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SUMMARY

We present new approaches to cis-regulatory
module (CRM) discovery in the common scenario
where relevant transcription factors and/or motifs
are unknown. Beginning with a small list of CRMs
mediating a common gene expression pattern, we
search genome-wide for CRMs with similar function-
ality, using new statistical scores and without
requiring known motifs or accurate motif discovery.
We cross-validate our predictions on 31 regulatory
networks in Drosophila and through correlations
with gene expression data. Five predicted modules
tested using an in vivo reporter gene assay all show
tissue-specific regulatory activity. We also demon-
strate our methods’ ability to predict mammalian
tissue-specific enhancers. Finally, we predict human
CRMs that regulate early blood and cardiovascular
development. In vivo transgenic mouse analysis of
two predicted CRMs demonstrates that both have
appropriate enhancer activity. Overall, 7/7 predic-
tions were validated successfully in vivo, demon-
strating the effectiveness of our approach for insect
and mammalian genomes.

INTRODUCTION

In metazoans, much of transcriptional regulation is mediated by

cis-regulatory modules (CRMs; also ‘‘modules’’ or ‘‘enhancers’’)

that form the building blocks of gene regulatory networks (Carroll

et al., 2001). CRM identification formerly had been possible only

through a dedicated empirical approach of testing sequence

fragments for regulatory activity in a reporter gene assay. The

genomics era has led to the development of new genome-wide

techniques to screen for potential gene-regulatory regions,

such as chromatin immunoprecipitation coupled to genomic

tiling arrays (ChIP-chip) (Li et al., 2008) or ultra-high-throughput
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sequencing (ChIP-Seq) (Visel et al., 2009). Although they show

great promise, even these empirical methods do not identify

regulatory elements or predict their tissue-specific activity with

complete accuracy. Importantly, the fact that it is impossible to

assay all tissue types under all conditions means that potential

CRMs will be missed by these techniques.

In recent years, computational methods have provided an

attractive complementary approach for module identification.

However, their effectiveness has been limited to a few well-

understood biological systems, where prior knowledge of the

requisite TFs and their binding sites could be exploited. This

paper examines CRM prediction in the much more common

scenario where knowledge of the relevant TFs and/or their

binding specificities (motifs) is missing. We tackle here a com-

mon variant of this problem: ‘‘Suppose a small set of modules

participating in a transcriptional subnetwork is known a priori.

The task is to use such information as ‘training data’ to guide

the search for other modules in that subnetwork.’’ We call this

task the ‘‘supervised CRM prediction problem.’’ The term

subnetwork refers here to a group of genes that are coordinately

expressed as a result of having common regulatory inputs. We

define a successful CRM prediction as identification of a se-

quence that drives an expression pattern commensurate with a

nearby gene’s endogenous expression. Depending on how

specific the expression patterns of the training CRMs are, a

successfully predicted CRM may recapitulate their common

expression pattern, or may not.

Computational methods for CRM prediction (Berman et al.,

2002; Halfon et al., 2002; Frith et al., 2003; Sinha et al., 2003;

Philippakis et al., 2005; Donaldson et al., 2005) typically scan

the genome for clusters of putative binding sites that are defined

by sequence similarity to known motifs. This approach may fail

on at least two grounds. First, motif information is sparse as of

now; e.g., motif databases for Drosophila catalog only �12%

of the estimated number of TFs. Intense efforts are being

made to characterize the binding specificities of all TFs in mouse

(Berger et al., 2006) and fruit fly (Noyes et al., 2008) and may in

the long term alleviate the problem. However, these efforts are

labor-intensive and relatively expensive, and the problem may
ier Inc.
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thus persist for scientists studying organisms other than human,

mouse, and fruit fly. A second, more serious problem facing

CRM discovery stems from the fact that most computational

tools need prior knowledge of the TFs relevant to the specific

regulatory network of interest. For less-studied regulatory

systems, such knowledge may not be available. Admittedly,

even if the relevant TFs and/or their motifs are unknown, compu-

tational motif finding tools may be used to discover position-

weight-matrix (PWM) motifs from the training data. However,

the modest success rate of motif-finding programs, as sug-

gested by a recent survey (Tompa et al., 2005), casts doubts

upon the prospect of CRM discovery based on computational

motif finding.

Here, we address simultaneously both problems by under-

taking supervised CRM discovery in the absence of motif knowl-

edge and without relying upon accurate motif finding. We

propose and examine various statistics to capture the functional

similarity (due to shared binding sites) between a candidate CRM

and the given set of modules. These statistics belong to the

realm of ‘‘alignment-free’’ sequence comparison, since the simi-

larity to be detected is not due to orthology. The statistics are

based on frequencies of short words, akin to many motif-finding

programs, but without the usual objective of finding the most

specific (biochemically accurate) characterization of the TF’s

binding sites. All new methods developed here are made publicly

available as source code at http://veda.cs.uiuc.edu/scrm/index.

htm.

Previous attempts at solving the supervised CRM prediction

problem (Chan and Kibler, 2005; Grad et al., 2004; Nazina and

Papatsenko, 2003) have been primarily tested on a single data

set, the anterior-posterior patterning subnetwork in D. mela-

nogaster. We now evaluate two existing and seven new scoring

schemes on 31 data sets in Drosophila and 8 data sets in

mammals, and we perform in vivo validation in both species. In

our previous work (Ivan et al., 2008), we proposed computational

methods for CRM discovery without prior knowledge of motifs or

modules, where the search was constrained to regions around

coregulated genes. Here, we relax that constraint and enable

genome-wide search by leveraging the prior knowledge of

related CRMs where available. The methods of Ivan et al.

(2008) are not applicable in this setting. An unsupervised version

of our problem was also addressed in Rajewsky et al. (2002)

through the use of Poisson statistics on short word counts.

We performed extensive cross-validation tests with our scores

on 31 data sets representing a broad spectrum of regulatory

subnetworks in D. melanogaster, exploiting known modules

cataloged in the REDfly database (Halfon et al., 2008). Our tests

established the feasibility of supervised CRM prediction for

about half of the examined data sets and also identified data

sets that are not amenable to our scores. We then predicted

modules genome-wide for each amenable regulatory subnet-

work and found their neighboring genes to be highly enriched

for the expected expression patterns. We filtered our predicted

module collection based on gene expression data, producing

a high-confidence set of putative CRMs belonging to a regulatory

subnetwork. We tested five predicted modules in vivo and found

each of the five to drive reporter gene expression that recapitu-

lates aspects of the endogenous gene expression (although not

always in the expected pattern).
Develop
Assessment of the supervised prediction pipeline on 8 data

sets in mammals, comprising 244 tissue-specific enhancers,

led to �60% of the enhancers being recovered. We finally

applied this pipeline to predict CRMs with roles in mammalian

blood and cardiovascular development. In vivo validation in

transgenic mice allowed us to demonstrate successful identifi-

cation of two regulatory regions with the predicted activity and

demonstrates the extensibility of our computational approach

beyond Drosophila.

