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Abstract 

The purpose of this paper is to introduce the concept of monoid deformations in connection 
with group representations. The underlying philosophy for finite reductive monoids M is that 
while M is contained in a modular representation of the unit group G, a deformation M(q) is 

contained in a complex representation of G. This is worked out in detail in the case of the 
Steinberg representation. @ 1998 Elsevier Science B.V. All rights reserved. 

AMS Classijcation: 20M30; 20M20 

0. Introduction 

This paper is part of a general program of the author to make linear representation 

theory of finite monoids relevant to group representation theory. We introduce in this 

paper the concept of monoid deformations. Though not directly related to our approach, 

we note that John Rhodes [lo] (early 1970s) had an idea of ‘resetting’ zero products 

in a finite semigroup. For a finite monoid M with zero, we consider generic ‘monoids’ 

M(t) in the indeterminate t. For a scalar c, we call M(c) a deformation of A4 =M(O). 

Classical monoid representation theory is extended to a representation theory of monoid 

deformations. 

For a finite reductive group G over [F,, the canonical monoid A! = A(G) was 

constructed by Renner and the author [8]. .A! is the abstract finite analogue of the 

canonical compactification of reductive groups in the theory of embeddings of homo- 

geneous spaces [4]. It turns out that .A! can also be constructed within the modular 

Steinberg representation of G. We construct here a bigger monoid A# within the mod- 

ular Steinberg representation and show that a q-deformation &t?(q) of 2 is contained 
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within the ordinary Steinberg representation. This is facilitated by a description of the 

Steinberg representation via an associative multiplication on Chevalley’s big cell. 

1. Abstract monoid deformations 

Let A4 be a finite regular (a E aMa for all a EM) monoid with zero 0 and unit 

group G. Let 9, 9, 9, % denote the usual Green’s relations on M : a$b if MaM = 

MbM, a&?b if aM= bM, a2’b if Ma=Mb, %?=9n 2’. Let a=%(M) denote the 

set of non-zero $-classes of M. If XCM, let E(X) denote the set of idempotents 

of X. For J E %!, choose eJ E E(J) and let HJ = H(eJ) denote the z-class of eJ, i.e. 

the unit group Of eJMf?J. 

Let J E 42. Then Jo = J U (0) with 

sob= 
{ 

ab if abEJ, 

0 otherwise 

is a semigroup and M(J) = GU Jo is a monoid. Let RJ, LJ denote the W and 

z-classes of e, respectively. Choose z-class representatives XJ = { 1 = al, . . . , a,} in 

RJ and &?-class representatives Y, = { 1 = bl,. . . , b,} in LJ. Then Zj = (ai bi) is a m x n 

matrices with entries in HJ U (0). G is called the sandwich matrix of J. We refer to 

[2] for details. 

We next briefly review semigroup representation theory [2; Ch. 51. Let F be a field 

and let FM denote the contracted monoid algebra of M, i.e. the zero of M is the 

zero of FM. Hence M\(O) . IS a basis of FM. Similarly, let FJ denote the contracted 

semigroup algebra of Jo. It has basis J. If Z is an ideal of M, then FZ is an ideal of 

FM. If rad& denotes the radical of an algebra d, then 

FM/rad FM S @ FJ/rad FJ. 

JE% 

Now, FJ is isomorphic to the Munn algebra over FHJ with sandwich matrix fi. If Zj 

is m x n, then this is the algebra of n x m matrices over FHJ with multiplication given 

by 

AoB=AfiB. 

Let Zrr HJ denote the set of irreducible representations of HJ. Let 8 E Zrr HJ of degree 

d and let &e denote the Munn algebra over the matrix algebra Md(F) with sandwich 

matrix 0(G). Then 

where r is the rank of O(c). Clearly, 

FJ/rad FJ ” @ &o/rad &. 
EEI~T-HJ 
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By a representation of M we mean a homomorphism cp : M -+M,,(F) such that 

cp( 1) = 1 and ~(0) = 0. The representations of M are in l-l correspondence with those 

of FM. In particular, every representation of M is completely reducible if and only if 

FM is semisimple. By the above, the set of irreducible representations (Irr M) of M 
is in l-l correspondence with the set of irreducible representations (IwHJ) of HJ as 

J ranges through @. Let 6 E IrrM correspond to 8 E Irr HJ. Then 

deg 8 = rke(fi), 

where deg denotes degree and rk denotes rank. In particular, FM is semisimple if and 

only if FHJ is semisimple and fi is invertible over FHJ for all J E O?.!. If % has a least 

element Jo with HJ,, = {eJo}, then there is a unique irreducible representation cp of M 
such that q(eJ,)#O. We call cp the principal representation of M (over F). 

