data to be related to observed variables included in the data
analytic model. Graham (2009), for example, proposed that conditional
missing at random might be a better word than MAR. Using the afore-
mentioned example, MAR allows the probability of missing data at
final assessment to be related to treatment group status, and to scores
of previous assessments, but not to the would-be values at the final as-
sessment. Thus, MAR is a much more reasonable assumption than
MCAR because it is unlikely that other observed variables are unrelated
to the outcome and the propensity for missing data. MAR allows for
such associations, assuming that these variables are included in the
data analytic model (Enders, 2010).

5.2. Maximum likelihood estimation in growth models

Full information maximum likelihood estimation, as implemented in
most software routines that estimate growth models, assumes MAR.
Nontechnically, full information maximum likelihood estimation is an
iterative process with the aim to identify population parameter values
that have the highest probability of reproducing the sample data
(readers interested in the technical details of maximum likelihood can
consult, Enders, 2010). The technique does not strictly impute missing
values, but borrows information from all of the observed data. Using
the depression example, individuals who had not completed the final
assessment, provided observed data to the estimation process on the
first three measurement points and this information was used when
estimating all parameters in the model. Assuming a multivariate normal
distribution, the information from the incomplete cases steers the esti-
mation process toward more accurate parameter estimates (Enders,
2010, 2011a). Thus, rather than disregarding incomplete cases, full
information likelihood estimation uses all available data in the estima-
tion process of parameter values. This method of incorporating all indi-
viduals in the analysis is most relevant when it comes to a randomized
controlled trial for three primary reasons. First, to obtain an unbiased
estimate of the average casual effect of the treated requires that all indi-
viduals randomized are included in the analysis (i.e., intention-to-treat).
Second, if individuals are deleted due to partial missing data, statistical
power loss is to be expected. Third, missing data is now handled
under MAR rather than MCAR.

Indeed, full information maximum likelihood estimation is one of
two recommended methods for handling missing data (the other is
multiple imputation) (Schafer and Graham, 2002) and the technique
has shown to outperform other methods commonly used in clinical
trials. Most noteworthy are direct comparisons between this technique
and an ad hoc missing data strategy frequently employed in the clinical
trial literature: last observation carried forward. Methodological studies
have repeatedly demonstrated that full information maximum likeli-
hood estimation is a better alternative than last observation carried
forward because it provides more accurate estimates and standard
errors as well as increased statistical power (e.g., Lane, 2008;
Mallinckrodt et al., 2001; Salim et al., 2008). In fact, despite its wide-
spread use, last observation carried forward has shown to produce
substantial bias, even under an MCAR mechanism (Enders, 2011a).

Thus, full information maximum likelihood estimation has several
advantages as compared to traditional remedies for missing data in clin-
ical trials. There are also several examples of studies in the literature of
internet interventions that use maximum likelihood estimation to cope
efficiently with data loss under MAR (e.g., Hesser et al., 2012; Lj6tsson
et al,, 2014; Newby et al., 2013).

5.3. Non-ignorable missing data: NMAR

There are situations when MAR-based techniques (e.g., full informa-
tion maximum likelihood estimation) also yield biased results. NMAR,
outcome-dependent missing data or non-ignorable missing, occurs
when the probability of missing data on a variable is related to the
would-be value of that variable (Enders, 2011b). So returning to our
example, NMAR occurs when the likelihood of dropping out of the
study before completing the final assessment is directly related to the
would-be values of the outcome at that time point of assessment,
even after controlling for scores on previous assessments and treatment
group status. This is the most problematic situation to handle and unfor-
tunately there is no formal test of MAR (as it is based on an untestable
assumption i.e., unobserved data or the would-be values of the out-
come), so we cannot determine conclusively whether an NMAR
mechanism is at play (Enders, 2011b). Even more problematic is that
although several so-called NMAR analyses have been developed over
the years (and continue to be developed), these analyses come with
their own set of untestable assumptions and even minor violations of
these assumptions can result in bias (Enders, 2011b). This has led to
methodologists sometimes recommending either that MAR-based tech-
niques be performed even if one suspects NMAR (e.g., Graham, 2009;
Molenberghs et al., 2004), or that a NMAR analysis be conducted as a
form of sensitivity analysis to examine whether results hold under
various data assumptions and conditions (e.g., Enders, 2011b).