RESULTS

Scoring Schemes
Given a genomic region in which to search, each of our CRM

prediction schemes scans the sequence with a shifting window

of fixed size, and scores the window for similarity to a (given)

training set of CRMs. Thus, the crucial component of each of

these schemes is its distinct scoring system for matching a

candidate module (‘‘test CRM’’) to the set of known ‘‘training

modules.’’ These scoring schemes are described next at a

general level; details are available in Experimental Procedures

and Table S11 (available online).

(1) Markov chain-based score: The ‘‘HexMCD’’ score trains

separate generative models (5th order Markov chains) for

training modules and background sequences, and quantifies

which model matches the test sequence better. This score

was originally proposed by Grad et al. (2004).

(2) Dot product-based scores, with statistical significance esti-

mation (‘‘D2z’’): These scores are based on the dot-product of

k-mer frequency distributions of training and test sequences.

Importantly, the scores are made to reflect the statistical signif-

icance of this dot-product, by analytical computation of

‘‘z scores’’ under suitable null models, hence the name ‘‘D2z.’’

For technical reasons described in Experimental Procedures,

we had to develop and implement this analytical calculation

differently from our previous work (Ivan et al., 2008; Kantorovitz

et al., 2007) on the D2z score. We developed three scoring

schemes in this category (Experimental Procedures).

(3) Selection of representative k-mers, followed by Poisson

statistics: In the new score called ‘‘Poisson additive conditional’’

or ‘‘PAC,’’ words that are even weakly associated with the

training CRMs are identified and their additive contributions to

the similarity score are based on overrepresentation of those

words in the test sequence, relative to background sequences,

calculated using Poisson statistics (Experimental Procedures).

(4) Selection of representative k-mers, followed by weighted

sum of counts: The two scores in this category are generically

defined as
P

w˛W sðwÞnðwÞ, where n(w) is the number of occur-

rences of word w in the test sequence, s(w) is a weight reflecting

its association with the training modules, and the set W

comprises the top ranking words based on s(w). In the ‘‘HexDiff’’

score of Chan and Kibler (2005), reimplemented here, the weight

of a word is the ratio of its frequency in training and background

sequences. In the ‘‘HexYMF’’ scheme we have designed, the

weight of w is the ‘‘z score’’ (Experimental Procedures) of the

count of w in the training CRMs,.

(5) Motif database-driven score: We developed a program,

called Stubb-MDB (Stubb based on motif database), that begins
mental Cell 17, 568–579, October 20, 2009 ª2009 Elsevier Inc. 569
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with a large compendium of experimentally validated motifs

(Matys et al., 2003; Noyes et al., 2008; Halfon et al., 2008), deter-

mines the motifs that are relevant to the regulatory subnetwork

of interest, and runs the Stubb program (Sinha et al., 2003)

with these short-listed motifs to score the test sequence for

matches to the motifs. This motif-based approach provides a

useful point of comparison to the motif-blind approaches out-

lined above (1–4).

Comparison of Different Scoring Schemes
and Characterization of Data Sets
We utilized a modified version of the CRM prediction benchmark

developed in our previous work (Ivan et al., 2008). The new

benchmark consists of 31 data sets, each data set comprising

a collection of bona fide CRMs that mediate gene expression

patterns with some level of commonality. We employed ‘‘leave-

one-out cross-validation’’ (LOOCV) to assess the relative perfor-

mance of our scoring schemes (see Experimental Procedures).

Figure 1A summarizes the results of our cross-validation tests,

with asterisks indicating cases where the CRM-level sensitivity

was statistically significant (p % 0.05; see Supplemental Exper-

imental Procedures). In such cases, we say that the method is

‘‘successful’’ on the data set. We immediately note that the

best motif-blind methods (HexMCD, HexDiff-rc, HexYMF-

s200-rc) succeed on close to half of the data sets. In contrast,

the method that makes use of a motif database (Stubb-MDB-

rc) succeeds on fewer data sets. We also tested an alternative

motif-based pipeline—that of using ‘‘Clover’’ (Frith et al., 2004)

for motif selection and ‘‘ClusterBuster’’ (Frith et al., 2003) for

scanning with selected motifs—and found success levels to be

comparable to that of Stubb-MDB (Table S12). Nucleotide-level

sensitivity measurements show similar trends (Figure S1).

Repeating the cross-validation exercise four times (see Experi-

mental Procedures), we examined which methods succeed

on a specific data set in all four LOOCV ‘‘instantiations’’ (Table

S3). We find that 15 of the 31 data sets have at least one method

(among the eight listed) for which this consistency requirement is

met (Figure 1D). We designate these as the ‘‘amenable’’ data

sets, i.e., the CRMs in such a data set have the extent and

kind of sequence similarity that we need for supervised predic-

tion. We find that for data sets neuroectoderm and blastoderm,

all shown methods succeed consistently, suggesting that these

two regulatory subnetworks are among the easiest ones for

supervised CRM prediction. A closer look at the top 200 words

used by HexYMF for the blastoderm data set reveals matches

to 6 of the canonical motifs for this network (Figure S4). We

also find examples, such as cardiac-mesoderm, eye.1, and me-

sectoderm, where only one of the methods is a consistent

performer (white cells in Figure 1D), indicating that the common

sequence features of the CRMs in each of these regulatory

subnetworks may be harder to capture.