We now consider generic ‘monoids’ M(t) in the indeterminate t. By this we mean 

an associative ‘operation’ 

l:MxM-+C(t)M, 

where C(t) is the field of rational functions in t, such that: 

(1) If a, bEM, ab#O in M, then t(a,b)=ab. 
(2) If a, b EM, ab = 0, then {(a, b) = f(t)u for some f(t) E C(t) with f(0) = 0 and 

u E MaM n MbM. 
We will write ab for <(a, b). M with this new ‘operation’ is denoted by M(t). So 

M(0) = M. If c E C such that c is not a pole of any of the coefficients of M(t), then 

we call M(c) a deformation of M = M(0). The corresponding complex algebra over 

C (with basis M\(O)) is denoted by @M(c). By a representation of M(c), we mean 

a map cp : M + n/r,(@) such that: 

(1) cp(l)=l, cp(O)=O. 
(2) If a, b, u EM, a E @, such that ab = GIZ.J in M(c), then &a)q(b) = cq(u). 

Clearly there is a l-l correspondence between the representations of M(c) and those 

of CM(c). In particular, every representation of M(c) is completely reducible if and 

only if @M(c) is semisimple. 

Let J E a. The multiplication in Jo(t) = J U (0) is as follows. If a, b E J, ab = f(t)u 
in M(t), then 

aob= 
{ 

f(tb if UEJ, 
0 otherwise. 

If&={l=Ur ,..., a,}, YJ={l=bl, . . . , b,}, then the generic sandwich matrix, 

C(t) = (ai bj) 

is a matrix over @(t)HJ. The deformation G(c) is a matrix over CHJ. 
If Z is an ideal of M, then it follows from the definition of M(t) that Cl(c) is an 

ideal of CM(c). Hence, 

CM(c)/rad CM(c) Z @ CJ(c)/rad @J(c), 
JEW 
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where CJ(c) is the contracted semigroup algebra of J’(c). Now, U(c) is the Munn 

algebra over 07~ with sandwich matrix G(c). Hence, we have: 

Theorem 1.1. (i) The irreducible representations of CM(c) are in l-l correspondence 

with those of CHJ, J E 42. If g E IrrHJ corresponds to e” E IrrM(c), then deg 8 = 

rh &G(c)). 
(ii) CJ(c) is semisimple zf and only tf G(c) is invertible over @HJ. 

(iii) CM(c) is semisimple tf and only tf G(c) is invertible over CHJ for all J E C2. 

Suppose CM is semisimple and let J E 32. Then for f3 E b-r HJ, g(fi ) is invertible and 

hence has non-zero determinant. Let f(t) E C(t) denote the determinant of O(G(t)). 

Then f (0) # 0. So f(t) # 0. Thus, f(c) # 0 for all but finitely many c E @. Hence, 

Corollary 1.2. Suppose CM is semisimple. Then CM(c) 

finitely many c E @. 

Example 1.3. Let 

is semisimple for all but 

denote the symmetric inverse monoid of degree 2. Then a!(M) = {G, J}, where 

J={e=[i :],a=[: i],b=[y i],f=[i ;I}- 

We construct the generic ‘monoid’ M(t) by defining 

t= + t 
ef=-a 

t4+1 ’ 
fe = t2b. 