As stated above, statisticians have devoted much energy to develop
different forms of NMAR models to handle non-ignorable data (for an
overview see, Enders, 2011b), but to date they are not in widespread
use in the behavioral sciences. One reason for this is that they have
historically been difficult to implement, but new software develop-
ments have made these models much more accessible to researchers
in applied sciences (Enders, 2011b). One prominent NMAR model for
longitudinal data is the pattern mixture model (Hedeker and Gibbons,
1997, 2006), in which individuals are stratified according to their miss-
ing data patterns and a separate growth model is estimated for each
pattern (or the patterns are included as dummy predictor variables in
the model). The model allows one to examine whether individuals
with a certain missing data pattern (e.g., missing data due to attrition)
differ in their growth trajectory from those with a complete set of
data, and, more importantly, whether these differences affect overall es-
timates and standard errors. To obtain corrected full sample parameter
estimates (e.g., a mean difference in slope between treatment and
control), proportion-weighted pattern-specific estimates are averaged
across subgroups with different missing data patterns (Enders,
2011b). One can compare this combined overall estimate with the esti-
mate obtained in a traditional MAR-based growth model to determine
whether outcome-dependent missing data are likely to have influenced
the findings. An applied example of a pattern-mixture model is provid-
ed in an open study that examined internet-delivered cognitive
behavioral therapy for depression in routine psychiatric care (Hedman
et al., 2014; for similar data analytic model in applied setting see also,
Hadjistavropoulos et al., 2014).

6. Making full use of growth models: implications for mediation and
moderation

Up until now we have considered the strengths of growth models to
evaluate the direct effect of intervention on outcome. Yet to realize the
full potential and possibilities of these models we should consider how



H. Hesser / Internet Interventions 2 (2015) 110-120 117

we could apply them to answer substantive research questions related
to differences between individuals within intervention studies. Several
methodologists have pointed out that these methods respond to central
questions in intervention studies, namely who responds best to what
intervention and why (e.g., Duncan and Duncan, 2004; Muthén and
Curran, 1997). Questions such as these are commonly answered by
the means of statistical analysis of moderation and mediation. A moder-
ator is a variable that affects the strength between the independent
(e.g., intervention) and dependent variable (e.g., outcome), whereas a
mediator is a variable that is part of casual chain in which the mediator
acts as link between the independent variable and dependent variable
(Baron and Kenny, 1986).

The importance of the study of moderators and mediators has also
been emphasized in the field of internet interventions. For example,
Ritterband et al. (2006) made the observation that, “The chief goal of
any internet intervention is to produce cognitive and behavior change
that leads to symptom improvement. Examining and testing this
process using theories and models of behavior change is critical to fur-
thering the understanding of how Internet interventions, and even
treatments in general, work.” (p. 2). They further argued that, “An
advantage of conducting randomized controlled trials through the
internet is the ease of obtaining large sample sizes (no geographical
limitations), making it possible to better examine mediators and mod-
erators of treatment.” (Ritterband et al., 2006, p. 3). To adequately
answer questions related to mediation and moderation, researchers
need to model change at the individual level. Growth models are there-
fore of high value when it comes to testing mediators and moderators in
intervention studies.