Figures 1B and 1C show one-on-one comparison of the eight

methods. We find the top four methods—HexMCD, PAC-rc, Hex-

YMF-s200-rc, and HexDiff-rc—to be competitive with one

another. The emerging theme however is that CRMs in different

data sets are best predicted by different scoring schemes. For

instance, the ‘‘D2z-cond-weights’’ score is the only method con-

sistently successful on the ‘‘somatic muscle’’ data set (Figure 1D),

even though in the final tally over all data sets (Figures 1B and 1C)
570 Developmental Cell 17, 568–579, October 20, 2009 ª2009 Elsev
it is the least successful score. It is natural to ask if a combination

of two or three methods can yield better predictive performance

on average. We chose the methods HexYMF-s200-rc, HexDiff-

rc, and PAC-rc to build what we call a ‘‘fusion’’ method—which

scores a candidate sequence by the product of the scores from

these three methods. Figures 1B and 1C show that this naive

combination method is indeed better overall than any individual

method. It has consistent performance on ten data sets

(Figure 1D), the most among all methods. It is also the superior

method in one-on-one comparisons (Figure 1B).

Finally, we attempted to find characteristics of data sets that

allow strong performance. We found a significant correlation

between prediction accuracy on a data set and (1) the extent

of homotypic clustering of short words in the training set (Fig-

ure S2A, p = 0.009), (2) the GC content of the training set (Fig-

ure S2B, p = 0.005), and (3) the extent of nucleotide-level conser-

vation with orthologous sequence (Figure S2C, p = 0.007). We

did not however see a significant correlation between the

number of training CRMs and the performance on a data set.

Multispecies Comparisons Improve Predictions
We obtained the orthologs of the training CRMs from each of two

other Drosophila species (D. ananassae and D. pseudoobscura),

and predicted CRMs in D. melanogaster sequence with each of

these training sets. Scores from these runs were then averaged

to give us a multispecies score profile. Cross-validation on all 31

data sets showed that the multispecies version of HexMCD

substantially outperformed its single species version (Fig-

ure 1E; Table S3).

Role of the Training Set
We asked if the success of our supervised CRM prediction

methods is due to an ability of our scoring schemes to learn

the characteristics of the specific regulatory subnetwork, or an

ability to infer general sequence characteristics of CRMs. We

constructed for each data set a ‘‘random training set’’ consisting

of REDfly CRMs from outside of that regulatory subnetwork, and

repeated the above evaluation. Of the 16 data sets on which the

‘‘fusion’’ method performs significantly well (Figure 1A), 9 data

sets perform worse when using the random training set,

meaning that the CRM predictions are specific to the particular

regulatory subnetwork. On the other hand, the performance on

seven data sets, though significantly strong, is comparable to

that with training sets comprising randomly selected CRMs,

suggestive of a less specific type of CRM prediction based on

sequence characteristics of CRMs in general (Table 1). Interest-

ingly, the data sets that give rise to specific prediction are typi-

cally smaller than the nonspecific ones (p < 0.02, Table 1), and

their expression patterns, as measured by the number of indi-

vidual anatomy terms defining the pattern (Table S7), are more

specific (p < 0.002, Table 1). We also assessed the value of

the training set by executing an unsupervised CRM prediction

method (‘‘CSam,’’ from our previous work [Ivan et al., 2008])

on each of the 31 data sets. The method was successful on

only one of the data sets (data not shown), indicating a major

advantage conferred by the use of the training set, and also

pointing out that our modified benchmark is substantially

‘‘harder’’ than that of Ivan et al. (2008) (Supplemental Experi-

mental Procedures).
ier Inc.
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Figure 1. Assessment of Methods

(A) LOOCV performance of each of 9 different methods on 31 data sets in the benchmark. Color accents represent CRM-level sensitivity on a scale of 0 to 1, and

cases with an empirical p value %0.05 are marked by asterisks. The top row shows the number of data sets amenable to supervised prediction by each method.

One-on-one comparison of methods: For each pair of methods M1 (row) and M2 (column), (B) the ‘‘wins’’ of M1 versus M2 (i.e., the number of data sets on which

CRM-level sensitivity of M1 was greater than that of M2 by at least 10% of data set size).

(C) The difference between the wins of M1 versus M2 and the wins of M2 versus M1 in CRM-level sensitivity.

(D) Fifteen data sets on which at least one method succeeds in all four instantiations. Color indicates the number of instantiations (out of four) on which the perfor-

mance was significant (p % 0.05): white = 4, yellow = 3, orange = 2, brown = 1, black = 0.

(E) Comparison of single species and multispecies versions of HexMCD. For each each LOOCV instantiation, the average CRM-level sensitivity over all data sets

(y axis) and number of amenable data sets (number above each bar) are compared between the two methods.
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Genome-Wide Prediction of Drosophila CRMs
For each of the 15 amenable data sets, taking all known modules

as training data, we scanned the noncoding genome of D. mela-

nogaster for the highest scoring modules, using the ‘‘fusion’’

method as well as the best individual scoring scheme from the

cross-validation results for that data set. We then used gene

expression databases (FlyBase, BDGP) to test the quality of

these genome-wide predictions. First, we defined a set of genes

(‘‘expression gene set’’) with expression patterns commensurate

with those of the CRMs in the data set (see Experimental Proce-

dures). We next took the modules predicted for that data set and

extracted their nearest neighboring genes (‘‘predicted gene

set’’). Finally, we performed hypergeometric tests of enrichment

between the expression gene set and the predicted gene set

(Table 2). Of the 15 data sets, 8 had an enrichment p value %

10�10, and 14 had p value %0.01 either with fusion or the best

individual scoring scheme. (Given that 15 3 2 tests were done,

13 are significant at p < 0.05 with Bonferroni correction.) The

strongest enrichments were observed for the data sets blasto-

derm, imaginal disc, and wing. In a negative control experiment,

we ‘‘predicted’’ random genes for each data set and performed

the same test for enrichment; the enrichment p value was not

significant on any data set (Table 2). Thus, intersecting the

predictions with gene expression data provides strong support

for our genome-wide CRM predictions. Furthermore, taking

this intersection gives us a high confidence set of module predic-

tions for each of the 15 data sets, which are made available in an

online interface with ‘‘Genome Browser’’ integration (Figure S6).

This interface also lists associations with motifs from existing

databases, for each data set.

In Vivo Validation of Predictions for the Blastoderm
Data Set
The blastoderm data set performed strongly in the cross-valida-

tion exercises using each of the scoring methods and had the

strongest gene expression pattern enrichment in the genome-

wide search. We therefore focused our follow-up efforts on this

high-performing data set. Our compendium lists 113 modules

as being related to the training CRMs in this data set (see Exper-

imental Procedures and Table S2). Thirty-three of these top

modules belong to the training set itself, while an additional 26

are known modules that were not included in the training set

(Table S2). The remaining 54 (113 – 33 – 26) modules are novel

CRM predictions (also see Table S13).