Then by associativity, 

t= + t 
eb= -e 

t4+1’ 
fa=t2f, ae = t2e, 

a2 = t2a, 
t= + t 

bf = -f, 
t4 + 1 

b== - t= + t b, 

t4 + 1 

All other products are as in M. The generic sandwich matrix 

[ 

1 
fi(t)= $ 

(t2 + t)/(t4 + 1) 

1 I* 
For c E @ with c4 # - 1, M(c) is a deformation of M. M =M(O), M( 1 ), M( - 1) are 

actual monoids. M(O) is an inverse monoid. M( 1) is an orthodox monoid that is not an 

inverse monoid. M( - 1) is a regular monoid that is not an orthodox monoid. CM(c) 

is semisimple if and only if c is not a cube root of 1. 
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If 4Y has a least element Jo with HJ, = {eJo}, then there is a unique irreducible 

representation of M(c) such that cp(eJ,,) # 0. We will then call cp the principal repre- 

sentation of M(c). 

2. Canonical monoids 

Let G be a Chevalley group over F,, q = p6, of adjoint type (such as PGL,(lF4)), 

cf. [l]. So G has trivial center. Let B, B- be opposite Bore1 subgroups of G, T = B n B-. 

Let W = N/T denote the Weyl group of G with set of simple reflections S. If x E W, 

let x=iT, ~‘EN. If IgS, let WI=(I),P~=BW~B,P;=B-W~B-,L~=P~~~P~. Let 

U = O,(B), U- = O,(B-), c’~ = O,(Pl), U1- = O,(PF) denote the unipotent radicals 

of B, B-, Pr, PI-, respectively. Then / U I= 1 U- I= qm where m denotes the number of 

positive roots. If g E PI-P1 = CJ-LIUI, then let gI be defined as 

SI ELI, 9 E q-SIUI. 1 

In [S] a universal canonical monoid J.@ = A+(G) (denoted in [8] by A) is con- 

structed. .A’+ has zero 0, unit group G, non-zero f-classes JI(Z C: S), er E E(JI), such 

that 

Jr = GerG, UIel= (el) =eIU,-, 

H(q) = erLI = LIeI E LI. 

Moreover for I, K & $ 

wK=eKel=elnK, 

eIgeK = 0 for g E G\P,-PK. 

Let the cross-section lattice 

.4={e~IICS}E?(4)E2S. 

The monoid A’+ is of basic importance in the theory of monoids of Lie type. 

Our focus will be on the fundamental canonical monoid A? = A(G), where 

zzs, 

eIg = gq = eI for g E Z(LI ), 

HI = H(q) = LI/Z(LI). 

In particular, Ha = Be0 = {em} = egB_. Since Z(G) = {l}, G is the unit group of 

M has a Bruhat decomposition 

A= u BrB, 

&R 

where R is the Renner monoid of .A’, cf. [7, 91: 

R=(N,A)/T= u WeWU{O}. 

&A 

(1) 

(2) 

for 

(3) 

A. 
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In R, H(eI) = W,, I C 5’. Moreover, R is an inverse monoid (i.e. a regular monoid with 

commuting idempotents) and 

E(R) = {x-‘ex 1 e E A,x E W} U (0). 

By [8; Corollary 2.61, we have: 

Theorem 2.1. The principal representation of A%? over Fp is faithful and restricts to 

the modular Steinberg representation of G. 

Thus, A can be found within the modular Steinberg representation of G. We now 

consider an equivalence relation on 2s that arises naturally in the theory of cuspidal 

representations of G, cf. [l; Ch. 91. If Z,1’ c S, define 

1~1’ if x-‘Zx=Z for some xE W. 

Then x-‘Llx = L: and 

It follows from [5] that er and eI1 are in the same y-class of the universal fundamental 

monoid of A’. For our purposes, we will construct an intermediate monoid _A? with 

q $ eIl, whenever 1 -I’. Note that er, err are not in the same y-class of A! if Z #I’. 

1 will also be contained in the modular Steinberg representation of G. We will see 

in the next section that a deformation A!(q) is contained in the original (characteristic 

0) Steinberg representation of G. 

In A’, let % = Geg U (0). Let 9 denote the monoid (with respect to composition) 

of all maps CI: LE -+ 55 such that a(O) = 0. Now A’ acts on X on the left. If I C S, then 

eIxeg = 
{ 

xlea if x E P,-PI, 

0 otherwise. 

Thus, A and hence A? acts faithfully on %. We identify A? with its image in Y. For 

1, I’ c S, let 

@J={xE wIx-‘flx=IPjl}. 