6.1. Examining moderators using growth models

Moderation has often been evaluated using standard regression
analysis with an interaction term (MacKinnon, 2008; MacKinnon
et al.,, 2007). A nonzero interaction effect between moderator and
condition in explaining variance in the outcome is interpreted as a mod-
erated treatment effect. That is, the effect of treatment on outcome
differs as function of values on the moderator variable. The simplest
way to accomplish this with growth models would be to model individ-
ual growth on the outcome and then include a potential moderator
(continuous or as a dummy variable) as a predictor in the model. A non-
zero interaction effect between moderator, group and time would be
interpreted as a moderated treatment effect. It is important to remem-
ber that by including this new variable in the model we aim to account
for individual heterogeneity in slope trajectories. In other words, the
question we aim to answer is whether individuals' rate of change varies
systematically as a function of both condition and another third variable
(i.e., moderator). An applied example of this model can be found in a
study that examined moderators in an internet-based prevention trial
for eating disorders (Volker et al., 2014). An extension of this moderator
growth model would be using the random effect intercept to model the
interaction effect between “true” initial status (i.e., intercepts vary over
individuals at first assessment point) and condition in their influence on
the growth rate. Thus, this model corresponds to a substantive research
question, namely whether the intervention effect varies as a function of
individuals' initial symptomatology. This can be accomplished by
regression among random effects in the structural equation modeling
framework (for variations of this model see, Muthén and Curran, 1997).

We can also use more sophisticated approaches to test moderated
effects in intervention studies. One potentially useful technique is to
empirically classify individuals based on their growth trajectory (inter-
cepts and slopes), so-called group-based trajectory modeling or growth
mixture modeling (Nagin and Odgers, 2010). We could add predictors
in these types of growth models with the aim of trying to explore
relationships between individual baseline characteristics and the
empirically based sub-populations of trajectories of change and also
examine associations with distal outcomes. Growth mixture models

have been specifically developed for the purpose of evaluating interven-
tion effects in sub-populations (Muthen et al., 2002). Although growth
mixture models could potentially be very useful when examining
moderators in clinical trials, up to date, [ am aware of no applied exam-
ple in the field of internet interventions that has implemented this type
of growth model.

6.2. Examining mediators using growth models

In randomized designs, mediation is often evaluated by examining
whether the intervention (relative to control) changes the mediator
and, if this change, in turn, is correlated with change in the outcome
(MacKinnon, 2008). Growth modeling is most relevant when it comes
to test mediators in intervention studies. One important reason is that
these models allow for the examination of individual differences in
change in both the outcome and mediator. Indeed, if one is concerned
with how two constructs are related over time, such as a mediator
and outcome, the investigation of how change comes about takes
precedence. That is, we need an appropriate model for change for
both the mediator and the outcome before we can consider if, and
how, they are correlated (Cheong et al., 2003). Once an appropriate
growth model has been developed for the mediator and outcome,
multivariate extensions of growth models then allow researchers to
examine whether individual change in the mediator is associated with
individual change in the outcome over time in one combined model
(Cheong et al., 2003; for an alternative multivariate mediation approach
within the multilevel framework see, Bauer et al., 2006). This can be
accomplished by regression among random effects in which the random
slope of the outcome is regressed on the random slope of the mediator.
Support for mediation is found when the treatment group significantly
accounts for individual change in the mediator, which, in turn, is associ-
ated with individual change in the outcome. Appropriate tests of
indirect effects (mediated effects) can then be applied (Cheong et al.,
2003; MacKinnon et al., 2002). A good applied example of this parallel
process mediator growth model can be found in a study that compared
two forms of internet-delivered psychological treatments for irritable
bowel syndrome using weekly measurements of potential mediators
and primary outcome (Ljotsson et al., 2013).

One important methodological obstacle for any researcher who aims
to evaluate mediation in the context of a randomized controlled trial is
the correlational nature of the association between mediator and
outcome (MacKinnon, 2008; MacKinnon et al., 2007). That is, we cannot
conclusively determine whether the mediator has a casual effect on the
outcome as we do not have experimental control over the mediator.
One way to perform a more stringent test of causality in mediator
models is to establish the timeline between mediator and outcome;
that is, whether change in the mediator preceded and contributed to
subsequent change in the outcome (Kazdin, 2007). One way to test
this assumption is to include the mediator as lagged time-varying
covariate in the growth model. That is, we could predict outcome at
time point ¢ using the mediator at time point t — 1 (or any other lag
that is relevant) and then reverse the order between the outcome and
mediator to compare strength of association. More sophisticated
growth models have also been developed with the specific aim to
model temporal order between two (or more) variables over time in
one combined model, such as the bivariate latent difference scores anal-
ysis (McArdle, 2009) and the autoregressive latent trajectory model
(Bollen and Curran, 2004).