Although the expression pattern enrichment results and

successful prediction of known modules not included in the

training set suggest that a large fraction of our predictions are

correct, only in vivo testing of the predicted elements can

confirm that they have regulatory function. We therefore chose

five putative modules, located near the genes edl, srp, odd,

SoxN, and cas, for in vivo validation using a GFP-based reporter

construct in transgenic Drosophila embryos. (None of these was

predicted by the motif-based ‘‘Ahab’’ program in Schroeder

et al. [2004].) Remarkably, all five tested constructs showed

reporter gene expression in a pattern consistent with the expres-

sion of their predicted associated gene (Figure 2). Interestingly,

although the five modules were selected using the blastoderm

data set as training data, and all five associated genes are ex-

pressed during the blastoderm stage of development, only two

of the identified CRMs, those for edl and srp, appear to regulate

blastoderm-stage gene expression (Figures 2A, 2B, 2G, and 2H).

Table 1. Categorization of Data Sets Amenable to the Fusion Method into Specific and Nonspecific

Data Set ‘‘Real’’ Training Set ‘‘Random’’ Training Set Performance n (Data Set) n (Anatomy Terms)

Blastoderm 0.45 0.23 specific 77 1

Wing 0.34 0.29 specific 33 7

Endoderm 0.22 0.15 specific 16 13

Mesoderm.1 0.32 0.18 specific 16 2

Ventral_ectoderm 0.34 0.19 specific 12 4

Trachea1 system 0.32 0.15 specific 9 7

Cardiac-mesoderm 0.47 0.07 specific 8 9

Amnioserosa 0.30 0 specific 7 3

Neuroectoderm 0.76 0.14 specific 7 2

Mean (SD) 0.39 (0.16) 0.16 (0.08) 22.25 (23.63) 4.38 (2.92)

Neuronal 0.23 0.25 nonspecific 54 31

Ectoderm.2 0.18 0.20 nonspecific 51 16

Imaginal disc.1 0.25 0.25 nonspecific 47 14

Mesoderm.2 0.20 0.18 nonspecific 45 47

Ectoderm.1 0.19 0.17 nonspecific 37 4

CNS 0.33 0.32 nonspecific 34 21

PNS 0.3 0.3 nonspecific 24 15

Mean (SD) 0.24 (0.06) 0.24 (0.06) 41.71 (10.58) 20.12 (13.27)

p (specific < nonspecific) <0.013 <0.002

‘‘Specific’’ (column 4) indicates that nucleotide-level sensitivity in LOOCV tests was better (R0.05) when the proper training set was used (column 2)

than when a randomized training set was used (column 3). Columns 5 and 6 list the size of data sets and number of anatomy terms used in defining

them, respectively. Values for the specific and nonspecific data sets were compared using a one-tailed Wilcoxon rank-sum test. See also Figure S3.
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Both of these also regulate expression at later stages in develop-

ment. In the case of edl, this later expression is a subset of the

complete expression pattern of the gene (Figures 2C–2F), con-

sistent with the notion of modular gene regulation through the

action of multiple CRMs for each gene (Arnone and Davidson,

1997). Expression driven by the srp CRM more comprehensively

covers the range of endogenous srp expression, in addition to

driving apparently ectopic reporter gene expression in the

midgut of later stage embryos (Figures 2I and 2J, and data not

shown). This may represent actual ectopic expression, but

may also simply be perdurance of GFP expression in tissues

that developed from earlier srp-expressing progenitors. The

SoxN and cas CRMs closely recapitulate subsets of the central

nervous system expression of their respective associated genes

from mid-embryogenesis on (Figures 2M–2T), while the odd

CRM recapitulates native odd expression in a number of tissues

including mid-stage mesodermal progenitor cells and late-stage

fat body (Figures 2K and 2L, and data not shown). Ectopic

reporter gene expression is observed in cardioblasts (data not

shown). This may again merely represent perdurance of the

GFP reporter in a subset of mesodermal cells, or may indicate

improper activity of the CRM in descendants of a common cell

lineage (a subset of Odd-negative cardioblasts are sibling cells

to Odd-positive pericardial cells, arising from a common progen-

itor [Ward and Skeath, 2000]). Detailed experimental analysis will

be needed to distinguish between these possibilities.

Application to Data Sets of Tissue-Specific Enhancers
from Mouse
Encouraged by these strong validation results, we also sought to

determine whether our methods would work effectively for pre-

diction of mammalian CRMs. We constructed eight new data

sets, comprising a total of 244 CRMs known to drive expression

in specific tissues in mouse (Pennacchio et al., 2006). We per-

formed leave-one-out cross-validation as in the Drosophila anal-

ysis above, with each of the seven motif-blind methods. Seven of

the eight data sets were amenable to consistent prediction by at

least one method, over ten LOOCV instantiations (Experimental

Procedures; Figure 3; Table S3); as observed previously, no

one method proved universally superior. (Also see results on

cross-validation with native flanks [Figure S5; Table S5].) The

accuracy is especially noteworthy on the forebrain, hindbrain

rhombencephalon, and neural tube data sets, being at 75%–

85% at the CRM level, and 58%–76% at the nucleotide level

(Figure 3; Table S6). Overall, roughly 60% of the full complement

of enhancers tested were recovered by supervised prediction in

a cross-validation setting, making a strong case for the general-

izability of the approach.

Application to Early Blood and Cardiovascular
Development in Human/Mouse
To follow up on these results in a genome-wide manner, we

turned to a data set of ten enhancers known to function in the

developing blood and vasculature (Supplemental Experimental

Procedures). We used the two top-scoring methods from

LOOCV, HexYMF-s200-rc (54% sensitivity) and PAC-rc (48%

sensitivity), to predict CRMs in the human genome. For effi-

ciency, the search was limited to ‘‘evolutionarily conserved

regions’’ (ECRs) (Loots and Ovcharenko, 2007) based on

human-mouse conservation. The top 1000 CRM predictions (of

each method) were then assessed for enrichment for a set of

genes known to be differentially expressed in blood stem cells.

Predicted CRMs with a neighboring gene in this set were

counted, and they were found to be highly statistically significant

when using either method (z scores > 10 and > 6, respectively,

see Figure 3C).