Thus, 

@Jr #0*I-I’. 

Let 

w, = WI,I =Nw(K) 2 w,. 
If I -I’, let 

Ll.1~ = Lf WIJI = W{,[,L[,. 
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Let 

N _ 

LI = LI,I =~INv(K). 

Usually, tl is just NG(L~) (see [l; Section 3.61). Let I -I’, g E &,I,. Then g E LIZ = 
zLp with z E W being of minimum length in Wrz =zW,,. Let # E .M be defined as 

e0 if x E P,SPp, 

otherwise. 
(4) 

By [l; Proposition 2.3.31, z(B n L1!)z-’ c B. Hence q$” is well defined. By (l), (2), 

e&r = q;” = #&, 

l’pj” = q$, cpi” I’ = cp$ for 1 ELI, 1’ E Lp. (5) 

Also if K C I, then K’ =z-‘K.z 2 I’ and 

($$&, = qiK’,, = eK &, (6) 

Let 

RI,P = {q$” 1 g E LIJ}. 

If g E El, let cpi = # and let fi, = I&. Then 

q:=Iq=eIl for all IELI 

and 

mHI={cp’,IgEiI}. 

If I N I’ -I”, then 

#I cp’,“” = q;;” for g E _&II, h E &,p. 

In particular, $ is a group with identity element q. Let 

j=k(G)= u G&s Gu{O}. 

I,I’CS 
I-7 

Theorem 2.2. (i) &? is a regular monoid containing 4’ and E(A) = _!?(A?). 
(ii) The J-class of eI in k is 

(7) 

(8) 

-!I = u G&,pG. 
I' -I 

In particular, %(A-) 2 2’1 -. 
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(iii) The X-class of e1 in A? is 

where Li is the subgroup of LI generated by its unipotent (= p-) elements. 
(iv) The principal representation of &a over EP is faithful and restricts to the 

modular Steinberg representation of G. 

Proof. (i), (ii) follows from the repeated use of (l)-(8). Let g E J?I. Then g E LIZ 
for some z E Nw( &) of minimum length in II$z. So g = 1 i for some 1 ELI. Suppose 

qp’g = eI. Then 

eg=&eO)=giP1eg=ZeO. 

Let k E LI. Then 

Hence, k-‘gkg-‘~BflLz. If Ii ELI, then by (5), qi,=eI where g’=ZigZ[‘. It fol- 

lows that k-‘g k g-’ is an element of every Bore1 subgroup of LI. Hence, k-‘g k g-’ E 
Z(L1) for all k EL,. In particular, if k is unipotent, then k-‘g k g-’ = 1. Thus g E Cc(Li). 

Conversely suppose, g E CG(L;) n&. Then 1 E T. So for x EL;, 

rpi(xe0)=gxi-‘efl =xgi-leg =xZefl =xe0. 

Since LI = L{ . Z(L1), we see that (~‘4 = el. This proves (iii). 

(iv) By (ii), j0 =Js. Hence by Theorem 2.1 and [2; Ch. 51, the principal represen- 

tation of .A# over FP restricts to the modular Steinberg representation of G. Since the 

representation is faithful on .A?, it is faithful on X G 4. Since A? acts faithfully on 

the left on !Z, the representation is faithful on i. 0 

Let G denote the sandwich matrix of JI in A?. Let I;” denote the sandwich matrix 

of Jo in A?. Then 

fi=@ r,,, 
I’-I 

where the entries of cj are changed from HI, U (0) to fin U (0) via 

- _ 
HI, &HI, “HI. 

Now, @A&’ is semisimple by [6]. Hence each fi, is invertible over @HI, and hence 

over Cr?,. Thus, we have: 

Theorem 2.3. 6l.k is a semisimple algebra. 

If I N I’,z E W~,lt, let q$” = &T. Let 

V;,,r, = {@’ (z E &II}. 



M.S. Putcha I Journal of Pure and Applied Algebra 132 (1998) 159-178 167 

Let 

I?= u w&JJVJ{o}. 
I,l’&S 

Theorem 2.4. (i) I? is an inverse monoid containing R with E(k) = E(R) and a(8) ” 
2sj N. _ 

(ii) J%’ = u, E R BrB. 