Finally, growth models can be very useful when researchers test
various forms of moderated mediation and mediated moderation
models (MacKinnon, 2008; MacKinnon et al., 2007). An applied
example of a moderated mediator model is found in a study that com-
pared two internet-delivered psychological treatments for tinnitus
distress (Hesser et al., 2013). Using the mediator as a time-varying
covariate in linear mixed effects growth model, the study showed that
the treatments produced similar results on the primary outcome, but
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that different processes in part explained the effects. That is, the medi-
ated effect varied as function of a moderator variable, that is, treatment
condition (for technical details see, Bauer et al., 2006). Another interest-
ing model to consider in intervention studies is one in which the medi-
ated effect depends on the baseline level of the mediator (MacKinnon
etal., 2007). Similar to the model testing baseline moderated treatment
effects, the true initial level on the mediator can be captured by the ran-
dom intercept in a growth model and the change in mediator and out-
come can be modeled with individual growth trajectories (i.e., parallel
process growth modeling).

7. Reporting results from growth models

The overall guiding principle when reporting results is that the
analyses should be described in sufficient detail so other researchers
are able to replicate them. This guiding principle, of course, also applies
to the reporting of results from growth models. Given the flexibility of
the approach, this means that researchers need to report more informa-
tion about the data analytic procedures than they generally do when
traditional forms of data models are used (e.g., ANOVA). In other
words, it will not suffice to only report, for example, that a linear
mixed effects model was conducted to evaluate the outcome of an inter-
vention. Some researchers might find the correct reporting of growth
models to be tedious and it is often a tradeoff between clarity, target
group and journal page limit/reporting requirements. Still, to report
too little information can be a serious problem for the particular study
and the field in the long run (Jackson, 2010).

What needs to be reported will to a large extent depend on the
growth model that is employed and the particular phenomenon under
study. Below, I summarize some general recommendations for
reporting of growth models. For more information, Jackson (2010) has
provided a guide for the reporting of results from growth models in
the multilevel and structural equation modeling framework.

7.1. Recommendations for the reporting of results from growth models

One important aspect to report is the framework used to implement
the model, that is, multilevel modeling/linear mixed effects or structural
equation framework. As stated earlier, different frameworks often yield
identical results; nevertheless it is important to report this so that
readers can interpret the findings and replicate the analysis. It is also
important to report the software and type of estimation method used.
How missing data were handled and under what assumption (MCAR,
MAR, or NMAR) should also be communicated clearly in the paper.

Regarding final model(s) interpreted in the results, researchers need
to report the functional form of change and describe the coding of time.
It is also valuable if researchers provide arguments for these choices
in relation to theory of change and/or a substantive research
question(s) (Jackson, 2010). The inclusion of random effects (with
associated covariance structure) and the choice of error structure
(e.g., whether homogenous and independent) are also important to
communicate. It is often very useful to include the regression equation
for the model(s) in the paper. When estimating models in structural
equation modeling framework, researchers may also consider including
a schematic figure of the model. Equations and figures can be very infor-
mative and be an efficient way to communicate advanced data analytic
models (Jackson, 2010).

It is important to describe not only the final model(s), but also the
process of model evaluation and re-specification of models during the
analysis phase. This includes reporting the procedures and decisions
criteria for evaluating and re-specifying models, the type of relative
and global fit measures used, and the various models that were tested
before selecting the final model(s). It is also important to specify wheth-
er models that were tested were determined a priori before the data
were collected or were analytically determined post hoc in an
exploratory fashion (Jackson, 2010).