Table 2. Genome-Wide CRM Predictions for the 15 Amenable Data Sets, Using the Fusion Method and the Best Individual Method from

LOOCV Tests

Data Set m N

FUSION LOOCV

Best LOOCV Method

Random

PF KF PL KL PR KR

Blastoderm 208 5572 6.7E�24 45 6.7E�28 49 HexMCD 0.48 8

Cardiac_mesoderm 248 5572 5.4E�01 9 8.9E�01 6 PAC-rc 0.95 5

CNS 846 5572 8.2E�07 57 1.6E�11 68 HexDiff-rc 0.27 34

Eye.1 76 14149 2.9E�01 2 4.5E�03 5 D2z-cond-mo1-weights-rc 1.00 0

Imaginal_disc.1 318 14149 1.9E�19 33 1.9E�19 33 HexMCD 0.83 3

Mesectoderm 93 5572 7.4E�13 22 1.8E�03 10 D2z-cond-s100 0.86 2

Mesoderm.1 768 5572 1.5E�02 39 1.3E�03 47 PAC-rc 0.74 25

Neuroectoderm 60 14149 1.9E�12 13 1.1E�08 10 HexYMF-s200-rc 1.00 0

PNS 97 5572 8.0E�06 14 3.8E�05 13 PAC-rc 0.27 5

Somatic_muscle 76 14149 9.3E�09 11 2.9E�01 2 D2z-cond-weights 1.00 0

Ventral_ectoderm 328 5572 7.0E�13 41 5.9E�11 38 PAC-rc 0.13 16

Visceral_mesoderm 134 5572 8.3E�05 15 5.1E�06 17 HexMCD 0.11 8

Ectoderm.2 841 5572 3.8E�12 69 1.1E�10 66 HexMCD 0.26 34

Neuronal 66 5572 5.4E�04 9 1.1E�04 10 HexMCD 0.91 1

Wing 30 14149 5.3E�15 20 9.9E�11 16 HexDiff-rc 0.86 1

The hypergeometric p values of enrichment (PF,PL,PR) between the predicted CRMs for a data set and the corresponding expression-based gene sets

are shown, along with the size of the intersection (KF,KL,KR). Column m = size of expression gene set, Column N = total number of genes in the expres-

sion data source. The column ‘‘Random’’ is the result of a negative control, where CRM predictions were replaced by random locations.
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All ten training CRMs contain consensus binding sites for the

Ets and GATA families of transcription factors. We therefore

tested the top 1000 CRM predictions for the presence of GATA

and Ets motifs (Figure 3D). We found 234 of the top 1000 predic-

tions from PAC-rc to have the Ets motif; comparing this to a

random expectation of 59, we see a four-fold enrichment and a

z score of >45. Similar enrichment for the GATA motif is observed

(z > 13) in the PAC-rc predictions and for both motifs in the

HexYMF-200-rc predictions (z > 7, Figure 3D).

We constructed a high-confidence CRM prediction set for

each method by taking the 1000 top predictions, requiring that

a neighboring gene be in the blood stem-cell gene set, and spec-

ifying that either the Ets or GATA motif be present. This led to 75

distinct predicted CRMs based on HexYMF-200-rc and 114

based on PAC-rc (Table S4).

In Vivo Validation in Mouse
To demonstrate that the above approach was indeed able to

identify regulatory modules and predict their in vivo biological

activity, we generated lacZ reporter constructs for two predicted

intronic elements for testing in transgenic mouse embryos.

Neither of the two respective gene loci has previously been impli-

cated in either blood or cardiovascular development. The first

gene (ebf3) encodes a little-known paralog of early B cell factor

ebf1, a helix-loop-helix transcription factor important during

early B lymphocyte development (Busslinger et al., 2000). (The

predicted CRM is ranked at 41 by HexYMF-s200-rc and 63 by

PAC-rc.) The second gene (c1orf164) corresponds to an unchar-

acterized open reading frame on chromosome 1 predicted to

encode a ring-finger-domain-containing protein. (The predicted

CRM is ranked 12 by HexYMF-s200-rc and 23 by PAC-rc.)

Multiple transgenic founders were generated for each

construct, and day E11.5 embryos were collected and stained

for reporter gene activity. As exemplified by a representative

lyl1 promoter transgenic embryo, the ten elements used as

training data all show tissue specific enhancer activity by driving

expression in blood vessels, the heart, and developing blood

cells in the fetal liver (Figure 4). The transgenic embryos gener-

ated with the ebf3 and c1orf164 candidate enhancers reproduc-

ibly showed transgene expression in two and three (respectively)

of these three tissues, thus demonstrating that the computa-

tional screen not only led to the identification of bona fide tran-

scriptional enhancers, but more importantly was able to predict

the tissue-specific activity of these elements.

DISCUSSION

The problem of supervised CRM prediction is easily motivated

when we consider that the interactions in a regulatory subnet-

work involve up to hundreds of genes (Davidson, 2006) and a

relatively small set of TFs. Clearly, there is a significant layer

of combinatorial regulation in between, implemented through
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Figure 2. In Vivo Validation of Drosophila

CRM Predictions

Each predicted CRM was used to drive a GFP

reporter gene in transgenic embryos. Expression

was visualized using antibodies to GFP and com-

pared to the endogenous expression of the putative

associated gene as determined by whole-mount

in situ hybridization to mRNA (in the case of odd,

Odd antiserum). All embryos are shown with ante-

rior to the left. (A) The edl CRM drives expression

in the anterior of blastoderm-stage embryos,

consistent with endogenous edl expression (B). At

embryonic stage 10, reporter gene expression (C)

mimics edl gene expression (D) at the ventral

midline. By stage 11, reporter gene expression is

no longer seen at the ventral midline despite

continued endogenous gene expression at this

site (arrowheads in E and F); however, reporter

gene expression is maintained in the developing

brain (arrows in E and F). The srp CRM reporter

gene (G) is expressed similarly to srp mRNA (H) in

the blastoderm as well as in stage 8 embryos in

the developing posterior endoderm ([I and J],

arrowheads) and anterior endoderm ([I and J],

arrows). The odd CRM recapitulates odd gene

expression in mesodermal progenitors ([K],

magenta in L) but not in the ecotderm ([L]; anti-

Odd is in green and is nuclear, GFP expression

driven by the Odd CRM reporter is in magenta

and primarily cytoplasmic). The inset in (L) shows

a close up of the mesodermal cluster marked by the arrowhead. (M–P) The SoxN CRM drives reporter gene expression in a subset of the endogenous mRNA

pattern in the central nervous system. At stage 9, reporter gene expression is visible in the brain ([M], arrow) but not the remainder of the central nervous system