Proof. (i) follows in the same way as Theorem 2.2. So we prove (ii). Let a E G&/G. 

Then by (5), a E Gq$“G with z E W of minimum length in W,z =zW$. By (5), 

I# = #‘i-‘li for 1 ELI. (9) 

By (1 ), (5,), (9) and the Bruhat decomposition, there exist x, y E IV, 1 E LI such that 

a E Bxlq;’ yB. Now B1 =x-‘Bx n L, and B2 =z(yBy-’ n Lp)z-’ are Bore1 subgroups 

of LI. By the Bruhat decomposition for LI, 1 E B,wBz for some w E WI. By (9) a E BrB 
where r = xwq$“y E r?. 

Next, we show that the union is disjoint. Let vi =xiqi;” yi f g with xi being of 

minimum length in Xi WI and yi being of minimum length in WI, yi, i = 1,2. Suppose 

BrlB = BrzB. Then for some b, b’ E B, 

By (5) _x!T’b& EPI. So Bx2nxlP, f8. Hence, xi =x2 and f,‘bil EP~. Similarly 

yl=y2 and jlb’j;‘EP,;. Hence for some ul~x;‘UxlrlLI, blEylBy;‘nLIt, 

By Theorem 2.2, there exist y E Nw( &), t E T such that tj E Cc(Li) and 

i, = tju,&b, = u,t j&b,. 

By the Bruhat decomposition z1 = yz2. It follows that cp:,” = &“. Hence r1 = r2. 0 

3. Steinberg representation 

We wish to find a deformation of A? within the ordinary Steinberg representation + 

of G with the cross-section lattice A being represented as 

To facilitate this we begin by considering a variation of the original approach of 

Steinberg [ 1 l] for the Steinberg representation. In particular, the Steinberg representa- 

tion $ is obtained via an associative multiplication on the variant U-U of Chevalley’s 

big cell B-B. 
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ForXcG, let CX=&,xECG 

and 

Let 

C=x(-l)‘%xa=& ~(-q)-@)~ BxB. 

XEW XEW 

By [ll; Lemma 21, 

C2 = c g-‘(x)C 

XEW 

and hence by [ 11; Theorem 21, 

e=Qlq-‘“) c 

is a primitive idempotent of CG. Moreover, the ideal 

V = CGeCG 

is a simple algebra of dimension q2m. Also by [3; Theorem 5.71, 

exs = Exe = (-q)- @)e for all x E IV. 

In particular, 

(e ~0)~ = (-q)-me wg, 

(10) 

(11) 

(12) 

where we is the longest element of W. For our purposes, we need to consider the 

primitive idempotent 

f = (-4Ye w0 (13) 

of %. Clearly, 

bf =f =fb’ for all bEB, b’EB_. (14) 

BY (12), 

fxf = (-q)@)f for all x E W. (15) 

By the Bruhat decomposition and (14), (15), we see that for all g E G, 

sf =fsf @ gEB, 

fg = fsf * gEB-. 

Next, we claim that for all x E W, 

xe=(-l)‘(X)CIU-nxUx-‘]e. 

(16) 

(17) 
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First, assume that x = s ES. Let X,, A’,- denote the respective positive and negative 

root subgroups associated with s. Then 

BsB = X,sB. (18) 

Since_X-nB={l} and&-CBUBsB, we have (as in [ll; Lemma l]), 

X,-B=Bu(X,-{l})sB. 

so 

Let 

co=& (CB- $BsB). 

Then by (18), 

c sB-1 
4 

(19) 

(20) 

BY (19h 

Hence by (20), 

BY (lo), (111, 

Coe=e+je= l+j e. 
( > 

Thus, 

c X,-e = -se for all s E S. (21) 

We now prove (17) by induction on Z(x). If Z(x) = 0, this is obvious. So let Z(x)>l. 

Then x = sy for some y E IV, s E S with l(x) = Z(y) + 1. Then by [l; Ch. 21, 

y-Q&y C u, x- ‘x,-x c u. 
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It follows that 

u- ~xUX-~ =s[U- nyuy-‘]~x,-. 