In terms of reporting the results of the models, useful summary
statistics should be included (e.g., observed and model-implied means,
standard deviations, variance). If individual heterogeneity is of particu-
lar importance for the study (e.g., in a moderation/mediation study)
variance associated with random effects should also be described in
the paper, along with Pseudo-R? (when appropriate) (Singer and
Willett, 2003). In such studies, I would also recommend a graphical vi-
sualization of individual growth trajectories (Carrig et al., 2004), as
this would aid in the interpretation of the results concerning individual
differences in change and correlates of individual differences in change.
It is often appropriate and useful to report the unstandardized beta co-
efficients of fixed effects, as this allows readers to interpret the results in
the metric of the original outcome scale (e.g., mean difference between
groups as function of one unit change in time). Standardized effect sizes
for growth models have been developed (Feingold, 2009) and relevant
effect sizes (when available) ought to be reported along with test statis-
tics (e.g., z, t or Fstatistics and degrees of freedom) and confidence inter-
vals for fixed effects. In addition, statistical power to reject a nonzero
parameter of primary interest for study (e.g., parameter estimate of
group difference at the end of the treatment period) needs to be
reported. Power will generally depend on effect size, number of
repeated-measurements, sample size (with expected attrition), and
the type of data analytic model (e.g., covariance structure, number of
random effects, time trend, contrasts) (Hedeker et al., 1999). These
aspects, along with alpha level, should be presented when reporting
power calculations for growth models.

8. Concluding remarks

The primary aim of this paper was to highlight some recent methods
in the analysis of change and encourage their use in the field of internet
interventions. The particular details of specific advanced models were
not given here. There are many excellent books that cover in great detail
various forms of growth models, both within the framework of linear
mixed effects models/multilevel modeling (Hedeker and Gibbons,
2006; Singer and Willett, 2003) and structural equation modeling
(Bollen and Curran, 2006; Preacher et al., 2008). Readers who wish to
gain a better understanding of these models can do so by consulting
these books. In addition, there are specific and important topics that
were not fully addressed in this overview. There are several texts that
provide in-depth treatments of specific issues, such as estimation and
statistical tests of parameters (Snijders and Bosker, 2012; Verbeke and
Molenberghs, 2000), the evaluation of model fit (Wu et al., 2009), the
statistical power of rejecting nonzero parameters in between group-
designs with attrition (Hedeker et al,, 1999), the coding and interpreta-
tion of time (Biesanz et al., 2004), and the choice of error structure
(Kwok et al., 2007) and random effects structure (Barr et al,, 2013).

In this paper, I have argued for the use of growth models in the anal-
ysis of change in experiments of internet interventions. These models
offer the potential of answering substantive research questions regard-
ing change, individual differences in change and correlates of individual
change. The methods also have clear documented advantages for han-
dling common problems in longitudinal data analysis, most significant-
ly, missing data. As such, they have much to offer researchers with
respect to treatment evaluation and I believe that these techniques
should be seriously considered in studies on internet interventions.

The methods use, however, is also associated with some specific
challenges. Growth models require that researchers reconsider the use
of the traditional pre-post-treatment design, which is not optimal for
these types of models. Given that this general approach to the analysis
of change is very flexible, researchers are now also challenged in
terms of model building, as they need to choose and argue for an
appropriate data analytic model for change. This includes specifying
an appropriate time trend and modeling correctly variance within indi-
viduals (i.e., error covariance structure) as well as between individuals
(i.e., random effects with covariance structure). Finally, these models
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also require researchers to report sufficient information about models
(and model evaluation) so as to be able to replicate the analyses and
to interpret the results. Despite these challenges, I do believe that the
advantages outweigh the potential drawbacks of using these models
in applied research (e.g., underreporting, misspecifying models) and, if
implemented correctly, these methods can have an immense impact
for the evaluation of direct, indirect and moderated intervention effects
in the field of internet interventions.
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