([M], arrowhead; compare with N). By stage 14, additional nervous system expression is apparent (O), consistent with endogenous SoxN (P). (Q–T) cas CRM

reporter gene expression faithfully reproduces cas expression in the late embryonic ventral nerve cord and brain. Nerve cord expression of both the reporter

gene and the endogenous mRNA is most prominent in a set of lateral cells in the thoracic segments (arrows in Q and R); additional reporter gene expression in

midline cells ([Q], arrowhead) is likely perdurance from a slightly earlier stage of expression (data not shown). Brain expression of the reporter gene, like that of

cas mRNA, is strongest in a group of medial cells ([S and T], arrows), with weaker expression laterally ([S and T], arrowheads).
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cis-regulatory modules. We thus expect tens to hundreds of

modules that share some degree of similarity in their binding

site content, and we should be able to predict most of these

given a representative subset. Such an initial set of modules

typically will be obtained through reporter gene assays, com-

putational methods, or high-throughput technologies such as

ChIP-chip. Our algorithms will then leverage the initial set to

provide much greater coverage of the regulatory subnetwork.

We have demonstrated here that our methods apply similarly

to both the Drosophila and mouse genomes with high accuracy.

It is important to contrast our method with the ‘‘tissue-specific

CRM prediction’’ approaches undertaken in Chen and Blanch-

ette (2007), Hallikas et al. (2006), Pennacchio et al. (2007), Smith

et al. (2007), and Yu et al. (2007) for the human genome. All of

these methods rely upon a large collection of vertebrate TF

motifs (from TRANSFAC [Matys et al., 2003] and/or JASPAR

[Bryne et al., 2008]), which is their main point of difference from

our approach. Moreover, their problem formulation and data

assumptions are distinct from ours: their strategy hinges on

large-scale gene expression data across a large spectrum of

tissues (Chen and Blanchette, 2007; Pennacchio et al., 2007;

Smith et al., 2007; Yu et al., 2007) or on knowledge of TFs medi-

ating the specific transcriptional response (Hallikas et al., 2006).

In many cases, such information may not be available. We

require instead the prior knowledge of some of the CRMs in-

volved in a particular regulatory subnetwork (which could be a

tissue-specific subnetwork). The ‘‘EDGI’’ program of Sosinsky

et al. (2007) has a similar objective to ours, i.e., CRM prediction

without motif knowledge, relying instead on interspecies conser-

vation and clustering of binding sites, but the only published

tests of this method have been on the A/P patterning network

in Drosophila, precluding statements about its broader applica-

bility. The most definitive test of any method is its ability to

predict CRMs that function in vivo. Current success rates based

on in vivo validation top out at approximately 80% in Drosophila

and 70% in mouse (Table S8). Although continued validation

using a larger number of predictions drawn from a broader selec-

tion of data sets is still required, the 100% true-positive rate we

have achieved so far in both fly and mouse is highly encouraging

and at a minimum puts our method on a par with the top existing

approaches.

Recent advances in genome-scale empirical methods repre-

sent a promising new means for CRM discovery and will provide

an important complement to, although not a replacement for,

computational methods. For example, Visel et al. (2009) have

described a ChIP-seq-based study in which CRM sequences

Method Motif Predictions with 
Motif occurrence Z-score

PAC-rc V_ETS_Q6 234 45.09 

HexYMF-s200-rc V_ETS_Q6 127 7.04 

PAC-rc V_GATA6_01 159 13.77 

HexYMF-s200-rc V_GATA6_01 107 7.43 

Method Predictions Z-score

HexYMF-s200-rc 341 10.83 

PAC-rc 291 6.88 
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Figure 3. In silico Validation on Mammalian Enhancers

(A) LOOCV performance of each of seven different motif-blind methods on eight data sets in the benchmark. The format is identical to that of Figure 1A.

(B) Consistency of a method’s accuracy on each data set, over ten instantiations of LOOCV. Colors and numbers indicate the number of instantiations on which

the performance was significant (at p % 0.05).

(C) The set of nearest genes for the top 1000 CRM predictions for early blood and cardiovascular development in human/mouse was intersected with a set of 7035

genes differentially expressed in blood stem cells in mouse (Miranda-Saavedra et al., 2009). The intersection size (‘‘Predictions’’) was significantly above chance

expectation (‘‘z score’’; mean 204, standard deviation 13, estimated by simulations).

(D) Predicted CRMs were scanned for significant occurrence of Ets-related and GATA motifs from TRANSFAC; counts of motif-containing predictions are in

column 3, and significance estimates of these counts, based on random sampling of CRMs, are in column 4.
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Figure 4. Validation of Predicted CRMs for In Vivo Activity in Blood and Cardiovascular Tissues Using Transgenic Mouse Assays

LacZ reporter constructs were microinjected into mouse embryos and assayed by whole-mount staining of midgestation F0 embryos. Shown to the left is a trans-

genic embryo with the lyl1 promoter construct showing transgene expression in heart (red arrowhead), fetal liver (purple arrowhead), and vessels (green arrow-

head). The middle and right hand panels show representative transgenic embryos with reporter constructs for the predicted CRMs in exon 3 of c1orf164 and exon

6 of ebf3, respectively. Arrowheads indicate staining in heart, fetal liver, and vessels.
were enriched through chromatin immunoprecipitation of the

common enhancer-binding protein p300 using RNA isolated from

specific tissues. At present, such approaches require significant

amounts of biological material, which represents a particular

problem when studying stem cell systems or early developmental

programs. Employing a computational strategy not only circum-

vents the need for pure cell populations but also has the potential

to provide information on cis-regulatory elements operating in all

cell types. Moreover, while tissue-specific p300-directed ChIP-

Seq can reveal that two modules are active in the same tissue,

it makes no predictions as to whether they may be related in

terms of their control mechanisms or the specific subnetworks

in which they participate. Importantly, our methods should be

easily adaptable for assessing which empirically identified CRMs

are functioning through related mechanisms, and data from

empirical methods will therefore provide valuable input to the

computational discovery approaches we have outlined here.

Consequently, the approach developed here represents a widely

applicable strategy for deciphering transcriptional regulatory

networks across a wide range of model systems.