So by (21), (22) and the induction hypothesis, 

xe = sye 

=(-l)‘(Y)sCIU-nyUy-‘]e 

= (-1)1(q [U- fi yUy_‘]sse 

=(_l)‘(y)+’ Cs[U- fl yUy-l]sCXs-e 

= (-l)lCx) C [U- nxUx-‘le. 

This establishes (17). Dually for all x E W, 

ex=(-l)‘(X)eCIU-nx-lux]. 

By the Bruhat decomposition V has a basis 

0-f 4 VEU--, UEU. 

(22) 

(23) 

(24) 

BY (1213 

e c geg-‘e = c c egeg-‘e = c IBxBlexex-‘e 

cEG XEW gEBxB XEW 

= c [BxB[q-*‘@)e = IBI c q-‘(‘)e. 

XEW XEW 

By Schur’s lemma c,,, geg-’ is a scalar element of %?. Hence, the unity r of % is 

given by 

’ = ,B, xx:, q-W gEG geg-l c 
= IBl =:Iw @) gEG geg-‘, c . ‘lnce z(mo) = m - z(x). 

Let h E G. We wish to determine $(A) = hc in terms of the basis (24) of V. By the 
Bruhat decomposition 

G= u h-‘B-y-‘B. 

YEW 

Hence, 

G= u [BxBrlh-‘B-y-‘B]. 

&YEW 
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Fix x, y E W. Then 

BxBlw’B-y-‘B=[(UrlxU_x-‘)xB]rl[K’(U ny-‘u-y)y_91. 

If g E BxB fl h-‘B-y-‘B, then there exist unique u E U- n y-’ U-y, u E U rlxU_x-’ 

such that 

g E h-‘uy-‘B n u-‘xB. 

Let a(g) = (u, u). Then 

uh-‘u E xBy, hgeg-’ = uy-‘ex-‘u. (25) 

Let 

~={(u,u)IuEU~XU-X-~, u E U- n y-‘U-y, uh-‘u ~xBy}. 

If (u, a) E SZ’ then uh-‘u =xbj for some b E B. Let 

gl = h-‘uy-’ = u-%-b E h-‘uy-‘B n u-‘xB. 

Then o(gi) = (u, u). So cr is onto. Let g E h-‘uy-‘B rl u-‘xB so that a(g) = (u, u). Then 

g = h-'uj-'bl = u-lib2 for some bl, b2 E B. 

So h-‘u);-’ = U-‘ibzb;‘. Hence b = bzb;‘. Thus, 

IO-‘@,,)I = IBI. (26) 

Let 

&?={(u,u)IuEU, UEU-, uh-‘vExBy}. 

Let UEU, UEU-. Then 

u=u,urJ, u. E un~u-X-I, u1 E unxux-‘, 

u= UOUl, ~~~u-ny-~u-y, ~~~u-ny-‘uy. 

Then X-~ZQX, yuiy-’ E U. Hence, 

uh-‘o E xBy if and only if uoh-‘uo ~xBy. 

Thus, 

(u, u) E 99 if and only if (us, us) E d. 

Also by (23), 

ex-’ = ex-’ wow0 

=(-l)‘(~“)e~[U~nwoxux-‘wo]wo 

(27) 
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Hence by (17) (25)-(27), 

c hgeg-’ = IBI C (-l)“(-l)‘(x)+‘(Y) 1 vewou. 

gEG &YEW 

Thus by (13), 

UEU 
VEU- 

uh-’ VEXBY 

c (_ p)+KY) 

1 &YEW 
uh-' VEXBY 

ofu. I w3) 

Thus by (14), (15), (24), (20 

Theorem 3.1. On D = U-U, define 

u&u’ = (-q)@&’ l@- uv’ E B-x& x E w. 

Then CD is a simple algebra with unity 

The map $ : G + CD given by 

is the Steinberg representation of G. 

Let us continue to view the Steinberg representation as Ic/ : CG + %‘. We begin the 

tideous process (culminating in Theorem 3.2) of constructing a deformation of the 

monoid k of Theorem 2.2 within %Z E CD. For I C S, let 

VEU-i-IL, 

Then ee = f and es = 5 is the unity of ‘8. By Theorem 3.1 applied to LI, 

eI = e: has rank qm' , 

erl = le, for all I E 4, 

(29) 

(30) 
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where rnr is the number of positive roots of LI. Now, 

c LT.-f = c uwo c Uwof = qmx Uwoswof 
= (-1)” c Uwof by (12) = (-q)5w,,f = f by (12). 

Similarly, 

C( UnLI)(U- nLI)f=“f 

Since, 

uu- = u*uf-(unL[)(u- flL,), 

we get 

Csrr,-f-f 

and dually, 

fCUrq-=J 

Since LI normalizes UI and CJ-, we see by (29), (31), (32) that 

c UIU,-eI = eI = q c UI u,- * 

If u E U, u # 1, then by [l; Theorem 6.4.71, $(u) has trace zero. Hence, 

(31) 

(32) 

(33) 

is an idempotent in % of rank qmr. Since fi$(C L$U,-) = $(C L$U,-), we see by 

(30), (33) that $(CGU,-) has rank qm’. Hence by (30), (33), 

e,=*(~U~ci,-> for ICS. (34) 

In particular, 

uer =er =qv for uEUrvEU1-. (35) 

Let c, c’ E %?. Then we see by (24) that 

cvf =c’vf for all vEU-*c=c’. (36) 

Now, let 1 c S, x E W such that x is of minimum length in W,x. Let u E U n L1. Then 

by [l; Proposition 2.3.31, i-‘ui E B. Hence by (14), (15), (29), 

erxf = (-q)lCX)f for x of min. length in WJX. (37) 
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Next, let I, I’ &S, x E W of minimum length in &xR+. Let K = I nxl’x-‘, K’ = 

I’ n x-‘lx. Then K’ =x-‘kk and K N K’. Let v E U-. Then 

q~.g~vf = e~~e~lv,~ f by (35) 

= ef iv,/ f by (30), (37) 

= q IvItC’if 

= q zk~,Y ‘if by (35) 

= +IK’i.-’ sif by (30) 

= (-q)l(xkvK~~-l f by (37) 

=&i--1 eKi_f by (37) 

= eK ivK’i-‘i f by (30) 

= eK.& f 

= eKiC?puK’f by (30), (37) 

=e~iepvf by (35). 

By (36), erieI/ =e~feKr. Hence, 

e1 .%?I/ = eK XeKl with KcI,K’gI’,K-K’. (38) 

In particular, 

q ep = f?InIt for I, I’ c S. (39) 

Next let I, I’ c 5, I N I’. Let x E W be of minimum length in WIX =xWI, . Let K c I. 

Then K’=x-‘I& c I’ and K N K’. By (38), 

e1 ieKl = eK k?Kl = eK .kIl. (40) 

Now, let I, I’, I” G S such that Z N I’ ~1”. Let x, y E W be of minimum lengths in 

WIx=xWI, and WIty= yW~u, respectively. Let v E U-. Then, 

e{ieI, yepvf = eIieI$jvp f by (30), (35) 

= q it_s, jv~,, j- ’ j f 

= eIi$vpi-‘epjf by (30) 

= ( -q)l(Y)eI ijwp j-‘f by (37) 

= (-q)l(Y)eI i jvI,,j-‘i-‘if 

= (-q)“Y’Q+ y- ‘i-‘elff by (30) 

= (-q)‘(‘)+‘(Y)~i.)ivI,,~-‘~-’ f by (37). 
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Also, 

e~i-j,epvf =eI.t$vpf by (30), (35) 

= er ijv,,, j-‘X-‘Xj f 

. . 
= xyvp y ‘-li-leIijf by (30) 

= (-q)‘(xy)~)iu~,,);-lx-l f by (37). 

Hence by (36), 

and 

q ghep = e1 Ii l’jep 

= e1 Iil’X- ‘ijep 

= lil’i-‘qxyq~~ by (30). 