Methodology
We recommend use of the cross-validation step as a quick

method to assess whether a set of modules is amenable to

computational prediction and, if so, which scores are good at

capturing the essence of these regulatory sequences. If the

user finds that his or her data set does not show consistently

significant performance with any of our methods, he or she

should not proceed further with our pipeline. Although the abso-

lute performance values in cross-validation do not pertain to

genome-wide prediction accuracy, the empirical p values do

give us an idea of whether the supervised prediction scheme is

feasible for the data set.

Our CRM prediction pipeline encapsulates a broad variety of

scoring schemes to capture the essential features of functionally

related modules. We implemented two previously reported

scoring schemes (HexDiff and HexMCD), designed five novel

motif-blind scoring schemes (HexYMF, PAC, and three variants
576 Developmental Cell 17, 568–579, October 20, 2009 ª2009 Else
of D2z), and examined statistical issues related to them (such

as normalization for background composition). Our results (Fig-

ures 1B and 1C) show that each of the scoring schemes explored

has its merits, and there is no universally superior method. At the

same time, some general trends may guide us in our search for

better scores. For instance, counting words on both strands

improved performance of most scores (see Table S1). Using a

subset of 100–200 6-mers rather than all k-mers was another

beneficial choice which presumably increases the signal by

removing words unrelated to the true motifs in the data. It is

also clear that motif-blind approaches are competitive with or

better than the motif-based Stubb-MDB (or Clover-Cluster-

Buster). In fact, the data sets on which Stubb-MDB is the ‘‘best

performing’’ method (neuroectoderm, ventral ectoderm, and

ectoderm.2) are those on which almost all methods are success-

ful. We believe this will in general be the case for motif-based

methods, although a comprehensive test of existing approaches

(e.g., Philippakis et al., 2005) has not yet been conducted.

We have used slightly different pipelines for genome-wide

prediction in Drosophila and human—the fusion method and

the best LOOCV method were deployed in Drosophila, while

the two best LOOCV methods were used in the human scans.

This is meant to show that the underlying statistical scoring

schemes may be used in a variety of ways that can be decided

by the user. Also, the vertebrate analysis filters the CRM predic-

tions for presence of either the GATA or the Ets motif, while the

Drosophila analysis does not impose any motif filter. Again, this

demonstrates the flexibility of including optional filters, which

could potentially aid in refining the tissue specificity of predictions,

based on the user’s prior knowledge of the biological system.

Note that even in the vertebrate case the motif filters were used

postsearch to prioritize the results; the search itself, like the

Drosophila search, was conducted in a fully motif-blind fashion.

Characterization of Data Sets
The strong correlations seen between performance and simple

properties of data sets—size, GC content, etc. (Figure S2A–

S2C)—are suggestive of a possible source of ‘‘contamination’’
vier Inc.
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in the training sets. Experimentally identified modules are not

always the minimal sequence required for the specific function

and may include nonregulatory sequences flanking the function-

ally important core(s). Since CRMs in general demonstrate a

higher degree of evolutionary sequence conservation, GC con-

tent, and, in some cases, homotypic motif clustering than their

flanking regions (Li et al., 2007), data sets with relatively lower

values of these variables may be the ones with greater ‘‘contam-

ination,’’ which may partially explain their relatively low amena-

bility to prediction.

Genome-Wide Predictions
One may define a successful prediction as either a module with

expression consistent with the training set, or as a module

capturing some aspect of its associated gene’s expression

pattern. While we consider the latter condition to be necessary,

the former condition depends largely on how tightly defined the

training set is and on the nature of the TFs that act via the training

CRMs. These TFs will frequently also regulate other biological

processes and may lead our supervised prediction framework

to report modules related to those processes. For instance, of

the five tested Drosophila modules, only two (edl, srp) mediated

the predicted blastoderm gene expression, but three drove

expression in the brain and midline of the central nervous system

(edl, cas, SoxN); suggestively, many of the gap and pair-rule

genes that regulate gene expression in the blastoderm also act

during nervous system development. It is also possible that a

training set spans a very broad spectrum of expression patterns,

making it hard to learn the cis-regulatory commonalities from

them. In such cases, the supervised prediction may learn generic

characteristics of CRMs and predict successfully, but without

specificity, or may fail completely. This may explain why smaller

data sets with more tightly defined expression characteristics led

to more specific CRM detection in our LOOCV experiments.

EXPERIMENTAL PROCEDURES

New Scoring Schemes

HexYMF

The z score of a word is calculated by the YMF program (Sinha and Tompa,

2000), based on its count in training CRMs, and the mean and standard devi-

ation are calculated from a third-order Markov chain trained on background

sequences. In our implementation, called ‘‘HexYMF-s200-rc,’’ W comprises

the 200 top-ranking 6-mers by z score (hence ‘‘-s200’’), and n(w) denotes

the count of w on both strands of a sequence.

Poisson Additive Conditional

This score is defined as:

1

jWj
X

w˛W

FðlðwÞ; nðwÞ � 1Þ;

where F(l,x) is the cumulative Poisson distribution function, l(w) is the ex-

pected count of w in the test sequence, and n(w) is its observed count. W is

the set of the most overrepresented words in training CRMs, as defined above.

Note that 1 � F(l(w),n(w) � 1) represents the p value of the observed count

of w. This score considers the words that are most associated with the training

set, and then examines how overrepresented each of these words is in the test

sequence, relative to the assumed background. The implementation is called

‘‘PAC-rc’’ because word counts on both strands are considered in identifying

the set W.

D2z Score

The ‘‘D2 statistic’’ is the number of k-mer matches between two given

sequences, and the ‘‘D2z score’’ introduced in our earlier work (Kantorovitz
Develop
et al., 2007) computes the statistical significance (z score) of this number.

Here, we cannot use the calculations from Kantorovitz et al. (2007) (also

used in Ivan et al., 2008) because the model under which the z score was

computed is inapplicable in the supervised prediction setting. In the null model

of Kantorovitz et al. (2007), both sequences are random sequences, while in

our setting the training sequence S is known (treated as a fixed sequence)

and only the test sequence T is random (in the null model). We show how to

analytically calculate the z score for D2 under this setting and call it condi-

tional-D2z. In addition, we develop the following variations of the conditional

D2z score. (All derivations are provided in Supplemental Experimental Proce-

dures.)

(1) Subsets of words: This restricts the summation to k-mers w ˛ W

defined above.