(41) 

Hence by (41), 

er gel,hq,, = (-q)‘@)+‘(J’-‘@‘)q ghs,,. (42) 

Let I-I’, g E LIJ. Then g E LIZ =z Lp with z E W being of minimum length in 

WIZ = z WI,. Let 

IJ’ 
% = (-q)-@)eI g ep. (43) 

Then by (30), 

er q;I’ = #’ = (pj” ep 

@:‘I! = q$, q#” 1’ = $9;;’ for 1 ELI, 1’ E Lp. (44) 

Also if K G I, then K’ = z-‘Kz & I’ and K N K’. So by (40), 

cp$I’eK, = cp”“’ = eK cp$“. (45) 

If g E &, let (pg’ = q$I. Then by (30), 

cpi = ler = q 1 for all 1 ELI. (46) 
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If I N I’ N I”, then by (42), 

(47) 

For I -I’, let 

Then by (47) & =Z$J is a group. Let g E i1. We claim that 

where Li is the subgroup of LI generated its unipotent (= p-) elements. Now g = Ii 

for some 1 E Ll, z E Nw( WI) of minimum length in WIZ. Suppose first that 4~; = er. 

Then 

f=erf=qLf=(-_q)- @)q gq f 

= (-q)-‘@)e~ Zzf 

= Zf by (30), (37). 

Hence for k ELI, 

kf = e1 kf = cp,‘kf = (-q)-@)e~ geI kf = (-q)-@)e~ Zikf 

= (-q)-@)e~ Ziki-‘if = (-q)-‘(Z)Ziki-lerif by (30) 

= Ziki-‘f by (37) = Ziki-‘I-‘f = gkg-‘f. 

By (16), k-‘gkg-’ EB n Lf for all k E L 1. If It E Ll, then by (30), vi, =eI where 

g’= ZtgZ[‘. It follows that k-‘gkg-’ is an element of every Bore1 subgroup of LI. 

Hence, k-‘gkg-’ E Z(LI) for all k ELI. In particular, if k is unipotent, k-‘gkg-’ = 1. 

Thus, g E &(Li). Conversely, if g E &(Li), then 1 E T and for v E U-, 

cpivf = (-q)-@)q gq vf = (-q)-@)eI gvIf by (30), (35) 

= (-q)-‘(‘)eI vIgf = (-q)-@) eI vIZi f = (-q)-‘(‘)vIZeI.if by (30) 

= v~lf by (37) = vlf by (14) = er vf by (30), (35), 

Hence by (36) q$ = er. 

Let 

A?= u GI&,GU (0). 

IJ’ c s 
I-7 
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Let A@’ = J?\(O). Then by the repeated use of (35), (38), (43)-(47), 

&?‘A?’ 2 ij (-q)ik-‘. (49) 
i=O 

Replacing q by an indeterminate t, we have a generic monoid J?(t). By (35)-(49) 

A=&(O) is as in Section 2 and A?(q) is as above. We have proved: 

Theorem 3.2. (i) d(t) is a generic ‘monoid’ with k=&(O) as in Theorem 2.2. 
(ii) The principal complex representation of A-(q) is faithful and restricts to the 

Steinberg representation of G. 

For z E I@IJI, let cp$” = cpiT and let 

VjJ = {qq Iz E I&J}* 

Let 

Let r?(t) denote the generic ‘monoid’ in indeterminate t with multiplication analogous 

to A?(t). Then we have, 

Theorem 3.3. (i) r?(t) is a generic monoid with &O)=l??, as in Theorem 2.4. 
(ii) A#( - 1) is a regular monoid. 

(iii) r?( - 1) is a regular orthodox monoid, i.e. product of idempotents is idempotent. 
(iv) A%?(- 1) = &,+i) BrB. 

Proof. We only need to prove (iii). The idempotent set of I?( - 1) is 

E = {x eI y qfz ( I N I’, y E FFIJ’, z = y-lx-‘} . 

If e, f E E, then by the repeated use of (38)-(40), we see that 

ef = x0qxl qx2efp3 ep4 

with xj E &,,I,+, , j= 1,2,3,4 and x4=x3 x2 -’ -ix;‘xgl. Then by (41), 

ef =xO~I,X~X~X~~I~X~ E E. 

This completes the proof. q 

Example 3.4. Let G = GLz(F2). Then _k = A’ =&((Fz). The multiplication Table 1 

for the non-zero singular elements of k(t) is given below. 
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[: i] [i ;] [: i] [: 3 [: ti] [: :] [: Y] [: :] [: :] 
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