(2) Weighted summation: Here, the D2 score is redefined to be a weighted

dot product, with z(w) (see HexYMF) as weights; i.e., we redefine D2

as
P

w˛W zðwÞnSðwÞnT ðwÞ and compute its z score.

(3) Reverse complement counting: We extended the D2z score of Kantor-

ovitz et al. (2007) to count words on both strands while ignoring statis-

tical dependencies between the strands.

The three variants of D2z score that are used in our final pipeline include

‘‘D2z-cond-mo1-weights-rc,’’ ‘‘D2z-cond-weights,’’ and ‘‘D2z-cond-s100’’

(‘‘-cond’’ for conditional z score, ‘‘-mo1’’ for first-order Markov background,

‘‘-weights’’ for weighted summation, ‘‘-rc’’ for counting words on both strands,

and ‘‘-s100’’ for subset of top 100 words).

Stubb-MDB

Given a set of experimentally characterized motifs (PWMs) and a set S of

training CRMs, the first step determines the relevance of each motif M to S,

as follows:

(1) Calculate the ‘‘log likelihood ratio score’’ of M for each sequence s in S as:

LLRðs;MÞ= log
PrðsjHMMðM;pfreeÞÞ

Pr
�
s
��HMM

�
M;pglobal

��;

where HMM(M, p) is a two-state zeroth order HMM (Sinha et al., 2003), with

motif transition probability p and background transition probability 1 � p.

The value pglobal in the denominator is the maximum likelihood value of this

parameter learned from genomic background, while pfree in the numerator is

a free parameter trained on sequence s.

(2) Calculate the empirical p value of LLR(s,M) based on scores of equal

length windows in genomic background.

(3) Declare M to be relevant to S if more than 10% of sequences s in S have

a p value (LLR(s,M)) %0.05.

The second step is to filter the relevant motifs for redundancies based on

relative entropy between two PWMs. The final step is to scan the test

sequence for CRMs using Stubb (Sinha et al., 2003), using the top ten relevant,

nonredundant motifs.

Evaluation of CRM Prediction by Cross-Validation

If there are n CRMs in a data set, the cross-validation was done in n ‘‘folds.’’ In

each fold, one CRM is the test data, and the remaining n�1 CRMs are training

data. The former is embedded in a 10 kbp long noncoding genomic sequence

with G/C content similar to the native flank of the CRM, thus creating the ‘‘test

sequence.’’ For each data set, the average length L of known modules was

computed, and the task in each fold was to predict a module of length L in

the test sequence. The highest scoring window by each scoring scheme

was treated as the prediction of that scheme. We obtain L-length predictions

in all n test sequences, which are then evaluated based on overlap with the

embedded CRMs. We use two measures of accuracy: (1) ‘‘nucleotide level

sensitivity,’’ determined by the base-pair overlap, and (2) ‘‘CRM level sensi-

tivity,’’ determined by the number of folds where the true and predicted

CRMs overlap by 100 bp or more. Due to this experimental design, the sensi-

tivity values are equal to the respective precision (PPV) values. We further

compute empirical p values of the sensitivity, as in Ivan et al. (2008). Note

that the test CRM is embedded in a randomly chosen noncoding region,

instead of being kept in its native flank, in order to maximize the odds that there

are no other related modules in a test sequence. In different ‘‘instantiations’’ of

cross-validation, the randomly chosen flanking sequences are different.
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Finally, we note that the p value threshold of 0.05 used in designating success

on a data set is meant only as a guide to choose methods, and not for biolog-

ical discovery. As such, no multiple hypothesis correction is applied here.

Relationship between Performance and Data Set Properties

We measured the relative extent of homotypic clustering in a CRM by its

‘‘FTT-Z rank’’ (Li et al., 2007), which computes the FTT (fluffy-tail-test) score

(Abnizova et al., 2005) of the sequence, calculates its empirical z score, and

ranks the CRM by this FTT-Z score. Evolutionary conservation with D. pseu-

doobscura was calculated as in Li et al. (2007).

Genome-Wide Scans and Validation

The D. melanogaster genome (Release 4.3) was masked for exons and for

short tandem repeats (Benson, 1999), and the CRM prediction pipeline was

run with 500 bp windows. For each data set, nearest neighboring genes of

the top scoring modules genome-wide were extracted until we had a list of

200 distinct genes. This list was tested for enrichment for the corresponding

gene set defined from expression data, defined by specifying the appropriate

sets of anatomical terms at BDGP (http://www.fruitfly.org/) or at FlyBase

(http://flybase.org/) (Table S10). For the blastoderm data set, we further

considered the subset of the 200 predicted genes that have an anterior-poste-

rior (A/P) pattern and obtained 137 modules, of which 113 were within 10 kbp

of the proximal gene.

Drosophila Transgenic Analysis

Genomic sequences were generated by PCR (Table S9) and subcloned into an

EGFP reporter vector (details available on request). Transgenic flies were

created by injection into line fX-96E (Bischof et al., 2007). Homozygous trans-

genic embryos were collected, fixed, and stained with antibodies to GFP (mAb

JL-8, Clontech) using standard methods. Labeling for Odd expression used

guinea pig anti-Odd (Ward and Skeath, 2000). Probes for in situ hybridization

were generated using clones from the Drosophila Gene Collection (Stapleton

et al., 2002).

Mouse Reporter Constructs and Transgenic Analysis

Reporter constructs were generated using primers listed in Table S9 and

confirmed by sequencing. Detailed information on reporter constructs is avail-

able on request. Plasmids were linearized, and founder transgenic embryos

were produced by pronuclear injection as described (Landry et al., 2005).

Embryos were harvested at E11.5 and analyzed as described (Pimanda

et al., 2006).

Mammalian Data Sets for Cross-Validation

Tissue-specific human enhancers were downloaded from the Vista Enhancer

Browser (http://enhancer.lbl.gov/), and enhancers driving expression in a spe-

cific tissue were considered. These were grouped by the associated tissue,

and groups with size R5 were treated as data sets (covering 244 enhancers

overall). Cross-validation was performed by ‘‘planting’’ each CRM in 10 kbp

random noncoding sequence (Figure 3 and Table S6), as well as in local

context (Figure S5 and Table S5). A data set was considered amenable to a

method if the sensitivity p value was %0.05 on at least eight of ten instantia-

tions of LOOCV.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, six

figures, and thirteen tables and can be found with this article online at http://

www.cell.com/developmental-cell/supplemental/S1534-5807(09)00384-0.
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